Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (395)

Search Parameters:
Keywords = edible tissue

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 4467 KiB  
Review
Structuring the Future of Cultured Meat: Hybrid Gel-Based Scaffolds for Edibility and Functionality
by Sun Mi Zo, Ankur Sood, So Yeon Won, Soon Mo Choi and Sung Soo Han
Gels 2025, 11(8), 610; https://doi.org/10.3390/gels11080610 - 3 Aug 2025
Viewed by 106
Abstract
Cultured meat is emerging as a sustainable alternative to conventional animal agriculture, with scaffolds playing a central role in supporting cellular attachment, growth, and tissue maturation. This review focuses on the development of gel-based hybrid biomaterials that meet the dual requirements of biocompatibility [...] Read more.
Cultured meat is emerging as a sustainable alternative to conventional animal agriculture, with scaffolds playing a central role in supporting cellular attachment, growth, and tissue maturation. This review focuses on the development of gel-based hybrid biomaterials that meet the dual requirements of biocompatibility and food safety. We explore recent advances in the use of naturally derived gel-forming polymers such as gelatin, chitosan, cellulose, alginate, and plant-based proteins as the structural backbone for edible scaffolds. Particular attention is given to the integration of food-grade functional additives into hydrogel-based scaffolds. These include nanocellulose, dietary fibers, modified starches, polyphenols, and enzymatic crosslinkers such as transglutaminase, which enhance mechanical stability, rheological properties, and cell-guidance capabilities. Rather than focusing on fabrication methods or individual case studies, this review emphasizes the material-centric design strategies for building scalable, printable, and digestible gel scaffolds suitable for cultured meat production. By systemically evaluating the role of each component in structural reinforcement and biological interaction, this work provides a comprehensive frame work for designing next-generation edible scaffold systems. Nonetheless, the field continues to face challenges, including structural optimization, regulatory validation, and scale-up, which are critical for future implementation. Ultimately, hybrid gel-based scaffolds are positioned as a foundational technology for advancing the functionality, manufacturability, and consumer readiness of cultured meat products, distinguishing this work from previous reviews. Unlike previous reviews that have focused primarily on fabrication techniques or tissue engineering applications, this review provides a uniquely food-centric perspective by systematically evaluating the compositional design of hybrid hydrogel-based scaffolds with edibility, scalability, and consumer acceptance in mind. Through a comparative analysis of food-safe additives and naturally derived biopolymers, this review establishes a framework that bridges biomaterials science and food engineering to advance the practical realization of cultured meat products. Full article
(This article belongs to the Special Issue Food Hydrocolloids and Hydrogels: Rheology and Texture Analysis)
Show Figures

Figure 1

15 pages, 2979 KiB  
Article
A Metabolomics Exploration of Young Lotus Seeds Using Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry Imaging
by Ying Chen, Xiaomeng Xu and Chunping Tang
Molecules 2025, 30(15), 3242; https://doi.org/10.3390/molecules30153242 - 1 Aug 2025
Viewed by 246
Abstract
Lotus (Nelumbo nucifera Gaertn.) is a quintessential medicinal and edible plant, exhibiting marked differences in therapeutic effects among its various parts. The lotus seed constitutes a key component of this plant. Notably, the entire seed and the plumule display distinct medicinal properties. [...] Read more.
Lotus (Nelumbo nucifera Gaertn.) is a quintessential medicinal and edible plant, exhibiting marked differences in therapeutic effects among its various parts. The lotus seed constitutes a key component of this plant. Notably, the entire seed and the plumule display distinct medicinal properties. To investigate the “homologous plants with different effects” phenomenon in traditional Chinese medicine, this study established a Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry Imaging (MALDI-MSI) method. This study employed immature lotus seeds as the experimental material, diverging from the mature seeds conventionally used. Conductive double-sided tape was employed for sample preparation, and complete longitudinal sections of the seeds were obtained, followed by MALDI-MSI analysis to identify and visualize the spatial distribution of characteristic secondary metabolites within the entire seeds. The results unveiled the diversity of metabolites in lotus seeds and their differential distribution across tissues, with pronounced distinctions in the plumule. A total of 152 metabolites spanning 13 categories were identified in lotus seeds, with 134, 89, 51, and 98 metabolites discerned in the pericarp, seed coat, cotyledon, and plumule, respectively. Strikingly, young lotus seeds were devoid of liensinine/isoliensinine and neferine, the dominant alkaloids of mature lotus seed plumule, revealing an early-stage alkaloid profile that sharply contrasts with the well-documented abundance found in mature seeds and has rarely been reported. We further propose a biosynthetic pathway to explain the presence of the detected benzylisoquinoline and the absence of the undetected bisbenzylisoquinoline alkaloids in this study. These findings present the first comprehensive metabolic atlas of immature lotus seeds, systematically exposing the pronounced chemical divergence from their mature counterparts, and thus lays a metabolomic foundation for dissecting the spatiotemporal mechanisms underlying the nutritional and medicinal value of lotus seeds. Full article
Show Figures

