Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (140)

Search Parameters:
Keywords = edible algae

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 524 KB  
Review
Algae and Algal Protein in Human Nutrition: A Narrative Review of Health Outcomes from Clinical Studies
by Zixuan Wang, Marie Scherbinek and Thomas Skurk
Nutrients 2026, 18(2), 277; https://doi.org/10.3390/nu18020277 - 15 Jan 2026
Viewed by 167
Abstract
As global interest in sustainable nutrition grows, algae have emerged as a promising functional food resource. This review analyzes the nutritional value of edible algae, with a particular focus on protein-rich microalgae, and synthesizes current clinical evidence regarding their health benefits. Algae have [...] Read more.
As global interest in sustainable nutrition grows, algae have emerged as a promising functional food resource. This review analyzes the nutritional value of edible algae, with a particular focus on protein-rich microalgae, and synthesizes current clinical evidence regarding their health benefits. Algae have been demonstrated to provide a broad spectrum of physiologically active nutrients, encompassing a range of vitamins and minerals as well as polyunsaturated fatty acids, antioxidant molecules and various bioactive compounds including dietary fiber. These nutrients have been linked to improved cardiovascular and metabolic health, enhanced immune function, and anti-inflammatory effects. A particular emphasis is placed on algal proteins as a novel alternative to traditional dietary proteins. Genera such as Spirulina and Chlorella offer high-quality, complete proteins with amino acid profiles and digestibility scores comparable to those of animal and soy proteins, thereby supporting muscle maintenance and overall nutritional status. Recent clinical studies have demonstrated that the ingestion of microalgae can stimulate muscle protein synthesis and improve lipid profiles, blood pressure, and inflammation markers, indicating functional benefits beyond basic nutrition. Algal proteins also contain bioactive peptides with antioxidative properties that may contribute to positive outcomes. This review synthesizes current studies, which demonstrate that algae represent a potent, sustainable protein source capable of enhancing dietary quality and promoting health. The integration of algae-based products into plant-forward diets has the potential to contribute to global nutritional security and long-term public health. However, the available clinical evidence remains heterogeneous and is largely based on small, short-term intervention studies, with substantial variability in algae species, processing methods and dosages. Consequently, while the evidence suggests the possibility of functional effects, the strength of the evidence and its generalizability across populations remains limited. Full article
(This article belongs to the Section Micronutrients and Human Health)
Show Figures

Figure 1

22 pages, 3592 KB  
Article
Phlorotannins from Ecklonia cava Regulate Dual Signaling Pathways, IL-17RA/Act1 and ERK1/2, to Suppress Ovarian Cancer Progression and Tumor-Associated Macrophage Activation
by Eun-Hye Kim, Hwi-Ho Lee, Jung-Hye Choi and Ji-Hye Ahn
Mar. Drugs 2026, 24(1), 12; https://doi.org/10.3390/md24010012 - 24 Dec 2025
Viewed by 471
Abstract
Background: Marine-derived secondary metabolites such as phlorotannins from the edible brown alga Ecklonia cava exhibit diverse bioactivities. However, their mechanisms in inflammation-associated cancer remain insufficiently understood. Methods: This study explored the anticancer potential of three major phlorotannins (dieckol, 7-phloroeckol, and 8,8′-bieckol) through network [...] Read more.
Background: Marine-derived secondary metabolites such as phlorotannins from the edible brown alga Ecklonia cava exhibit diverse bioactivities. However, their mechanisms in inflammation-associated cancer remain insufficiently understood. Methods: This study explored the anticancer potential of three major phlorotannins (dieckol, 7-phloroeckol, and 8,8′-bieckol) through network pharmacology, molecular docking, molecular dynamics simulations, and in vitro validation in SKOV3 ovarian cancer cells and tumor-associated macrophages (TAMs). Results: Computational analyses revealed stable binding of phlorotannins to IL-17RA, with 7-phloroeckol and 8,8′-bieckol preferentially engaging loop-proximal regions of the receptor, while dieckol interacted with spatially distinct residues. In SKOV3 ovarian cancer cells, phlorotannins suppressed migration and invasion by approximately 40 to 60%, accompanied by reduced MMP expression linked to IL-17RA–Act1 signaling attenuation and by increased TIMP1 expression in association with transient ERK1/2 activation. In TAMs, phlorotannins attenuated pro-tumorigenic cytokine production and polarization marker expression, indicating suppression of tumor-supportive immune activity. Conclusions: Collectively, these findings demonstrate that E. cava-derived phlorotannins exert anti-metastatic effects through dual regulation of IL-17RA/Act1 and ERK1/2 signaling pathways, offering mechanistic insight into their therapeutic potential against inflammation-driven malignancies. Full article
Show Figures

