Comparative Nutritional and Healthy Values of Macro- and Microelements in Edible and Non-Edible Tissues of Raw and Processed Common Octopus (Octopus vulgaris)
Abstract
1. Introduction
2. Materials and Methods
2.1. Octopus Sampling and Processing
2.2. Determination of the Moisture Content
2.3. Chemical Element Determination
2.4. Statistical Analysis
3. Results
3.1. Moisture Determination
3.2. Comparative Content of Macroelements in the Different Raw Tissues
3.3. Comparative Content of Microelements in the Different Raw Tissues
3.4. Effect of Cooking Processing on Element Content
3.4.1. Macroelement Content
3.4.2. Microelement Content
3.5. Effect of Freezing and Frozen Storage on Element Content
3.5.1. Macroelement Content
3.5.2. Microelement Content
4. Discussion
4.1. Comparative Content of Elements in the Different Raw Tissues
4.2. Effect of Cooking Processing on Element Content
4.3. Effect of Freezing and Frozen Storage on Element Content
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tilami, S.K.; Sampels, S. Nutritional value of fish: Lipids, proteins, vitamins, and minerals. Rev. Fish. Sci. 2018, 26, 242–253. [Google Scholar] [CrossRef]
- Martínez-Valverde, I.; Periago, M.J.; Santaella, M.; Ros, G. The content and nutritional significance of minerals on fish flesh in the presence and absence of bone. Food Chem. 2000, 71, 503–509. [Google Scholar] [CrossRef]
- Wu, Y.Y.; Shen, Y.; Huang, H.; Yang, X.Q.; Zhao, Y.Q.; Cen, J.W.; Qi, B. Trace element accumulation and tissue distribution in the purpleback flying squid Sthenoteuthis oualaniensis from the Central and Southern South China Sea. Biol. Trace Elem. Res. 2017, 175, 214–222. [Google Scholar] [CrossRef] [PubMed]
- Durazzo, A.; Di Lena, G.; Gabrielli, P.; Santini, A.; Lombardi-Boccia, G.; Lucarini, M. Nutrients and bioactive compounds in seafood: Quantitative literature research analysis. Fishes 2022, 7, 132. [Google Scholar] [CrossRef]
- Fraga, C.G. Relevance, essentiality and toxicity of trace elements in human health. Mol. Aspects Med. 2005, 26, 235–244. [Google Scholar] [CrossRef]
- Roos, N.; Wahab, N.A.; Chamnan, C.; Thilsted, S.H. The role of fish in foodbased strategies to combat vitamin A and mineral deficiencies in developing countries. J. Nutr. 2007, 137, 1106–1109. [Google Scholar] [CrossRef]
- Lourenço, H.M.; Anacleto, P.; Afonso, C.; Ferraria, V.; Martins, M.F.; Carvalho, M.L.; Lino, A.R.; Nunes, M.L. Elemental composition of cephalopods from Portuguese continental waters. Food Chem. 2009, 113, 1146–1153. [Google Scholar] [CrossRef]
- Oehlenschläger, J. Minerals and trace elements. In Handbook of Seafood and Seafood Products Analysis; Nollet, L., Toldrá, F., Eds.; chapter 20; CRC Press: Boca Raton, FL, USA, 2010; pp. 351–375. [Google Scholar] [CrossRef]
- Järup, L. Hazards of heavy metal contamination. Br. Med. Bull. 2003, 68, 167–182. [Google Scholar] [CrossRef]
- Anishchenko, O.V.; Sushchik, N.N.; Makhutova, O.N.; Kalachova, G.S.; Gribovskaya, I.V.; Morgun, V.N.; Gladyshev, M.I. Benefit-risk ratio of canned pacific saury (Cololabis saira) intake: Essential fatty acids vs. heavy metals. Food Chem. Toxicol. 2017, 101, 8–14. [Google Scholar] [CrossRef]