Figure 1

19 pages, 10865 KiB  
Article
Evaluation of Immunoprotective Activities of White Button Mushroom (Agaricus bisporus) Water Extract Against Major Pathogenic Bacteria (Aeromonas hydrophila or Vibrio fluvialis) in Goldfish (Carassius auratus)
by Shujun Sun, Jing Chen, Pan Cui, Xiaoxiao Yang, Yuhan Zheng, Zijian Ma, Yong Liu and Xiang Liu
Animals 2025, 15(15), 2257; https://doi.org/10.3390/ani15152257 - 1 Aug 2025
Viewed by 195
Abstract
The white button mushroom (Agaricus bisporus) is a widely cultivated edible and medicinal mushroom, which contains various active substances, and has application value against pathogenic bacteria in aquaculture. Firstly, A. bisporus water extract (AB-WE) was prepared. Through the detection kits, it [...] Read more.
The white button mushroom (Agaricus bisporus) is a widely cultivated edible and medicinal mushroom, which contains various active substances, and has application value against pathogenic bacteria in aquaculture. Firstly, A. bisporus water extract (AB-WE) was prepared. Through the detection kits, it was found that the polysaccharide, protein, and polyphenol components of AB-WE were 9.11%, 3.3%, and 1.5%, respectively. The 246 compounds were identified in AB-WE, and the major small-molecule components included L-Isoleucine, L-Tyrosine, L-Valine, and Linoleic acid by HPLC-Q Exactive-Orbitrap-MS. Secondly, the AB-WE was evaluated for its immunological activities through dietary administration and pathogen challenge (Aeromonas hydrophila and Vibrio fluvialis) in goldfish (Carassius auratus). The results showed that the levels of immune factors of acid phosphatase (ACP), alkaline phosphatase (AKP), and lysozyme (LZM) increased (p < 0.05) in goldfish, and the relative percentage survival of AB-WE against A. hydrophila and V. fluvialis were 80.00% (p < 0.05) and 81.82% (p < 0.05), respectively. The AB-WE reduced the bacterial content in renal tissue, enhanced the phagocytic activity of leukocytes, and exhibited antioxidant and anti-inflammatory effects by reducing the expression of antioxidant-related factors and inflammatory factors. Through histopathological and immunofluorescence techniques, it was found that AB-WE maintained the integrity of visceral tissues and reduced renal tissue apoptosis and DNA damage. Therefore, AB-WE exhibits immunoprotective activity against A. hydrophila and V. fluvialis infections in fish, and holds promise as an immunotherapeutic agent against major pathogenic bacteria in aquaculture. Full article
(This article belongs to the Section Aquatic Animals)
Show Figures

Figure 1

18 pages, 1863 KiB  
Article
A Daily Accumulation Model for Predicting PFOS Residues in Beef Cattle Muscle After Oral Exposure
by Ian Edhlund, Lynn Post and Sara Sklenka
Toxics 2025, 13(8), 649; https://doi.org/10.3390/toxics13080649 - 31 Jul 2025
Viewed by 566
Abstract
Per- and polyfluoroalkyl substances (PFAS) have been found worldwide in water, soil, plants, and animals, including humans. A primary route of exposure for humans and animals to PFAS is through the diet and drinking water. Perfluorooctane sulfonate (PFOS), a long-chain PFAS with a [...] Read more.
Per- and polyfluoroalkyl substances (PFAS) have been found worldwide in water, soil, plants, and animals, including humans. A primary route of exposure for humans and animals to PFAS is through the diet and drinking water. Perfluorooctane sulfonate (PFOS), a long-chain PFAS with a relatively long half-life, has been associated with adverse health effects in humans and laboratory animals. There are few toxicokinetic studies on PFOS in domestic livestock raised for human food consumption, which are critical for assessing human food safety. This work aimed to develop a simple daily accumulation model (DAM) for predicting PFOS residues in edible beef cattle muscle. A one-compartment toxicokinetic model in a spreadsheet format was developed using simple calculations to account for daily PFAS into and out of the animal. The DAM was used to simulate two case studies to predict resultant PFOS residues in edible beef cattle tissues. The results demonstrated that the model can reasonably predict PFOS concentrations in beef cattle muscle in a real-world scenario. The DAM was then used to simulate dietary PFOS exposure in beef cattle throughout a typical lifespan in order to derive a generic bioaccumulation factor. The DAM is expected to work well for other PFAS in beef cattle, PFAS in other livestock species raised for meat, and other chemical contaminants with relatively long half-lives. Full article
Show Figures