Graphical abstract

16 pages, 948 KB  
Article
Functionality-Driven Optimization of Green Ultrasound-Assisted Extraction of Antioxidant Compounds from Edible Brown Algae
by Carolina Padrón-Sanz, Samanta García-Oms, Javier Pacheco-Juárez, Lorena Pasquali and Dolores Cejalvo-Lapeña
Mar. Drugs 2025, 23(12), 469; https://doi.org/10.3390/md23120469 - 7 Dec 2025
Viewed by 521
Abstract
The extraction of antioxidant compounds from brown macroalgae is of growing industrial interest; however, the weak correlation often observed between polyphenol content and antioxidant activity challenges the conventional strategy of optimizing only extraction yield. This study introduces, for the first time in brown [...] Read more.
The extraction of antioxidant compounds from brown macroalgae is of growing industrial interest; however, the weak correlation often observed between polyphenol content and antioxidant activity challenges the conventional strategy of optimizing only extraction yield. This study introduces, for the first time in brown macroalgae, a functionality-driven optimization approach in which ultrasound-assisted extraction (UAE) conditions are optimized based on antioxidant activity as the primary response variable, rather than compound concentration. A green UAE process was developed and optimized for four edible brown algae (Himanthalia elongata, Eisenia bicyclis, Sargassum fusiforme, and Laminaria ochroleuca), considering algae amount, solvent type and concentration, extraction time, ultrasound power, and temperature. The optimized extracts achieved 69.17–94.68% DPPH inhibition, together with high antioxidant capacity supported by ORAC (18.63–491.30 μmol TE g−1 DW) and FRAP (1.24–87.65 µmol Fe+2 g1 DW) values, identifying E. bicyclis and H. elongata as the most promising species. Chromatographic analyses confirmed the presence of phlorotannins and carotenoid pigments such as fucoxanthin as the main contributors to antioxidant activity. Overall, this work validates a functionality-driven UAE optimization strategy for efficiently maximizing antioxidant activity in brown algal extracts. Full article
(This article belongs to the Special Issue Green Extraction of High-Value Compounds in Marine Algae)
Show Figures

Figure 1

15 pages, 7472 KB  
Article
Metabolomic Analysis of Fermented Nori Powders: Divergence of Betaine Structural Analogs Production by Three Types of koji Fungal Fermentation
by Nao Inoue, Konoka Kubo, Keisuke Tsuge, Ryosuke Sasaki, Akira Oikawa, Masatoshi Goto, Teruyoshi Yanagita and Koji Nagao
Molecules 2025, 30(20), 4104; https://doi.org/10.3390/molecules30204104 - 16 Oct 2025
Viewed by 667
Abstract
Fermenting seaweed with koji fungi transforms its chemical composition, generating bioactive compounds absent in the raw material. We previously reported that the fungal fermentation of the edible red alga Pyropia yezoensis (Nori) produces betaine structural analogs (such as betaine, stachydrine, and carnitine), which [...] Read more.
Fermenting seaweed with koji fungi transforms its chemical composition, generating bioactive compounds absent in the raw material. We previously reported that the fungal fermentation of the edible red alga Pyropia yezoensis (Nori) produces betaine structural analogs (such as betaine, stachydrine, and carnitine), which are of particular interest because of their physiological roles and potential health benefits. Using metabolomic profiling, we compared non-fermented Nori with powders fermented by three industrially important fungi: Aspergillus luchuensis mut. kawachii (white koji fungus), Aspergillus oryzae (yellow koji fungus), and Monascus purpureus (red koji fungus). All fermentations enhanced the levels of betaine and carnitine, but stachydrine production was unique to the yellow koji fungus. Precursor patterns revealed distinct metabolic strategies: the yellow koji fungus exhibited an intermediate detectable choline oxidation route and strong proline methylation, the white koji fungus rapidly converted choline without intermediate accumulation, and the red koji fungus favored carnitine and proline but produced little stachydrine. Fermentation also shifted the methylation balance toward a state that supports methyl-dependent pathways. These findings reveal clear species-specific strategies for the production of betaine structural analogs, providing a mechanistic basis for understanding the metabolic divergence among koji fungi and guiding the targeted design of functional seaweed products. Full article
Show Figures

Graphical abstract

14 pages, 1991 KB  
Article
The Effect of Thermal Treatment and Storage on the Stability of Ascophyllum nodosum Extract
by Xin Liu and Wenqiao Yuan
Processes 2025, 13(10), 3043; https://doi.org/10.3390/pr13103043 - 24 Sep 2025
Viewed by 1033
Abstract
Macroalgae-derived polyphenols have been considered as a potential source of food supplements that can enhance the nutritional value and extend the shelf life of foods. However, thermal treatment during food processing as well as storage might induce the degradation of some bioactive compounds [...] Read more.
Macroalgae-derived polyphenols have been considered as a potential source of food supplements that can enhance the nutritional value and extend the shelf life of foods. However, thermal treatment during food processing as well as storage might induce the degradation of some bioactive compounds in the extract. In the present study, the stability of the extract from the edible brown algae Ascophyllum nodosum was evaluated under thermal treatment (40–90 °C). Significant differences in TPC, RSC, and antioxidant activity were found during all treatments. The total phenol content (TPC) and antioxidant activity (DPPH scavenging activity) decreased up to 5% and 10%, respectively, after 6 h of thermal treatment, while the reducing sugar content (RSC) increased from 8 to 35% as the temperature increased from 40 to 90 °C. The stability of the extract during storage with or without exposure to air was evaluated at room temperature (25 °C) and low temperature (4 °C) for 108 h, and the influence of the solvent used to contain the extract has been investigated by studying both concentrated and non-concentrated extracts. It was found that the extract stored at 4 °C without exposure to air had a negligible TPC change, while RSC increased in the extract exposed to air, suggesting that oxygen in the air might accelerate polysaccharide degradation during storage. Antioxidant activity of extracts remained constant at both 4 and 25 °C, regardless of exposure to air. Full article
(This article belongs to the Special Issue Evaluation and Utilization of Antioxidant Activity in Food Products)
Show Figures