- Gruszeska-Kosowska, A.; Baran, A.; Jasiewicz, C. Content and health risk assessment of selected elements in commercially available fish and fish products. Hum. Ecol. Risk Assess. Int. J. 2018, 24, 1623–1641. [Google Scholar] [CrossRef]
- Nessim, R.B.; Riad, R. Bioaccumulation of heavy metals in Octopus vulgaris from coastal waters of Alexandria (Eastern Mediterranean). Chem. Ecol. 2003, 19, 275–281. [Google Scholar] [CrossRef]
- Zukowska, J.; Biziuk, M. Methodological evaluation of method for dietary heavy metal intake. J. Food Sci. 2008, 73, R21–R29. [Google Scholar] [CrossRef]
- Babu, K.V.; Kumar, B.V.; Prasad, K.H.C. Bioaccumulation of heavy metals in squid (Loligo duvaucelii) from Tuticorin coastal waters. Int. J. Sci. Res. 2022, 11, 1095–1101. [Google Scholar] [CrossRef]
- Alasalvar, C.; Taylor, K.; Zubcov, E.; Shahidi, F.; Alexis, M. Differentiation of cultured and wild seabass (Dicentrarchus labrax): Total lipid content, fatty acid and trace mineral composition. Food Chem. 2002, 79, 145–150. [Google Scholar] [CrossRef]
- Noël, L.; Chafey, C.; Testu, C.; Pinte, J.; Velge, P.; Guérin, T. Contamination levels of lead, cadmium and mercury in imported and domestic lobsters and large crab species consumed in France: Differences between white and brown meat. J. Food Comp. Anal. 2011, 24, 368–375. [Google Scholar] [CrossRef]
- Arechavala-López, P.; Capó, X.; Oliver-Codorniú, M.; Sillero-Ríos, J.; Busquéts-Cortés, C.; Sánchez-Jerez, P.; Sureda, A. Fatty acids and elemental composition as biomarkers of Octopus vulgaris populations: Does origin matter? Mar. Poll. Bull. 2019, 139, 299–310. [Google Scholar] [CrossRef]
- Aubourg, S.P.; Medina, I.; Pérez-Martín, R. Polyunsaturated fatty acids in tuna phospholipids: Distribution in the sn-2 location and changes during cooking. J. Agric. Food Chem. 1996, 44, 585–589. [Google Scholar] [CrossRef]
- Lukoshkina, M.; Odoeva, G. Kinetics of chemical reactions for prediction of quality of canned fish during storage. App. Biochem. Microb. 2003, 39, 321–327. [Google Scholar] [CrossRef] [PubMed]
- Sikorski, Z.E.; Kolakowski, E. Endogenous enzyme activity and seafood quality: Influence of chilling, freezing, and other environmental factors. In Seafood Enzymes. Utilization and Influence on Postharvest Seafood Quality; Haard, N.F., Simpson, B.K., Eds.; Marcel Dekker: New York, NY, USA, 2000; pp. 451–487. [Google Scholar] [CrossRef]
- Vázquez, M.; Torres, J.A.; Gallardo, J.M.; Saraiva, J.A.; Aubourg, S.P. Lipid hydrolysis and oxidation development in frozen mackerel (Scomber scombrus): Effect of a high hydrostatic pressure pre-treatment. Innov. Food Sci. Emerg. Technol. 2013, 18, 24–30. [Google Scholar] [CrossRef]
- Kolakowska, A. Lipid oxidation in food systems. In Chemical and Functional Properties of Food Lipids; Sikorski, Z., Kolakowska, A., Eds.; CRC Press: London, UK, 2003; pp. 133–165. [Google Scholar] [CrossRef]
- Aubourg, S.P.; Piñeiro, C.; González, M.J. Quality loss related to rancidity development during frozen storage of horse mackerel (Trachurus trachurus). J. Am. Oil Chem. Soc. 2004, 81, 671–678. [Google Scholar] [CrossRef]
- Ghali, A.; Dave, D.; Budge, S.; Brooks, M. Fish spoilage mechanisms and preservation: Review. Amer. J. Appl. Sci. 2010, 7, 859–877. [Google Scholar] [CrossRef]