Graphical abstract

23 pages, 1316 KiB  
Article
The Mobility and Distribution of Lead and Cadmium in the Ecosystems of Two Lakes in Poland and Their Effect on Humans and the Environment
by Monika Rajkowska-Myśliwiec, Mikołaj Protasowicki and Agata Witczak
Water 2025, 17(15), 2255; https://doi.org/10.3390/w17152255 - 29 Jul 2025
Viewed by 300
Abstract
The presence of lead (Pb) and cadmium (Cd) can have considerable effects on the environment and on humans. The present study examines their levels in two lakes with different trophic levels located in northwestern Poland; their concentrations were determined in water and the [...] Read more.
The presence of lead (Pb) and cadmium (Cd) can have considerable effects on the environment and on humans. The present study examines their levels in two lakes with different trophic levels located in northwestern Poland; their concentrations were determined in water and the bottom sediments, in common reed and in the organs of pike, bream and roach. The work also evaluates Pb and Cd bioavailability in bottom sediments, their potential for biomagnification, their bioaccumulation in the food chain and risk to human consumers. Metal concentrations were determined by graphite furnace atomic absorption spectrometry (GFAAS). The geochemical fractions of the metals were isolated by sequential extraction. Both Pb and Cd demonstrated low bioavailability, with the carbonate fraction playing a key role in their bioconversion. The concentrations of Pb and Cd in some organs and tissue types of fish and reeds correlated with their levels in water and sediments. No biomagnification was observed between the studied fish species. Calculations based on BMDL, TWI and THQ concentrations found Pb and Cd levels in the edible parts of fish to be within permissible limits and not to pose any threat to consumer health. Full article
Show Figures

Figure 1

20 pages, 1482 KiB  
Article
Uptake, Partitioning, and Accumulation of High and Low Rates of Carbamazepine in Hydroponically Grown Lettuce (Lactuca sativa var. capitata)
by Emily R. Stamm, Cade Coldren, Clinton Williams and Catherine Simpson
Plants 2025, 14(14), 2165; https://doi.org/10.3390/plants14142165 - 14 Jul 2025
Viewed by 358
Abstract
As potable water becomes limited, alternative water sources, such as reclaimed wastewater, for crop irrigation have gained attention. However, reclaimed wastewater for irrigation may expose edible crops to compounds of emerging concern (CECs), which may include pharmaceutics, hazardous waste, and volatile substances. Of [...] Read more.
As potable water becomes limited, alternative water sources, such as reclaimed wastewater, for crop irrigation have gained attention. However, reclaimed wastewater for irrigation may expose edible crops to compounds of emerging concern (CECs), which may include pharmaceutics, hazardous waste, and volatile substances. Of these CECs, carbamazepine (CBZ) is of particular interest because only 7% of CBZ is filtered out during traditional wastewater treatment processing methods. Two trials were designed to evaluate the uptake and partitioning of CBZ in lettuce grown in a deep-water culture system (DWC) at low and high concentrations. The first trial (0 µg L−1, 12.5 µg L−1, 25 µg L−1, and 50 µg L−1) of CBZ had few effects on lettuce (Lactuca sativa var. capitata) growth, and low concentrations of accumulated CBZ were found in lettuce tissues. As a result, increased concentrations of CBZ were used in the second trial (0 mg L−1, 21 mg L−1, 41 mg L−1, and 83 mg L−1). Greater amounts of CBZ accumulated in plant tissues and the application of higher rates of CBZ negatively affected the growth and overall health of the lettuce. Further research is needed to determine the impacts of CECs on plant uptake and growth, as well as the environmental conditions. Full article
Show Figures

