Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (33)

Search Parameters:
Keywords = effective number of codons (ENC)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
10 pages, 1404 KiB  
Article
Codon Usage Bias in Mitochondrial Genomes Across Three Species of Siphonaria (Mollusca: Gastropoda)
by Jingjing Gu, Xuan Zhou, Chao Song, Yiyi Wang, Haobo Jin, Teng Lei and Xin Qi
Genes 2025, 16(7), 747; https://doi.org/10.3390/genes16070747 - 26 Jun 2025
Viewed by 392
Abstract
Background: Siphonaria is a genus of false limpets belonging to the Gastropoda class. Only two species of this genus have been described with mitochondrial genomes. Moreover, the codon usage patterns and factors influencing them have not been studied. This study aims to expand [...] Read more.
Background: Siphonaria is a genus of false limpets belonging to the Gastropoda class. Only two species of this genus have been described with mitochondrial genomes. Moreover, the codon usage patterns and factors influencing them have not been studied. This study aims to expand the mitochondrial genome data of this genus and clarify the codon usage patterns. Methods: The complete mitochondrial genome of Siphonaria japonica was sequenced using next-generation sequencing. The gene arrangement and phylogenetic status were compared with Siphonaria gigas and Siphonaria pectinata. The codon usage bias of the three mitochondrial genomes was analyzed based on the relative synonymous codon usage (RSCU), the effective number of codons (ENC) plot, the parity rule 2 (PR2)-bias plot, and neutrality plot analyses. Results: The gene arrangement and maximum-likelihood phylogenetic tree support a close relationship between S. japonica and S. pectinata. The codon usage bias analysis indicated that the codon usage bias of mitochondrial PCGs in the three species was primarily influenced by natural selection. Conclusions: This study offers significant evolutionary insights into the phylogenetic relationships and molecular adaptation strategies among Siphonaria species. Full article
(This article belongs to the Section Population and Evolutionary Genetics and Genomics)
Show Figures

Graphical abstract

16 pages, 1927 KiB  
Article
Natural Selection as the Primary Driver of Codon Usage Bias in the Mitochondrial Genomes of Three Medicago Species
by Yingfang Shen, Leping Qi, Lijuan Yang, Xingxing Lu, Jiaqian Liu and Jiuli Wang
Genes 2025, 16(6), 673; https://doi.org/10.3390/genes16060673 - 30 May 2025
Viewed by 639
Abstract
Objectives: Codon usage bias is a fundamental feature of gene expression that can influence evolutionary processes and genetic diversity. This study aimed to investigate the mitochondrial codon usage characteristics and their driving forces in three Medicago species: Medicago polymorpha, Medicago sativa, [...] Read more.
Objectives: Codon usage bias is a fundamental feature of gene expression that can influence evolutionary processes and genetic diversity. This study aimed to investigate the mitochondrial codon usage characteristics and their driving forces in three Medicago species: Medicago polymorpha, Medicago sativa, and Medicago truncatula. Methods: The complete mitochondrial genome sequences of the three species were downloaded from GenBank, and 21 shared coding sequences were screened. Codon usage patterns were analyzed using CodonW 1.4.2 and CUSP software. Key parameters, including the relative synonymous codon usage (RSCU), effective number of codons (ENC), codon adaptation index (CAI), codon bias index (CBI), and frequency of optimal codons (Fop), were calculated. Phylogenetic trees and RSCU clustering maps were constructed to explore evolutionary relationships. Results: The GC contents of the mitochondrial genomes followed the order of GC1 > GC2 > GC3. ENC values averaged above 35, while CAI, CBI, and Fop values ranged from 0.160 to 0.161, −0.078 to −0.076, and 0.362 to 0.363, respectively, indicating a weak preference for codons ending with A/U. Correlation and neutrality analyses suggested that codon usage bias was influenced by both mutation pressure and natural selection, with natural selection being the dominant factor. Fifteen optimal codons, predominantly ending with A/U, were identified. Phylogenetic analysis confirmed the close relationship among the three Medicago species, consistent with traditional taxonomy, whereas the RSCU clustering did not align with the phylogenetic relationships. Conclusions: This study provides insights into the mitochondrial codon usage patterns and their evolutionary determinants in Medicago species, highlighting the predominant role of natural selection in shaping codon usage bias. The findings offer a foundation for comparative genomic studies and evolutionary analyses and may be beneficial for improving genetic engineering and breeding programs of Medicago species. Full article
(This article belongs to the Section Plant Genetics and Genomics)
Show Figures