- Aubourg, S.P. Review: Loss of quality during the manufacture of canned fish products. Food Sci. Technol. Internat. 2001, 7, 199–215. [Google Scholar] [CrossRef]
- Vieira, E.F.; Soares, C.; Machado, S.; Oliva-Teles, M.T.; Correia, M.; Ramalhosa, M.J.; Carvalho, A.; Domingues, V.F.; Antunes, F.; Morais, S.; et al. Development of new canned Chub mackerel products incorporating edible seaweeds—Influence on the minerals and trace elements composition. Molecules 2020, 25, 1133. [Google Scholar] [CrossRef] [PubMed]
- Prego, R.; Martínez, B.; Cobelo-García, A.; Aubourg, S.P. Effect of high-pressure processing and frozen storage prior to canning on the content of essential and toxic elements in mackerel. Food Bioprocess Technol. 2021, 14, 1555–1565. [Google Scholar] [CrossRef]
- Gokoglu, N.; Yerlikaya, P.; Cengiz, E. Effects of cooking methods on the proximate composition and mineral contents of rainbow trout (Oncorhynchus mykiss). Food Chem. 2004, 84, 19–22. [Google Scholar] [CrossRef]
- Duysak, O.; Kılıç, E.; Uğurlu, E.; Doğan, S. Metal toxicity risk of commercial cephalopod species and public health concerns. Reg. Studies Mar. Sci. 2023, 66, 103141. [Google Scholar] [CrossRef]
- Rustad, T.; Storro, I.; Slizyte, R. Possibilities for the utilisation of marine by-products. Int. J. Food Sci. Technol. 2011, 46, 2001–2014. [Google Scholar] [CrossRef]
- Olsen, R.L.; Toppe, J.; Karunasagar, I. Challenges and realistic opportunities in the use of by-products from processing of fish and shellfish. Trends Food Sci. Technol. 2014, 36, 144–152. [Google Scholar] [CrossRef]
- Blanco, M.; Sotelo, C.G.; Chapela, M.J.; Pérez-Martín, R. Towards sustainable and efficient use of fishery resources: Present and future trends. Trends Food Sci. Technol. 2007, 18, 29–36. [Google Scholar] [CrossRef]
- Atef, M.; Ojagh, M. Health benefits and food applications of bioactive compounds from fish byproducts: A review. J. Funct. Foods 2017, 35, 673–681. [Google Scholar] [CrossRef]
- Vázquez, J.A.; Meduiña, A.; Durán, A.I.; Nogueira, M.; Fernández-Compás, A.; Pérez-Martín, R.I.; Rodríguez-Amado, I. Production of valuable compounds and bioactive metabolites from by-products of fish discards using chemical processing, enzymatic hydrolysis, and bacterial fermentation. Mar. Drugs 2019, 17, 139. [Google Scholar] [CrossRef] [PubMed]
- Pudtikajorn, K.; Benjakul, S. Simple wet rendering method for extraction of prime quality oil from skipjack tuna eyeballs. Eur. J. Lipid Sci. Technol. 2020, 122, 2000077. [Google Scholar] [CrossRef]
- Özyurt, G.; Özkütük, S. Advances in discard and by-product processing. In Innovative Technologies in Seafood Processing; Özoğul, Y., Ed.; CRC Press, Taylor and Francis Group: Boca Raton, FL, USA, 2020; pp. 323–350. [Google Scholar] [CrossRef]
- Kang, S.I.; Kim, J.S.; Park, S.Y.; Lee, S.M.; Jang, M.S.; Oh, J.Y.; Choi, J.S. Development and quality characteristics of elderly-friendly Pulpo a la Gallega prepared using texture-modified octopus (Octopus vulgaris) arms. Foods 2023, 12, 3343. [Google Scholar] [CrossRef]
- Ngandjui, Y.A.T.; Kereeditse, T.T.; Kamika, I.; Madikizela, L.M.; Msagati, T.A.M. Review: Nutraceutical and medicinal importance of marine molluscs. Mar. Drugs 2024, 22, 201. [Google Scholar] [CrossRef]