Figure 1

20 pages, 1779 KiB  
Article
Chloride as a Partial Nitrate Substitute in Hydroponics: Effects on Purslane Yield and Quality
by George P. Spyrou, Ioannis Karavidas, Theodora Ntanasi, Sofia Marka, Evangelos Giannothanasis, Gholamreza Gohari, Enrica Allevato, Leo Sabatino, Dimitrios Savvas and Georgia Ntatsi
Plants 2025, 14(14), 2160; https://doi.org/10.3390/plants14142160 - 13 Jul 2025
Viewed by 329
Abstract
This study examined the effects of both nitrogen (N) rate and form on the growth, nutrient uptake, and quality parameters of hydroponically grown purslane (Portulaca oleracea L.) during a spring cultivation cycle. Purslane was cultivated in a floating hydroponic system under either [...] Read more.
This study examined the effects of both nitrogen (N) rate and form on the growth, nutrient uptake, and quality parameters of hydroponically grown purslane (Portulaca oleracea L.) during a spring cultivation cycle. Purslane was cultivated in a floating hydroponic system under either adequate or limiting N conditions. More specifically, under adequate N conditions, plants were supplied with NS where ammonium nitrogen (NH4-N) accounted for either 7% (Nr7) or 14% (Nr14) of the total-N. The limiting N conditions were achieved through the application of either an NS where 30% of N inputs were compensated with Cl (N30), or an NS where 50% of N inputs were balanced by elevating Cl and S by 30% and 20%, respectively (N50). The results demonstrated that mild N stress enhanced the quality characteristics of purslane without significant yield losses. However, further and more severe N restrictions in the NS resulted in significant yield losses without improving product quality. The highest yield reduction (20%) occurred under high NH4-N supply (Nr14), compared to Nr7-treated plants, which was strongly associated with impaired N assimilation and reduced biomass production. Both N-limiting treatments (N30 and N50) effectively reduced nitrate accumulation in edible tissues by 10% compared to plants grown under adequate N supply (Nr7 and Nr14); however, nitrate levels remained relatively high across all treatments, even though the environmental conditions of the experiment favored nitrate reduction. All applied N regimes and compensation strategies improved the antioxidant and flavonoid content, with the highest antioxidant activity observed in plants grown under high NH4-N application, indirectly revealing the susceptibility of purslane to NH4-N-rich conditions. Overall, the form and rate of N supply significantly influenced both plant performance and biochemical quality. Partial replacement of N with Cl (N30) emerged as the most promising strategy, benefiting quality traits and effectively reducing nitrate content without significantly compromising yield. Full article
Show Figures

Figure 1

24 pages, 3485 KiB  
Article
Effect of Natural Edible Oil Coatings and Storage Conditions on the Postharvest Quality of Bananas
by Laila Al-Yahyai, Rashid Al-Yahyai, Rhonda Janke, Mai Al-Dairi and Pankaj B. Pathare
AgriEngineering 2025, 7(7), 234; https://doi.org/10.3390/agriengineering7070234 - 12 Jul 2025
Viewed by 723
Abstract
Increasing the shelf-life of fruits and vegetables using edible natural substances after harvest is economically important and can be useful for human health. Postharvest techniques help maintain the quality of edible tissues resulting in extended marketing periods and reduced food waste. The edible [...] Read more.
Increasing the shelf-life of fruits and vegetables using edible natural substances after harvest is economically important and can be useful for human health. Postharvest techniques help maintain the quality of edible tissues resulting in extended marketing periods and reduced food waste. The edible coating on perishable commodities is a common technique used by the food industry during the postharvest supply chain. The objective of this research was to study the effect of edible oil to minimize the loss of postharvest physio-chemical and nutritional attributes of bananas. The study selected two banana cultivars (Musa, ‘Cavendish’ and ‘Milk’) to conduct this experiment, and two edible oils (olive oil (Olea europaea) and moringa oil (Moringa peregrina)) were applied as an edible coating under two different storage conditions (15 and 25 °C). The fruit’s physio-chemical properties including weight loss, firmness, color, total soluble solids (TSS), pH, titratable acidity (TA), TSS: TA ratio, and mineral content were assessed. The experiment lasted for 12 days. The physicochemical properties of the banana coated with olive and moringa oils were more controlled than the non-coated (control) banana under both storage temperatures (15 °C and 25 °C). Coated bananas with olive and moringa oils stored at 15 °C resulted in further inhibition in the ripening process. There was a decrease in weight loss, retained color, and firmness, and the changes in chemical parameters were slower in banana fruits during storage in the olive and moringa oil-coated bananas. Minerals were highly retained in coated Cavendish bananas. Overall, the coated samples visually maintained acceptable quality until the final day of storage. Our results indicated that olive and moringa oils in this study have the potential to extend the shelf-life and improve the physico-chemical quality of banana fruits. Full article
(This article belongs to the Special Issue Latest Research on Post-Harvest Technology to Reduce Food Loss)
Show Figures