Figure 1

21 pages, 15264 KiB  
Article
Comparative Analysis of Codon Usage Patterns in the Chloroplast Genomes of Fagopyrum Species
by Qilin Liu, Shurui Li, Dinghong He, Jinyu Liu, Xiuzhi He, Chengruizhi Lin, Jinze Li, Zhixuan Huang, Linkai Huang, Gang Nie, Xinquan Zhang and Guangyan Feng
Agronomy 2025, 15(5), 1190; https://doi.org/10.3390/agronomy15051190 - 14 May 2025
Viewed by 731
Abstract
The non-random usage of synonymous codons encoding the same amino acid—referred to as codon usage bias (CUB)—varies substantially across genomes and significantly affects translational efficiency by modulating transcriptional and post-transcriptional processes. In chloroplast genomes, the optimization of CUB is critical for improving the [...] Read more.
The non-random usage of synonymous codons encoding the same amino acid—referred to as codon usage bias (CUB)—varies substantially across genomes and significantly affects translational efficiency by modulating transcriptional and post-transcriptional processes. In chloroplast genomes, the optimization of CUB is critical for improving the efficacy of genetic engineering approaches. However, comprehensive analyses of CUB in Fagopyrum chloroplast genomes remain scarce. In this study, we performed an in-depth comparative analysis of codon usage patterns in the chloroplast genomes of nine Fagopyrum species. Our results revealed a marked AT-rich nucleotide composition, with base content in the order T > A > C > G. We identified 23 optimal codons and 29 high-frequency codons, most of which ended with A or U. Correlation analyses demonstrated that codon usage is strongly influenced by nucleotide skewness (GC and AT skews), protein properties (such as amino acid composition and the number of synonymous codons), and gene expression levels. Neutrality plot analysis (PR2 bias) and evaluations based on the effective number of codons (ENc) indicated that both mutational pressure and natural selection contribute to shaping CUB, with natural selection identified as the predominant evolutionary force. Comparative analyses with four model organisms indicated that Arabidopsis thaliana shares the highest codon usage compatibility with Fagopyrum chloroplast genomes, highlighting its suitability as a potential heterologous expression system. Phylogenetic reconstruction based on codon usage profiles yielded a fully resolved topology with 100% bootstrap support at all nodes, reinforcing the utility of codon usage data in evolutionary inference. This study elucidates the evolutionary determinants of codon usage variation in Fagopyrum plastomes and provides a robust methodological foundation for codon optimization in chloroplast-based synthetic biology. The validated codon adaptation metrics offer promising tools for improving heterologous protein expression and guiding transgene design in advanced breeding strategies. Full article
(This article belongs to the Special Issue Crop Genomics and Omics for Future Food Security)
Show Figures

Figure 1

17 pages, 4213 KiB  
Article
Natural Selection Shaped Codon Usage Patterns in Wheat Dwarf Virus in Triticale
by Jiuli Wang, Xinhang Lu, Jiaying Dong, Jiaqian Liu, Borui Guo, Chen Zhang, Jing Liu and Hongxia Wang
Biology 2025, 14(5), 524; https://doi.org/10.3390/biology14050524 - 9 May 2025
Cited by 1 | Viewed by 512
Abstract
Wheat dwarf virus (WDV) poses significant threats to gramineous crops, making it crucial to explore its codon usage patterns and evolutionary dynamics for effective disease control. This study analyzed ten WDV isolates, including two from triticale (WDVT_117 and WDVT_118), using metrics such as [...] Read more.
Wheat dwarf virus (WDV) poses significant threats to gramineous crops, making it crucial to explore its codon usage patterns and evolutionary dynamics for effective disease control. This study analyzed ten WDV isolates, including two from triticale (WDVT_117 and WDVT_118), using metrics such as relative synonymous codon usage (RSCU), effective number of codons (ENC), codon adaptation index (CAI), and codon bias index (CBI). Neutrality plots, ENC-plots, and PR2-plots were employed to assess the role of mutation and selection. Results revealed weak codon preference in triticale-derived strains (CAI: 0.145–0.269; CBI: −0.042–0.111; ENC > 40), with hierarchical GC content. Neutrality analysis and ENC-plot distributions indicated natural selection as the dominant force, supported by T/C bias at the third codon position (PR2-plot). Shared optimal codons UUC and UAC in highly expressed genes may imply a potential significant role in virus adaptation. RSCU-based clustering and MP phylogenetic analysis revealed that WDVT strains form a distinct cluster with elevated genetic diversity, potentially driven by genomic recombination in the synthetic host. These findings demonstrate that WDVT balances mutational constraints and host adaptation through selective codon optimization. This study provides a foundation for codon-based antiviral research and the development of agricultural strategies to combat WDV infections. Full article
Show Figures