- Ben-Youssef, S.; Selmi, S.; Ezzeddine-Najai, S.; Sadok, S. Total lipids and fatty acids composition of the coastal and the deep-sea common octopus (Octopus vulgaris) populations: A comparative study. Nutr. Health 2008, 19, 195–201. [Google Scholar] [CrossRef] [PubMed]
- Zamuz, S.; Bohrer, B.M.; Shariati, M.A.; Rebezov, M.; Kumar, M.; Pateiro, M.; Lorenzo, J.M. Assessing the quality of octopus: From sea to table. Food Front. 2023, 4, 733–749. [Google Scholar] [CrossRef]
- Oliveira, H.; Muniz, J.A.; Bandarra, N.M.; Castanheira, I.; Ribeiro Coelho, I.; Delgado, I.; Gonçalves, S.; Lourenço, H.M.; Motta, C.; Duarte, M.P.; et al. Effects of industrial boiling on the nutritional profile of common octopus (Octopus vulgaris). Foods 2019, 8, 411. [Google Scholar] [CrossRef] [PubMed]
- Erdem, N.; Karakaya, M.; Babaoğlu, A.S.; Unal, K. Effects of sous vide cooking on physicochemical, structural, and microbiological characteristics of cuttlefish, octopus, and squid. J. Aquat. Food Prod. Technol. 2022, 31, 636–648. [Google Scholar] [CrossRef]
- AOAC. Official Methods for Analysis of the Association of Analytical Chemistry, 15th ed.; Association of Official Chemists, Inc.: Arlington, VA, USA, 1990; pp. 931–937. [Google Scholar]
- US-EPA. Acid Digestion of Sediments, Sludges, and Soils, SW-846 Test Method 3050B; Revision 2 (12 Pages); United States Environmental Protection Agency: Washington, DC, USA, 1996. [Google Scholar]
- Prego, R.; Vázquez, M.; Cobelo-García, A.; Aubourg, S.P. Macroelements and trace elements content in brine-canned mackerel (Scomber colias) subjected to high-pressure processing and frozen storage. Foods 2020, 9, 1868. [Google Scholar] [CrossRef]
- Prego, R.; Cobelo-García, A.; Martínez, B.; Aubourg, S.P. Effect of previous frozen storage and coating medium on the essential macroelement and trace element content of canned mackerel. Foods 2023, 12, 2289. [Google Scholar] [CrossRef]
- Ariano, A.; Marrone, R.; Andreini, R.; Smaldone, G.; Velotto, S.; Montagnaro, S.; Anastasio, A.; Severino, L. Metal concentration in muscle and digestive gland of common octopus (Octopus vulgaris) from two coastal sites in Southern Tyrrhenian Sea (Italy). Molecules 2019, 24, 2401. [Google Scholar] [CrossRef] [PubMed]
- Rodrigues, M.J.; Franco, F.; Martinho, F.; Carvalho, L.; Pereira, M.E.; Coelho, J.P.; Pardal, M.A. Essential mineral content variations in commercial marine species induced by ecological and taxonomical attributes. J. Food Comp. Anal. 2021, 103, 104118. [Google Scholar] [CrossRef]
- Elegbede, I.O.; Lawal-Are, A.; Oloyede, R.; Sanni, R.O.; Jolaosho, T.L.; Goussanou, A.; Ngo-Massou, V.M. Proximate, minerals, carotenoid and trypsin inhibitor composition in the exoskeletons of seafood gastropods and their potentials for sustainable circular utilization. Sci. Rep. 2023, 13, 13064. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, M.S.; Arfin, N.A.; Mahjabin, M.; Datta, S.K. Proximate composition and mineral content of edible cuttlefish (Sepiella inermis), squid (Uroteuthis duvauceli) and octopus (Cistopus taiwanicus) of Bangladesh. Biores. Comm. 2024, 10, 1420–1423. [Google Scholar] [CrossRef]
- Commission Regulation (EU) 2023/915 of 25th April 2023 on maximum levels for certain contaminants in food and repealing Regulation (EC) No 1881/2006. Disario Oficial de la Unión Europea L119/103 (5.5.2023).