Figure 1

23 pages, 11933 KiB  
Article
Combined Metabolomics and Network Pharmacology to Reveal Anti-Diabetic Mechanisms and Potential Pharmacological Components of Synsepalum dulcificum
by Yong Huang, Shiyu Wang, Rong Ding and Shaohua Wu
Plants 2025, 14(14), 2132; https://doi.org/10.3390/plants14142132 - 10 Jul 2025
Viewed by 437
Abstract
The plant Synsepalum dulcificum is notable for its considerable edible and medicinal value, with a longstanding history as a folk remedy for diabetes. Its chemical constituents are rich and structurally diverse. However, there is limited information regarding the metabolic basis of these characteristics, [...] Read more.
The plant Synsepalum dulcificum is notable for its considerable edible and medicinal value, with a longstanding history as a folk remedy for diabetes. Its chemical constituents are rich and structurally diverse. However, there is limited information regarding the metabolic basis of these characteristics, and the biological activities and mechanisms underlying its blood glucose-lowering effects remain incompletely understood. In this study, we conducted a widely targeted metabolomics analysis of the stems, leaves, and fruits of S. dulcificum using UPLC-ESI-MS/MS to compare the differences in metabolite profiles among these three tissue types. Our analysis identified a total of 2544 secondary metabolites, primarily consisting of flavonoids and triterpenes, categorized into thirteen distinct compound classes. We selected differential metabolites through multivariate statistical analysis, revealing significant differences among the metabolite profiles of the three tissue types, with flavonoids being the most abundant compounds. Furthermore, we investigated the anti-diabetic mechanisms and potential pharmacological components of S. dulcificum utilizing network pharmacology and molecular docking techniques. Finally, the α-glucosidase inhibitory activity of the potential active components was evaluated using in vitro experiments. These findings establish a foundation for the future application of S. dulcificum in the prevention and treatment of diabetes. Full article
(This article belongs to the Section Phytochemistry)
Show Figures

Figure 1

15 pages, 1325 KiB  
Article
Nutritional Value of Female Eriocheir sinensis from Three Different Habitats in the Lower Reach of the Yangtze River with a Special Emphasis on Lipid Quality
by Lizhi Yu, Xueqian Guo, Mingyu Yin and Xichang Wang
Foods 2025, 14(14), 2434; https://doi.org/10.3390/foods14142434 - 10 Jul 2025
Viewed by 292
Abstract
The cultured habitat of Eriocheir sinensis is a crucial factor influencing its nutritional quality. Therefore, it is essential to clarify the differences in the nutritional quality of Eriocheir sinensis reared in different habitats. This study investigated and compared the nutritional value of three [...] Read more.
The cultured habitat of Eriocheir sinensis is a crucial factor influencing its nutritional quality. Therefore, it is essential to clarify the differences in the nutritional quality of Eriocheir sinensis reared in different habitats. This study investigated and compared the nutritional value of three edible parts (the hepatopancreas, gonads, and muscles) of female Eriocheir sinensis from three different habitats in the lower reach of the Yangtze River, with a special emphasis on lipid compounds. In addition to tissue indices, proximate composition, energy content, lipid classes, and fatty acid profile, eight lipid quality indices were proposed to evaluate the lipid nutritional quality. The results indicated that the Eriocheir sinensis from the three different habitats were all in good developmental condition. No significant differences were observed for the hepatopancreas index (HIS), gonadosomatic index (GSI), and total edible yield (TEY) among the three habitats, except for muscle index (MI), which was significantly higher in the L-crabs and E-crabs compared to the P-crabs. The highest protein content was found in the gonads, while the hepatopancreas had the highest crude lipid content. Regarding lipid classes, triglycerides dominated the hepatopancreas, and phospholipids were predominant in muscles, whereas phospholipids and triglycerides were predominant in approximately equal amounts in the gonads. Taking eight lipid quality indices into account together, the three major edible tissues of Eriocheir sinensis from the estuarine habitat had the highest nutritional value, followed by the hepatopancreas from the pond habitat. The current research will provide basic nutritional data for consumers to purchase Eriocheir sinensis and establish the theoretical groundwork for paving new paths for improving the nutritional quality combined with habitat conditions in future studies. Full article
Show Figures