Figure 1

19 pages, 5741 KiB  
Article
GC Content in Nuclear-Encoded Genes and Effective Number of Codons (ENC) Are Positively Correlated in AT-Rich Species and Negatively Correlated in GC-Rich Species
by Douglas M. Ruden
Genes 2025, 16(4), 432; https://doi.org/10.3390/genes16040432 - 5 Apr 2025
Cited by 1 | Viewed by 857
Abstract
Background/Objectives: Codon usage bias affects gene expression and translation efficiency across species. The effective number of codons (ENC) and GC content influence codon preference, often displaying unimodal or bimodal distributions. This study investigates the correlation between ENC and GC rankings across species and [...] Read more.
Background/Objectives: Codon usage bias affects gene expression and translation efficiency across species. The effective number of codons (ENC) and GC content influence codon preference, often displaying unimodal or bimodal distributions. This study investigates the correlation between ENC and GC rankings across species and how their relationship affects codon usage distributions. Methods: I analyzed nuclear-encoded genes from 17 species representing six kingdoms: one bacteria (Escherichia coli), three fungi (Saccharomyces cerevisiae, Neurospora crassa, and Schizosaccharomyces pombe), one archaea (Methanococcus aeolicus), three protists (Rickettsia hoogstraalii, Dictyostelium discoideum, and Plasmodium falciparum),), three plants (Musa acuminata, Oryza sativa, and Arabidopsis thaliana), and six animals (Anopheles gambiae, Apis mellifera, Polistes canadensis, Mus musculus, Homo sapiens, and Takifugu rubripes). Genes in all 17 species were ranked by GC content and ENC, and correlations were assessed. I examined how adding or subtracting these rankings influenced their overall distribution in a new method that I call Two-Rank Order Normalization or TRON. The equation, TRON = SUM(ABS((GC rank1:GC rankN) − (ENC rank1:ENC rankN))/(N2/3), where (GC rank1:GC rankN) is a rank-order series of GC rank, (ENC rank1:ENC rankN) is a rank-order series ENC rank, sorted by the rank-order series GC rank. The denominator of TRON, N2/3, is the normalization factor because it is the expected value of the sum of the absolute value of GC rank–ENC rank for all genes if GC rank and ENC rank are not correlated. Results: ENC and GC rankings are positively correlated (i.e., ENC increases as GC increases) in AT-rich species such as honeybees (R2 = 0.60, slope = 0.78) and wasps (R2 = 0.52, slope = 0.72) and negatively correlated (i.e., ENC decreases as GC increases) in GC-rich species such as humans (R2 = 0.38, slope = −0.61) and rice (R2 = 0.59, slope = −0.77). Second, the GC rank–ENC rank distributions change from unimodal to bimodal as GC content increases in the 17 species. Third, the GC rank+ENC rank distributions change from bimodal to unimodal as GC content increases in the 17 species. Fourth, the slopes of the correlations (GC versus ENC) in all 17 species are negatively correlated with TRON (R2 = 0.98) (see Graphic Abstract). Conclusions: The correlation between ENC rank and GC rank differs among species, shaping codon usage distributions in opposite ways depending on whether a species’ nuclear-encoded genes are AT-rich or GC-rich. Understanding these patterns might provide insights into translation efficiency, epigenetics mediated by CpG DNA methylation, epitranscriptomics of RNA modifications, RNA secondary structures, evolutionary pressures, and potential applications in genetic engineering and biotechnology. Full article
(This article belongs to the Section Molecular Genetics and Genomics)
Show Figures