- European Food Safety Authority (EFSA). Panel on contaminants in the food chain (CONTAM); scientific opinion on tolerable weekly intake for cadmium. EFSA J. 2011, 9, 1975. [Google Scholar] [CrossRef]
- CXS 193-1995; CODEX ALIMENTARIUS (EU). General Standard for Contaminants and Toxins in Food and Feed. FAO-WHO: Rome, Italy, 2024.
- Pitarch, J.L.; Vilas, C.; de Prada, C.; Palacín, C.G.; Alonso, A.A. Optimal operation of thermal processing of canned tuna under product variability. J. Food Eng. 2021, 304, 110594. [Google Scholar] [CrossRef]
- Turhan, S.; Sule Ustun, N.; Bogachan Altunkaynak, T. Effect of cooking methods on total and heme iron contents of anchovy (Engrauslis encrasicholus). Food Chem. 2004, 88, 169–172. [Google Scholar] [CrossRef]
- Ersoy, B.; Yanar, Y.; Kucukgulmez, A.; Celik, M. Effect of four cooking methods on the heavy metal concentrations of sea bass fillets (Dicentratchus labrax Linneo, 1785). Food Chem. 2006, 99, 748–751. [Google Scholar] [CrossRef]
- Gladyshev, M.; Sushchik, N.; Anishchenko, O.; Makhutova, O.; Kalachova, G.; Gribouskaya, I. Benefit-Risk ratio of food intake as the source of essential fatty acids vs. heavy metals: A case study of Siberian grayling from the Yenisei River. Food Chem. 2009, 115, 545–550. [Google Scholar] [CrossRef]
- Belitz, H.; Grosch, W. Química de los Alimentos. In Segunda Edición; Acribia: Zaragoza, Spain, 2009; p. 1087. [Google Scholar]
- Delgado-Andrade, C.; Seiquer, I.; Navarro, M. Maillard reaction products consumption magnesium bioavailability and bone mineralization in rat. Food Chem. 2008, 107, 631–639. [Google Scholar] [CrossRef]
- Czech, A.; Stachyra, K. Effect of processing treatments (frozen, frying) on contents of minerals in tissues of ‘frutti di mare’. Int. J. Food Sci. Technol. 2013, 48, 238–245. [Google Scholar] [CrossRef]
- Alves, R.N.; Maulvault, A.L.; Barbosa, V.L.; Fernández-Tejedor, M.; Tediosi, A.; Kotterman, M.; van den Heuvel, F.H.M.; Robbens, J.; Fernandes, J.O.; Rasmussen, R.R.; et al. Oral bioaccessibility of toxic and essential elements in raw and cooked commercial seafood species available in European markets. Food Chem. 2018, 267, 15–27. [Google Scholar] [CrossRef] [PubMed]
- Aubourg, S.P.; Rey-Mansilla, M.; Sotelo, C. Differential lipid damage in various muscle zones of frozen hake (Merluccius merluccius). Z. Lebensm. Unters. Forsch. 1999, 208, 189–193. [Google Scholar] [CrossRef]
- Gómez-Basauri, J.V.; Regenstein, J.M. Processing and frozen storage effects on the iron content of cod and mackerel. J. Food Sci. 1992, 57, 1332–1336. [Google Scholar] [CrossRef]
- Pourashouri, P.; Shabanpour, B.; Aubourg, S.P.; Daghigh Rohi, J.; Shabani, A. An investigation of rancidity inhibition during frozen storage of Wels catfish (Silurus glanis) fillets by previous ascorbic and citric acid treatment. Int. J. Food Sci. Technol. 2009, 44, 1503–1509. [Google Scholar] [CrossRef]
- Karl, H.; Basak, S.; Ziebell, S.; Quast, P. Changes in the iodine content in fish during household preparation and smoking. Deut. Lebensm. Rundsch. 2005, 101, 431–436. Available online: https://www.openagrar.de/receive/openagrar_mods_00021282 (accessed on 1 May 2025).