Figure 1

20 pages, 356 KiB  
Review
Soil Properties and Microelement Availability in Crops for Human Health: An Overview
by Lucija Galić, Vesna Vukadinović, Iva Nikolin and Zdenko Lončarić
Crops 2025, 5(4), 40; https://doi.org/10.3390/crops5040040 - 7 Jul 2025
Viewed by 428
Abstract
Microelement deficiencies, often termed “hidden hunger”, represent a significant global health challenge. Optimal human health relies on adequate dietary intake of essential microelements, including selenium (Se), zinc (Zn), copper (Cu), boron (B), manganese (Mn), molybdenum (Mo), iron (Fe), nickel (Ni), and chlorine (Cl). [...] Read more.
Microelement deficiencies, often termed “hidden hunger”, represent a significant global health challenge. Optimal human health relies on adequate dietary intake of essential microelements, including selenium (Se), zinc (Zn), copper (Cu), boron (B), manganese (Mn), molybdenum (Mo), iron (Fe), nickel (Ni), and chlorine (Cl). In recent years, there has been a growing focus on vitality and longevity, which are closely associated with the sufficient intake of essential microelements. This review focuses on these nine elements, whose bioavailability in the food chain is critically determined by their geochemical behavior in soils. There is a necessity for an understanding of the sources, soil–plant transfer, and plant uptake mechanisms of these microelements, with particular emphasis on the influence of key soil properties, including pH, redox potential, organic matter content, and mineral composition. There is a dual challenge of microelement deficiencies in agricultural soils, leading to inadequate crop accumulation, and the potential for localized toxicities arising from anthropogenic inputs or geogenic enrichment. A promising solution to microelement deficiencies in crops is biofortification, which enhances nutrient content in food by improving soil and plant uptake. This strategy includes agronomic methods (e.g., fertilization, soil amendments) and genetic approaches (e.g., marker-assisted selection, genetic engineering) to boost microelement density in edible tissues. Moreover, emphasizing the need for advanced predictive modeling techniques, such as ensemble learning-based digital soil mapping, enhances regional soil microelement management. Integrating machine learning with digital covariates improves spatial prediction accuracy, optimizes soil fertility management, and supports sustainable agriculture. Given the rising global population and the consequent pressures on agricultural production, a comprehensive understanding of microelement dynamics in the soil–plant system is essential for developing sustainable strategies to mitigate deficiencies and ensure food and nutritional security. This review specifically focuses on the bioavailability of these nine essential microelements (Se, Zn, Cu, B, Mn, Mo, Fe, Ni, and Cl), examining the soil–plant transfer mechanisms and their ultimate implications for human health within the soil–plant–human system. The selection of these nine microelements for this review is based on their recognized dual importance: they are not only essential for various plant metabolic functions, but also play a critical role in human nutrition, with widespread deficiencies reported globally in diverse populations and agricultural systems. While other elements, such as cobalt (Co) and iodine (I), are vital for health, Co is primarily required by nitrogen-fixing microorganisms rather than directly by all plants, and the main pathway for iodine intake is often marine-based rather than soil-to-crop. Full article
(This article belongs to the Topic Soil Health and Nutrient Management for Crop Productivity)
15 pages, 699 KiB  
Article
Perfluoroalkyl Substances Accumulation in Lettuce: Effects of Cultivar, Growth Stage, and Cultivation Conditions on Food Safety
by Andrea Sabia, Ilaria Battisti, Anna Rita Trentin, Xudong Wei, Carlo Nicoletto, Giancarlo Renella and Antonio Masi
Horticulturae 2025, 11(7), 775; https://doi.org/10.3390/horticulturae11070775 - 2 Jul 2025
Viewed by 415
Abstract
Poly- and perfluoroalkyl substances (PFAS) are environmentally persistent contaminants that pose growing food safety concerns due to their potential for accumulation in edible crops. This study investigated the uptake, translocation, and tissue distribution of 11 PFAS compounds in two hydroponically grown lettuce ( [...] Read more.
Poly- and perfluoroalkyl substances (PFAS) are environmentally persistent contaminants that pose growing food safety concerns due to their potential for accumulation in edible crops. This study investigated the uptake, translocation, and tissue distribution of 11 PFAS compounds in two hydroponically grown lettuce (Lactuca sativa L.) cultivars, Agila and Bonaly. Additionally, PFAS accumulation in Agila was assessed under field conditions in a PFAS-contaminated area. Under hydroponic conditions, lettuce plants at two developmental stages (28 and 56 days after sowing) were exposed to a mixture of PFAS at concentrations of 10 and 20 µg L−1 each. Under such conditions, Agila cultivar accumulated considerably higher levels of long-chain PFAS in both root and leaf tissues over time, whereas Bonaly cultivar demonstrated a more pronounced initial uptake and translocation of short-chain PFAS to leaves. Differently, Agila variety cultivated in a PFAS-polluted environment accumulated low concentrations of PFAS in leaf tissues, with only PFBA detected at minimal levels. The results emphasize the combined influence of plant variety, developmental stage, and cultivation methods on PFAS bioaccumulation, offering valuable guidance for food safety risk assessment and for developing targeted agricultural strategies in PFAS-contaminated areas. Full article
(This article belongs to the Special Issue Horticultural Plant Resistance Against Biotic and Abiotic Stressors)
Show Figures