Graphical abstract

21 pages, 14693 KiB  
Article
Comprehensive Analysis of Chloroplast Genomes in Leguminous Forage Species: Codon Usage, Phylogenetic Relationships, and Evolutionary Insights
by Rui Yang, Ying Xue, Xiaofan He and Tiejun Zhang
Agronomy 2025, 15(4), 765; https://doi.org/10.3390/agronomy15040765 - 21 Mar 2025
Cited by 1 | Viewed by 576
Abstract
Leguminous forages play critical roles in sustainable agriculture and ecosystem management by enhancing soil fertility through nitrogen fixation and providing high-quality protein for livestock. This study sequenced and assembled the chloroplast genome of Thermopsis alpina using high-throughput sequencing technology. Along with 29 other [...] Read more.
Leguminous forages play critical roles in sustainable agriculture and ecosystem management by enhancing soil fertility through nitrogen fixation and providing high-quality protein for livestock. This study sequenced and assembled the chloroplast genome of Thermopsis alpina using high-throughput sequencing technology. Along with 29 other leguminous forage species obtained from the NCBI database, we conducted comprehensive analyses of the chloroplast genome of 30 species, focusing on their codon usage patterns, phylogenetic relationships, and evolutionary dynamics. The results revealed that the chloroplast genome of Thermopsis alpina exhibits a typical quadripartite structure, with a total length of 153,714 bp, encoding 124 genes and comprising a large single-copy region (LSC, 83,818 bp), a small single-copy region (SSC, 17,558 bp), and two inverted repeat regions (IRs, 26,169 bp). Relative synonymous codon usage (RSCU) analysis revealed 28 preferred codons, predominantly terminating in A/U, with a notable preference for the leucine codon UUA across all species. Additionally, the effective number of codons (ENC) and the PR2 plot analysis suggest a weak codon usage bias, primarily shaped by selective pressures rather than mutational forces. Simple sequence repeat (SSR) analysis shows a notable concentration of SSRs in intergenic regions, highlighting their potential role in genome stability and evolution. Phylogenetic tree construction based on chloroplast genome data further uncovers the genetic relationships and evolutionary trajectories within the leguminous forage species. Overall, these findings provide valuable insights into the molecular evolution of leguminous forages and offer a theoretical basis for their improved utilization in sustainable agricultural practices and ecological restoration. Full article
(This article belongs to the Special Issue Genetics and Breeding of Field Crops in the 21st Century)
Show Figures

Figure 1

16 pages, 5136 KiB  
Article
Analysis of the Codon Usage Bias Pattern in the Chloroplast Genomes of Chloranthus Species (Chloranthaceae)
by Jisi Zhang and Miao Feng
Genes 2025, 16(2), 186; https://doi.org/10.3390/genes16020186 - 2 Feb 2025
Cited by 3 | Viewed by 1167
Abstract
Background: The codon preference of chloroplast genomes not only reflects mutation patterns during the evolutionary processes of species but also significantly affects the efficiency of gene expression. This characteristic holds significant scientific importance in the application of chloroplast genetic engineering and the genetic [...] Read more.
Background: The codon preference of chloroplast genomes not only reflects mutation patterns during the evolutionary processes of species but also significantly affects the efficiency of gene expression. This characteristic holds significant scientific importance in the application of chloroplast genetic engineering and the genetic improvement of species. Chloranthus, an ancestral angiosperm with significant economic, medicinal, and ornamental value, belongs to the basal angiosperms. However, the codon usage patterns among Chloranthus species have remained unclear. Methods: To investigate codon usage bias and its influencing factors in Chloranthus chloroplast genomes, we utilized CodonW, CUSP, and SPSS software to analyze the chloroplast genomes of seven Chloranthus species. Results: In this study, we reported and characterized the complete chloroplast genome of the Chinese endemic species Chloranthus angustifolius. The phylogenetic tree based on the whole chloroplast genomes showed that C. angustifolius is sister to Chloranthus fortunei, and the genus Chloranthus is divided into two major clades, consistent with previous studies. Our results revealed that the GC content at different codon positions across all seven Chloranthus species was less than 50%, with GC1 > GC2 > GC3. Additionally, the average effective number of codons (ENC) values exceeded 45. A total of 10 shared optimal codons were identified, nine of which end with A or U. PR2-plot, ENC-plot, and neutrality plot analyses indicated that natural selection primarily influenced codon usage bias in the chloroplast genomes of Chloranthus. Conclusions: We newly obtained the chloroplast genome of C. angustifolius and proposed that natural selection played a key role in codon usage patterns in Chloranthus species. These findings contribute to our understanding of evolutionary history and genetic diversity within this genus. Full article
(This article belongs to the Special Issue Molecular Adaptation and Evolutionary Genetics in Plants)
Show Figures