Element * | Certified ** | Column A | Column B |
---|---|---|---|
Macroelement (g·kg−1) | |||
Ca | 2.01 ± 0.25 | 1.85 ± 0.09 | 2.12 ± 0.08 |
K | 11.6 ± 0.4 | 11.5 ± 0.3 | 11.5 ± 0.2 |
Mg | 1.03 ± 0.08 | 1.13 ± 0.05 | 1.06 ± 0.03 |
Na | 9.20 ± 0.40 | 9.30 ± 0.24 | 9.10 ± 0.30 |
P | 6.23 ± 0.24 | 6.28 ± 0.23 | 6.35 ± 0.11 |
S | 8.4 ± 0.2 | 8.5 ± 0.3 | 8.3 ± 0.1 |
Microelement (mg·kg−1) | |||
As | 13.3 ± 0.7 | 13.4 ± 0.5 | 13.7 ± 0.4 |
Ba | 0.396 ± 0.023 | 0.403 ± 0.056 | 0.409 ± 0.019 |
Cd | 0.148 ± 0.007 | 0.150 ± 0.004 | 0.151 ± 0.005 |
Co | 0.063 ± 0.004 | 0.065 ± 0.002 | 0.064 ± 0.004 |
Cu | 3.30 ± 0.07 | 3.39 ± 0.11 | 3.28 ± 0.03 |
Fe | 113 ± 8 | 116 ± 3 | 110 ± 4 |
Mn | 1.06 ± 0.04 | 0.96 ± 0.03 | 1.05 ± 0.03 |
Pb | 0.058 ± 0.006 | 0.054 ± 0.001 | 0.058 ± 0.001 |
Sn | 0.077 ± 0.008 | 0.071 ± 0.014 | 0.073 ± 0.002 |
Zn | 28.7 ± 1.0 | 29.3 ± 0.7 | 29.2 ± 0.6 |
Macroelement | Raw or Processed | Tissue | ||
---|---|---|---|---|
Arm | Mantle | Viscera | ||
Ca | Raw | 0.26 ± 0.01 aA | 0.32 ± 0.01 bA | 0.36 ± 0.04 bA |
Cooked | 0.26 ± 0.02 aA | 0.25 ± 0.05 aA | – | |
Frozen | 0.26 ± 0.02 aA | 0.29 ± 0.06 aA | 0.33 ± 0.07 aA | |
Cooked frozen | 0.26 ± 0.03 aA | 0.32 ± 0.02 bA | – | |
K | Raw | 3.27 ± 0.06 aB | 3.16 ± 0.06 aD | 3.22 ± 0.14 aB |
Cooked | 1.42 ± 0.20 bA | 0.64 ± 0.08 aA | – | |
Frozen | 3.18 ± 0.27 bB | 2.50 ± 0.11 aC | 2.41 ± 0.17 aA | |
Cooked frozen | 1.55 ± 0.16 bA | 0.82 ± 0.04 aB | – | |
Mg | Raw | 0.79 ± 0.04 aA | 0.92 ± 0.01 bB | 0.71 ± 0.04 aB |
Cooked | 0.65 ± 0.03 bA | 0.50 ± 0.06 aA | – | |
Frozen | 0.67 ± 0.10 aA | 0.91 ± 0.09 bB | 0.60 ± 0.06 aA | |
Cooked frozen | 0.57 ± 0.06 aA | 0.56 ± 0.01 aA | – | |
Na | Raw | 5.50 ± 0.14 bC | 6.41 ± 0.13 cC | 4.57 ± 0.34 aA |
Cooked | 3.30 ± 0.09 bB | 2.18 ± 0.30 aA | – | |
Frozen | 5.10 ± 0.46 abC | 5.59 ± 0.12 bB | 4.37 ± 0.70 aA | |
Cooked frozen | 2.90 ± 0.16 bA | 2.56 ± 0.03 aA | – | |
P | Raw | 2.11 ± 0.06 aB | 2.12 ± 0.07 aC | 2.83 ± 0.19 bB |
Cooked | 1.79 ± 0.08 bA | 1.31 ± 0.06 aA | – | |
Frozen | 2.21 ± 0.26 aB | 2.21 ± 0.35 aC | 1.97 ± 0.09 aA | |