Figure 1

16 pages, 2353 KiB  
Article
New Contributions to Deepen the Quality-Based Safety Assessment in the Consumption of Edible Nasturtium Flowers—The Role of Volatilome
by Rosa Perestrelo, Maria da Graça Lopes, Alda Pereira da Silva, Maria do Céu Costa and José S. Câmara
Life 2025, 15(7), 1053; https://doi.org/10.3390/life15071053 - 30 Jun 2025
Viewed by 636
Abstract
The garden Nasturtium (Tropaeolum majus L.) is increasingly consumed worldwide due to its culinary appeal and perceived health benefits. However, the chemical markers underlying its functional properties remain insufficiently characterized. Building on evidence from a recent human pilot study confirming both high [...] Read more.
The garden Nasturtium (Tropaeolum majus L.) is increasingly consumed worldwide due to its culinary appeal and perceived health benefits. However, the chemical markers underlying its functional properties remain insufficiently characterized. Building on evidence from a recent human pilot study confirming both high acceptability and dietary safety, we conducted a comprehensive volatilomic and phytochemical analysis of T. majus flowers and their juice. Headspace solid-phase microextraction coupled with gas chromatography–mass spectrometry (HS-SPME/GC-MS) was employed to establish the volatilomic fingerprint of floral tissues and juice. Our analysis revealed a striking dominance of benzyl isothiocyanate and benzonitrile, which together accounted for 88% of the total volatile organic metabolites (VOMs) in the juice, 67% and 21%, respectively. In the floral tissues, benzyl isothiocyanate was even more prevalent, representing 95% of the total volatile profile. Complementary in vitro assays confirmed a substantial total phenolic content and strong antioxidant activity in the flowers. These findings provide a robust chemical rationale for the potential health-promoting attributes of T. majus, while identifying key volatilomic markers that could support future functional and safety claims. In parallel, a benefit–risk assessment framework is discussed in accordance with the European Food Safety Authority (EFSA) guidelines for the Qualified Presumption of Safety (QPS) of edible flowers. Given that both benzyl isothiocyanate and benzonitrile are classified as Cramer Class III substances, a conservative intake threshold of 1.5 μg/kg body weight per day is proposed. To enable quantitative exposure modeling and support the derivation of a tolerable daily intake (TDI), future studies should integrate organic solvent-based extraction methodologies to estimate the total volatile load per gram of floral biomass. This would align risk–benefit assessments with the EFSA’s evolving framework for novel foods and functional ingredients. Full article
(This article belongs to the Section Pharmaceutical Science)
Show Figures