Figure 1

12 pages, 5399 KiB  
Article
Deciphering Codon Usage Patterns in the Mitochondrial Genome of the Oryza Species
by Yuyang Zhang, Yunqi Ma, Huanxi Yu, Yu Han and Tao Yu
Agronomy 2024, 14(11), 2722; https://doi.org/10.3390/agronomy14112722 - 18 Nov 2024
Cited by 2 | Viewed by 1028
Abstract
Rice (Oryza) is a genus in the Gramineae family, which has grown widely all over the world and is a staple food source for people’s survival. The genetic information of rice has garnered significant attention in recent years, prompting numerous researchers [...] Read more.
Rice (Oryza) is a genus in the Gramineae family, which has grown widely all over the world and is a staple food source for people’s survival. The genetic information of rice has garnered significant attention in recent years, prompting numerous researchers to conduct extensive investigations in this field. But rice mitochondrial codon usage patterns have received little attention. The present study systematically analyzed the codon usage patterns and sources of variance in the mitochondrial genome sequences of five rice species by the CodonW and R software programs. Our results revealed that the GC content of codons in rice mitochondrial genome genes was determined to be 43.60%. Notably, the individual codon positions exhibited distinct GC contents: 48.00% for position 1, 42.65% for position 2, and 40.16% for position 3. These findings suggest the preference of the rice mitochondrial genome for codons ending in A or U. A weak codon bias was observed, with the effective number of codons (ENC) varying between 40.02 and 61.00, with an average value of 54.34. Subsequently, we identified 25 identical high-frequency codons in five rice mitochondrial genomes, with 11 codons ending in A and 12 codons ending in U. The regression lines in the neutrality plot exhibited slopes of less than 0.5 in five rice species, indicating a predominant role of natural selection, while mutation pressure remained relatively insignificant. In the PR2-plot analysis, most of the genes were located in the right half of the plot, indicating that the third base of the synonymous codon was preferred to end in G than C. Additionally, the ENC plot and ENC ratio analysis unveiled that codon preferences in the rice mitochondrial genome were predominantly influenced by natural selection rather than mutational pressure. The analysis of correspondence revealed distinct variations in the codon usage pattern across five rice mitochondrial genomes. Based on the RSCU values of species, a cluster tree was inconsistent with the mitochondrial genetic data, indicating that RSCU data could not be used as a basis for classification at the species level in the Oryza genus. These results will help decide the specific types of natural selection pressures influencing codon usage and improve the expression of exogenous genes in rice mitochondrial genomes by optimizing their codons. Full article
(This article belongs to the Section Crop Breeding and Genetics)
Show Figures

Figure 1

14 pages, 2880 KiB  
Article
Analysis of Codon Usage Bias in the Plastid Genome of Diplandrorchis sinica (Orchidaceae)
by Xuhui Chen, Yudi Zhao, Shenghua Xu, Yingze Zhou, Lijie Zhang, Bo Qu and Yufeng Xu
Curr. Issues Mol. Biol. 2024, 46(9), 9807-9820; https://doi.org/10.3390/cimb46090582 - 3 Sep 2024
Cited by 2 | Viewed by 1322
Abstract
In order to understand the bias and main affecting factors of codon usage in the plastid genome of Diplandrorchis sinica, which is a rare and endangered plant species in the Orchidaceae family, the complete plastid genome sequence of D. sinica was downloaded [...] Read more.
In order to understand the bias and main affecting factors of codon usage in the plastid genome of Diplandrorchis sinica, which is a rare and endangered plant species in the Orchidaceae family, the complete plastid genome sequence of D. sinica was downloaded from the GenBank database and 20 protein-coding sequences that met the analysis requirements were finally selected. The GC content, length of the amino acid (Laa), relative synonymous codon usage (RSCU), and effective number of codon (ENC) of each gene and codon were calculated using the CodonW and EMBOSS online programs. Neutral plot analysis, ENC-plot analysis, PR2-plot analysis, and correspondence analysis were performed using Origin Pro 2024 software, and correlation analysis between various indicators was performed using SPSS 23.0 software. The results showed that the third base of the codon in the plastid genome of D. sinica was rich in A and T, with a GC3 content of 27%, which was lower than that of GC1 (45%) and GC2 (39%). The ENC value ranged from 35 to 57, with an average of 47. The codon usage bias was relatively low, and there was a significant positive correlation between ENC and GC3. There were a total of 32 codons with RSCU values greater than 1, of which 30 ended with either A or U. There were a total of nine optimal codons identified, namely, UCU, UCC, UCA, GCA, UUG, AUA, CGU, CGA, and GGU. This study indicated that the dominant factor affecting codon usage bias in the plastid genome of D. sinica was natural selection pressure, while the impact of base mutations was limited. The codon usage patterns were not closely related to gene types, and the distribution of photosynthetic system genes and ribosomal protein-coding gene loci was relatively scattered, indicating significant differences in the usage patterns of these gene codons. In addition, the codon usage patterns may not be related to whether the plant is a photosynthetic autotrophic or heterotrophic nutritional type. The results of this study could provide scientific references for the genomic evolution and phylogenetic research of plant species in the family Orchidaceae. Full article
(This article belongs to the Special Issue Mitochondrial Genome 2024)
Show Figures