Cooked frozen | 1.55 ± 0.16 aA | 1.66 ± 0.13 aB | – | |
S | Raw | 6.02 ± 0.04 bB | 4.89 ± 0.17 aC | 5.97 ± 0.04 bB |
Cooked | 4.27 ± 0.37 bA | 2.70 ± 0.15 aA | – | |
Frozen | 6.01 ± 0.22 bB | 3.94 ± 0.48 aB | 3.98 ± 0.22 aA | |
Cooked frozen | 4.78 ± 0.45 bA | 2.94 ± 0.09 aA | – |
Microelement | Raw or Processed | Tissue | ||
---|---|---|---|---|
Arm | Mantle | Viscera | ||
As | Raw | 16.5 ± 4.2 aB | 12.5 ± 2.3 aC | 13.9 ± 3.1 aB |
Cooked | 8.03 ± 0.86 bA | 4.21 ± 0.66 aA | – | |
Frozen | 16.2 ± 6.3 bAB | 13.4 ± 2.7 bC | 7.45 ± 0.63 aA | |
Cooked frozen | 8.39 ± 1.72 aA | 6.01 ± 0.83 aB | – | |
Cu | Raw | 4.09 ± 0.53 aA | 7.12 ± 2.77 aA | 87 ± 36 bA |
Cooked | 11.04 ± 2.52 aB | 18.86 ± 2.83 bB | – | |
Frozen | 5.19 ± 0.64 aA | 9.88 ± 3.22 bA | 65.7 ± 21.4 cA | |
Cooked frozen | 14.03 ± 4.48 aB | 10.76 ± 2.52 aA | – | |
Fe | Raw | 2.59 ± 0.51 aB | 2.74 ± 0.15 aA | 157 ± 38 bB |
Cooked | 3.19 ± 1.02 aB | 3.23 ± 0.39 aB | – | |
Frozen | 2.22 ± 0.06 aB | 5.05 ± 1.96 bC | 94.3 ± 41.6 cA | |
Cooked frozen | 1.25 ± 0.07 aA | 3.23 ± 0.22 bB | – | |
Zn | Raw | 15.9 ± 1.0 bA | 12.2 ± 0.4 aA | 117 ± 4 cB |
Cooked | 25.9 ± 3.4 aB | 29.4 ± 2.4 aC | – | |
Frozen | 16.1 ± 0.3 aA | 17.4 ± 3.1 aB | 112.5 ± 19.5 bA | |
Cooked frozen | 29.1 ± 5.1 aB | 29.9 ± 1.2 aC | – |
Microelement | Raw or Processed | Tissue | ||
---|---|---|---|---|
Arm | Mantle | Viscera | ||
Ba | Raw | 0.024 ± 0.003 bA | 0.015 ± 0.003 aA | 0.080 ± 0.015 cB |
Cooked | 0.024 ± 0.004 aA | 0.034 ± 0.004 bB | – | |
Frozen | 0.022 ± 0.002 aA | 0.041 ± 0.004 bB | 0.046 ± 0.002 bA | |
Cooked frozen | 0.024 ± 0.004 aA | 0.037 ± 0.007 bB | – | |
Cd | Raw | 0.008 ± 0.001 aA | 0.009 ± 0.001 aA | 8.78 ± 4.25 bA |
Cooked | 0.034 ± 0.021 aB | 0.050 ± 0.005 aB | – | |
Frozen | 0.007 ± 0.001 aA | 0.054 ± 0.066 aB | 8.30 ± 1.49 bA | |
Cooked frozen | 0.034 ± 0.012 aB | 0.063 ± 0.032 aB | – | |
Co | Raw | 0.008 ± 0.001 aA | 0.009 ± 0.003 aA | 1.01 ± 0.13 bA |
Cooked | 0.010 ± 0.004 aA | 0.011 ± 0.001 aA | – | |
Frozen | 0.007 ± 0.002 aA | 0.020 ± 0.017 aA | 0.815 ± 0.105 bA | |