Figure 1

20 pages, 6808 KiB  
Article
In Vitro Polyploidy Induction of Longshan Lilium lancifolium from Regenerated Shoots and Morphological and Molecular Characterization
by Yu-Qin Tang, Hong Zhang, Qin Qian, Shi-Yuan Cheng, Xiu-Xian Lu, Xiao-Yu Liu, Guo-Qiang Han and Yong-Yao Fu
Plants 2025, 14(13), 1987; https://doi.org/10.3390/plants14131987 - 29 Jun 2025
Viewed by 389
Abstract
Longshan Lilium lancifolium is a well-known medicinal and edible lily and has been registered as a geographical indicator in China. Polyploidization confers many advantages in lily production; however, characteristics of Longshan L. lancifolium improved by polyploidization have not been reported. Here, polyploidization was [...] Read more.
Longshan Lilium lancifolium is a well-known medicinal and edible lily and has been registered as a geographical indicator in China. Polyploidization confers many advantages in lily production; however, characteristics of Longshan L. lancifolium improved by polyploidization have not been reported. Here, polyploidization was induced in regenerated Longshan L. lancifolium shoots using colchicine, and the mutant plantlets were characterized by morphological observation, flow cytometry, and inter simple sequence repeat (ISSR) marker technology. The optimal medium for inducing shoot regeneration was Murashige and Skoog (MS) media supplemented with 0.2 mg/L of naphthaleneacetic acid (NAA) and 0.4 mg/L of thidiazuron (TDZ). The greatest mutation induction effect was obtained after soaking the regenerated shoots in 0.10% colchicine for 48 h, for an 80.00% frequency of morphological variants. Forty-one mutant plantlets were subjected to flow cytometry, identifying one homozygous polyploid, ‘JD-12’, and one chimeric polyploid, ‘JD-37’. Additionally, 68 chromosomes were found in the ‘JD-12’ root tip cells. Compared with the control, both the tissue-cultured and field-generated ‘JD-12’ plantlets presented a slight decrease in plant height, a darker green leaf color, a rougher leaf surface, and a larger bulblet diameter; furthermore, the upper epidermal and guard cells of ‘JD-12’ were much larger with a significantly lower stomatal density. The ISSR marker detection indicated a genetic variation rate of 6.10% in ‘JD-12’. These results provide a basis for lily polyploidization breeding and the cultivation of superior Longshan L. lancifolium via shoot regeneration. Full article
Show Figures

Figure 1

19 pages, 1351 KiB  
Article
Comparative Nutritional and Healthy Values of Macro- and Microelements in Edible and Non-Edible Tissues of Raw and Processed Common Octopus (Octopus vulgaris)
by Ricardo Prego, Antonio Cobelo-García, Susana Calvo and Santiago P. Aubourg
Foods 2025, 14(13), 2210; https://doi.org/10.3390/foods14132210 - 23 Jun 2025
Viewed by 394
Abstract
The macroelement (Na, Mg, P, S, K, and Ca) and microelement (Mn, Fe, Co, Cu, Zn, As, Cd, Sn, Ba, and Pb) composition of edible (arm and mantle) and non-edible (viscera) tissues of octopus (Octopus vulgaris) was studied. Three different size [...] Read more.
The macroelement (Na, Mg, P, S, K, and Ca) and microelement (Mn, Fe, Co, Cu, Zn, As, Cd, Sn, Ba, and Pb) composition of edible (arm and mantle) and non-edible (viscera) tissues of octopus (Octopus vulgaris) was studied. Three different size groups were considered separately (1–2, 2–3, and 3–4 kg per specimen). Additionally, the effect of cooking processing (40 min at 90 °C) and frozen storage (4 months at –18 °C) was determined. All raw tissues depicted the following increasing sequence for the macroelement content (p < 0.05): Ca < Mg < P ≈ K < Na ≈ S; regarding microelements, the raw viscera tissue showed a higher level (p < 0.05) than the counterpart edible tissues. The cooking process led to a general decrease in macroelement values (p < 0.05) in arm and mantle tissues; for microelements, no effect (p > 0.05) was observed for Co, Mn, and Sn content, but an average increase was obtained for Cd, Cu, and Pb values. The frozen storage did not lead to element content changes in the arm tissue (p > 0.05); in contrast, general content increases and decreases were detected for mantle and viscera, respectively. In spite of level changes detected, this study proves that viscera, a common waste of commercial processing, can be considered a valuable source of essential elements. Full article
(This article belongs to the Special Issue Trace Elements in Food: Nutritional and Safety Issues)
Show Figures

Figure 1

Back to TopTop