Figure 1

17 pages, 3803 KiB  
Article
Codon Usage Analysis Reveals Distinct Evolutionary Patterns and Host Adaptation Strategies in Duck Hepatitis Virus 1 (DHV-1) Phylogroups
by Yongwang Zhao, Xiaojian Su and Dongchang He
Viruses 2024, 16(9), 1380; https://doi.org/10.3390/v16091380 - 29 Aug 2024
Cited by 1 | Viewed by 1170
Abstract
Duck hepatitis virus 1 (DHV-1) is a major threat to the global poultry industry, causing significant economic losses due to high mortality rates in young ducklings. To better understand the evolution and host adaptation strategies of DHV-1, we conducted a comprehensive codon usage [...] Read more.
Duck hepatitis virus 1 (DHV-1) is a major threat to the global poultry industry, causing significant economic losses due to high mortality rates in young ducklings. To better understand the evolution and host adaptation strategies of DHV-1, we conducted a comprehensive codon usage analysis of DHV-1 genomes. Our phylogenetic analysis revealed three well-supported DHV-1 phylogroups (Ia, Ib, and II) with distinct genetic diversity patterns. Comparative analyses of the codon usage bias and dinucleotide abundance uncovered a strong preference for A/U-ended codons and a biased pattern of dinucleotide usage in the DHV-1 genome, with CG dinucleotides being extremely underrepresented. Effective number of codons (ENC) analysis indicated a low codon usage bias in the DHV-1 ORF sequences, suggesting adaptation to host codon usage preferences. PR2 bias, ENC plot, and neutrality analyses revealed that both mutation pressure and natural selection influence the codon usage patterns of DHV-1. Notably, the three DHV-1 phylogroups exhibited distinct evolutionary trends, with phylogroups Ia and Ib showing evidence of neutral evolution accompanied by selective pressure, while the phylogroup II evolution was primarily driven by random genetic drift. Comparative analysis of the codon usage indices (CAI, RCDI, and SiD) among the phylogroups highlighted significant differences between subgroups Ia and Ib, suggesting distinct evolutionary pressures or adaptations influencing their codon usage. These findings contribute to our understanding of DHV-1 evolution and host adaptation, with potential implications for the development of effective control measures and vaccines. Full article
(This article belongs to the Section Animal Viruses)
Show Figures

Figure 1

11 pages, 1481 KiB  
Article
Analysis of Codon Usage Bias in Chloroplast Genomes of Dryas octopetala var. asiatica (Rosaceae)
by Lizhen Ling, Shudong Zhang and Tao Yang
Genes 2024, 15(7), 899; https://doi.org/10.3390/genes15070899 - 9 Jul 2024
Cited by 5 | Viewed by 1340
Abstract
Dryas octopetala var. asiatica, a dwarf shrub belonging to the Rosaceae family and native to Asia, exhibits notable plasticity in photosynthesis in response to temperature variations. However, the codon usage patterns and factors influencing them in the chloroplast genome of this species [...] Read more.
Dryas octopetala var. asiatica, a dwarf shrub belonging to the Rosaceae family and native to Asia, exhibits notable plasticity in photosynthesis in response to temperature variations. However, the codon usage patterns and factors influencing them in the chloroplast genome of this species have not yet been documented. This study sequenced and assembled the complete genome of D. octopetala var. asiatica. The annotated genes in the chloroplast genome were analyzed for codon composition through multivariate statistical methods including a neutrality plot, a parity rule 2 (PR2) bias plot, and an effective number of codons (ENC) plot using CodonW 1.4.2 software. The results indicated that the mean GC content of 53 CDSs was 38.08%, with the average GC content at the third codon base position being 27.80%, suggesting a preference for A/U(T) at the third codon position in chloroplast genes. Additionally, the chloroplast genes exhibited a weak overall codon usage bias (CUB) based on ENC values and other indicators. Correlation analysis showed a significant negative correlation between ENC value and GC2, an extremely positive correlation with GC3, but no correlation with GC1 content. These findings highlight the importance of the codon composition at the third position in influencing codon usage bias. Furthermore, our analysis indicated that the CUB of the chloroplast genome of D. octopetala var. asiatica was primarily influenced by natural selection and other factors. Finally, this study identified UCA, CCU, GCU, AAU, GAU, and GGU as the optimal codons. These results offer a foundational understanding for genetic modification and evolutionary dynamics of the chloroplast genome of D. octopetala var. asiatica. Full article
(This article belongs to the Special Issue Plant Plastid Genome and Phylogenetics)
Show Figures