Cooked frozen | 0.006 ± 0.001 aA | 0.011 ± 0.002 bA | – | |
Mn | Raw | 0.34 ± 0.04 aA | 0.43 ± 0.05 aA | 1.54 ± 0.04 bB |
Cooked | 0.33 ± 0.07 aA | 0.47 ± 0.06 aA | – | |
Frozen | 0.37 ± 0.02 aA | 0.51 ± 0.17 aAB | 1.29 ± 0.19 bA | |
Cooked frozen | 0.34 ± 0.03 aA | 0.63 ± 0.05 bB | – | |
Pb | Raw | 0.076 ± 0.021 aA | 0.052 ± 0.011 aA | 0.989 ± 0.285 bB |
Cooked | 0.311 ± 0.141 aB | 0.550 ± 0.083 bD | – | |
Frozen | 0.066 ± 0.011 aA | 0.330 ± 0.081 bC | 0.303 ± 0.122 bA | |
Cooked frozen | 0.480 ± 0.170 bB | 0.113 ± 0.007 aB | – | |
Sn | Raw | 0.028 ± 0.004 aA | 0.044 ± 0.015 abA | 0.045 ± 0.004 bB |
Cooked | 0.034 ± 0.007 aA | 0.030 ± 0.015 aA | – | |
Frozen | 0.036 ± 0.020 aA | 0.039 ± 0.019 aA | 0.018 ± 0.004 aA | |
Cooked frozen | 0.033 ± 0.008 aA | 0.028 ± 0.013 aA | – |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Prego, R.; Cobelo-García, A.; Calvo, S.; Aubourg, S.P. Comparative Nutritional and Healthy Values of Macro- and Microelements in Edible and Non-Edible Tissues of Raw and Processed Common Octopus (Octopus vulgaris). Foods 2025, 14, 2210. https://doi.org/10.3390/foods14132210
Prego R, Cobelo-García A, Calvo S, Aubourg SP. Comparative Nutritional and Healthy Values of Macro- and Microelements in Edible and Non-Edible Tissues of Raw and Processed Common Octopus (Octopus vulgaris). Foods. 2025; 14(13):2210. https://doi.org/10.3390/foods14132210
Chicago/Turabian StylePrego, Ricardo, Antonio Cobelo-García, Susana Calvo, and Santiago P. Aubourg. 2025. "Comparative Nutritional and Healthy Values of Macro- and Microelements in Edible and Non-Edible Tissues of Raw and Processed Common Octopus (Octopus vulgaris)" Foods 14, no. 13: 2210. https://doi.org/10.3390/foods14132210
APA StylePrego, R., Cobelo-García, A., Calvo, S., & Aubourg, S. P. (2025). Comparative Nutritional and Healthy Values of Macro- and Microelements in Edible and Non-Edible Tissues of Raw and Processed Common Octopus (Octopus vulgaris). Foods, 14(13), 2210. https://doi.org/10.3390/foods14132210