Figure 1

14 pages, 6957 KiB  
Article
Comparative Study on Codon Usage Patterns across Chloroplast Genomes of Eighteen Taraxacum Species
by Yang Yang, Xingliang Wang and Zhenjie Shi
Horticulturae 2024, 10(5), 492; https://doi.org/10.3390/horticulturae10050492 - 10 May 2024
Cited by 3 | Viewed by 1919
Abstract
This study investigates codon usage bias within the chloroplast genomes of 18 Taraxacum species, focusing on the base composition and various metrics including GC content, Relative Synonymous Codon Usage (RSCU), Effective Number of Codons (ENc), and GC3s. Our analysis revealed a pronounced preference [...] Read more.
This study investigates codon usage bias within the chloroplast genomes of 18 Taraxacum species, focusing on the base composition and various metrics including GC content, Relative Synonymous Codon Usage (RSCU), Effective Number of Codons (ENc), and GC3s. Our analysis revealed a pronounced preference for A/T-ending codons across Taraxacum species, with GC content across the first, second, and third positions of the codons (GC1, GC2, GC3) and the average GC content consistently below 50%. A detailed examination using the RSCU metric identified 29 commonly preferred A/T-ending codons, indicating a strong codon usage bias towards these endings. Specifically, the codon for leucine (UUA) emerged as highly preferred, while the codon for serine (AGC) was least favored. Through the ENc–GC3s plot analysis, we explored the forces shaping this bias, finding evidence that both mutation pressure and natural selection significantly influence codon preference, with most coding sequences showing weak bias. The PR2 plot analysis further confirmed the role of these factors by demonstrating a higher frequency of T over A and C over G at the third codon position, pointing towards a mutation bias complemented by natural selection. Collectively, our findings highlight a consistent pattern of codon usage bias in the chloroplast genomes of Taraxacum species, influenced by a combination of mutation pressure, natural selection, and possibly other unidentified factors. Full article
(This article belongs to the Section Genetics, Genomics, Breeding, and Biotechnology (G2B2))
Show Figures

Figure 1

24 pages, 7547 KiB  
Article
Codon Usage Bias Analysis in Macronuclear Genomes of Ciliated Protozoa
by Yu Fu, Fasheng Liang, Congjun Li, Alan Warren, Mann Kyoon Shin and Lifang Li
Microorganisms 2023, 11(7), 1833; https://doi.org/10.3390/microorganisms11071833 - 18 Jul 2023
Cited by 8 | Viewed by 2517
Abstract
Ciliated protozoa (ciliates) are unicellular eukaryotes, several of which are important model organisms for molecular biology research. Analyses of codon usage bias (CUB) of the macronuclear (MAC) genome of ciliates can promote a better understanding of the genetic mode and evolutionary history of [...] Read more.
Ciliated protozoa (ciliates) are unicellular eukaryotes, several of which are important model organisms for molecular biology research. Analyses of codon usage bias (CUB) of the macronuclear (MAC) genome of ciliates can promote a better understanding of the genetic mode and evolutionary history of these organisms and help optimize codons to improve gene editing efficiency in model ciliates. In this study, the following indices were calculated: the guanine-cytosine (GC) content, the frequency of the nucleotides at the third position of codons (T3, C3, A3, G3), the effective number of codons (ENc), GC content at the 3rd position of synonymous codons (GC3s), and the relative synonymous codon usage (RSCU). Parity rule 2 plot analysis, Neutrality plot analysis, ENc plot analysis, and correlation analysis were employed to explore the main influencing factors of CUB. The results showed that the GC content in the MAC genomes of each of 21 ciliate species, the genomes of which were relatively complete, was lower than 50%, and the base compositions of GC and GC3s were markedly distinct. Synonymous codon analysis revealed that the codons in most of the 21 ciliates ended with A or T and four codons were the general putative optimal codons. Collectively, our results indicated that most of the ciliates investigated preferred using the codons with anof AT-ending and that codon usage bias was affected by gene mutation and natural selection. Full article
Show Figures

Figure 1

18 pages, 6196 KiB  
Article
Codon Usage Analyses Reveal the Evolutionary Patterns among Plastid Genes of Saxifragales at a Larger-Sampling Scale
by De Bi, Shiyun Han, Jun Zhou, Maojin Zhao, Sijia Zhang and Xianzhao Kan
Genes 2023, 14(3), 694; https://doi.org/10.3390/genes14030694 - 11 Mar 2023
Cited by 9 | Viewed by 2354
Abstract
Saxifragales is a 15-family order of early-divergent Eudicots with a rich morphological diversity and an ancient rapid radiation. Codon usage bias (CUB) analyses have emerged as an essential tool for understanding the evolutionary dynamics in genes. Thus far, the codon utilization patterns had [...] Read more.
Saxifragales is a 15-family order of early-divergent Eudicots with a rich morphological diversity and an ancient rapid radiation. Codon usage bias (CUB) analyses have emerged as an essential tool for understanding the evolutionary dynamics in genes. Thus far, the codon utilization patterns had only been reported in four separate genera within Saxifragales. This study provides a comprehensive assessment of the codon manipulation based on 50 plastid genes, covering 11 constituent families at a larger sampling scale. Our results first showed a high preference for AT bases and AT-ending codons. We then used effective number of codons (ENC) to assess a range of codon bias levels in the plastid genes. We also detected high-informative intrafamilial differences of ENC in three families. Subsequently, parity rule 2 (PR2) plot analyses revealed both family-unique and order-shared bias patterns. Most importantly, the ENC plots and neutrality analyses collectively supported the dominant roles of selection in the CUB of Saxifragales plastid genes. Notably, the phylogenetic affinities inferred by both ML and BI methods were consistent with each other, and they all comprised two primary clades and four subclades. These findings significantly enhance our understanding of the evolutionary processes of the Saxifrage order, and could potentially inspire more CUB analyses at higher taxonomic levels. Full article
(This article belongs to the Special Issue Advances in Evolution of Plant Organelle Genome)
Show Figures

Figure 1

14 pages, 5265 KiB  
Article
Codon Usage Profiling of Chloroplast Genome in Juglandaceae
by Yajun Zeng, Lianwen Shen, Shengqun Chen, Shuang Qu and Na Hou
Forests 2023, 14(2), 378; https://doi.org/10.3390/f14020378 - 13 Feb 2023
Cited by 16 | Viewed by 2853
Abstract
Juglandaceae (walnut) is made up of several economically and ecologically valuable tree species. Chloroplasts, vitally important for plant growth, are also a rich source of genetic and evolutionary information. Both mutational pressure and natural selection are drivers of codon usage pattern variation among [...] Read more.
Juglandaceae (walnut) is made up of several economically and ecologically valuable tree species. Chloroplasts, vitally important for plant growth, are also a rich source of genetic and evolutionary information. Both mutational pressure and natural selection are drivers of codon usage pattern variation among genes. Here, we studied the codon usage of Juglandaceae chloroplast genomes in order to further our understanding of the biology and evolution of this plant family. The codon usage patterns associated with the chloroplast genomes of 26 Juglandaceae samples were analyzed. Short CDS sequences (<100 amino acids) and sequencing containing internal stop codons were removed from comparative analyses. The contents of uracil (U) (31.5%–32.0%) and adenine (A) (30.0%–31.2%) of all 26 samples were higher than those of cytosine (C) (17.2%–17.7%) and guanine (G) 19.9%–20.7%. According to the neutrality and correspondence analyses, chloroplast codons tended to exhibit conserved GC content and were primarily altered by natural selection. The parity rule 2 plot analysis revealed that AU were more common than GC at the third-codon position. According to the effective number of codon (ENC) plot analysis, codon preference was driven by natural selection and protein translation, among other factors. This study represents the first examination of the codon usage characteristics of Juglandaceae plants, as revealed through the study of codon bias in 26 Juglandaceae samples. Full article
(This article belongs to the Special Issue Applying Molecular Tools to Genetic Diversity and Divergence in Trees)
Show Figures

Figure 1

Back to TopTop