Figure 1

19 pages, 301 KB  
Review
Emerging Trends in Sustainable Biological Resources and Bioeconomy for Food Production
by Luis A. Trujillo-Cayado, Rosa M. Sánchez-García, Irene García-Domínguez, Azahara Rodríguez-Luna, Elena Hurtado-Fernández and Jenifer Santos
Appl. Sci. 2025, 15(12), 6555; https://doi.org/10.3390/app15126555 - 11 Jun 2025
Cited by 3 | Viewed by 2081
Abstract
The mounting global population and the challenges posed by climate change underline the need for sustainable food production systems. This review synthesizes evidence for a dual-track bioeconomy, green (terrestrial plants and insects) and blue (aquatic algae), as complementary pathways toward sustainable nutrition. A [...] Read more.
The mounting global population and the challenges posed by climate change underline the need for sustainable food production systems. This review synthesizes evidence for a dual-track bioeconomy, green (terrestrial plants and insects) and blue (aquatic algae), as complementary pathways toward sustainable nutrition. A comprehensive review of the extant literature, technical reports, and policy documents published between 2015 and 2025 was conducted, with a particular focus on environmental, nutritional, and techno-economic metrics. In addition, precision agriculture datasets, gene-editing breakthroughs, and circular biorefinery case studies were extracted and compared. As demonstrated in this study, the use of green resources, such as legumes, oilseeds, and edible insects, results in a significant reduction in greenhouse gas emissions, land use, and water footprints compared with conventional livestock production. In addition, these alternative protein sources offer substantial benefits in terms of bioactive lipids. Blue resources, centered on micro- and macroalgae, furnish additional proteins, long-chain polyunsaturated fatty acids, and antioxidant pigments and sequester carbon on non-arable or wastewater substrates. The transition to bio-based resources is facilitated by technological innovations, such as gene editing and advanced extraction methods, which promote the efficient valorization of agricultural residues. In conclusion, the study strongly suggests that policy support be expedited and that research into bioeconomy technologies be increased to ensure the sustainable meeting of future food demands. Full article
(This article belongs to the Special Issue Application of Natural Components in Food Production)
15 pages, 1354 KB  
Article
Profiling of Volatile Organic Compounds, Including Halogenated Substances, in Okinawan Red Alga Portieria hornemannii
by Kazuki Tani, Yu Sasaki, Takahiro Ishii and Yonathan Asikin
Molecules 2025, 30(12), 2534; https://doi.org/10.3390/molecules30122534 - 10 Jun 2025
Viewed by 1425
Abstract
The exploitation of underutilised resources is critical for achieving a sustainable society, and non-edible seaweeds are promising candidates. This study focused on the red alga Portieria hornemannii from Okinawa, Japan, a seaweed with a distinctive aroma, and determined its volatile organic compounds (VOCs) [...] Read more.
The exploitation of underutilised resources is critical for achieving a sustainable society, and non-edible seaweeds are promising candidates. This study focused on the red alga Portieria hornemannii from Okinawa, Japan, a seaweed with a distinctive aroma, and determined its volatile organic compounds (VOCs) and halogenated secondary metabolites using headspace solid-phase microextraction gas chromatography–mass spectrometry (HS-SPME-GC-MS) at various extraction temperatures. HS-SPME-GC-MS analysis revealed 52 VOCs in Okinawan P. hornemannii, including predominant compounds α-pinenyl bromide (IUPAC name: 2-bromomethyl-6,6-dimethylbicyclo [3.1.1]hept-2-ene; halogenated monoterpene), myrcene disulfide (3-(6-methyl-2-methylidenehept-5-enylidene)dithiirane), and 5,6-dimethyl-1H-benzimidazole, the content of which in the extract increased with increasing extraction temperature from 30 to 60 °C. On the other hand, the β-myrcene (7-methyl-3-methyleneocta-1,6-diene) content, which likely contributes majorly to the distinct fresh odour of the algae, declined as the temperature increased. Furthermore, the proportion of β-myrcene obtained using SPME was significantly higher than that extracted using solvent liquid extraction (SLE) (7.20% in SPME at 30 °C vs. 0.09%, respectively). However, SLE-GC-MS provided a different P. hornemannii volatile profile, allowing for the acquisition of more furan-, alcohol-, ester-, and carboxylic acid-containing compounds. These data provide valuable information, such as a systematic analytical framework for volatiles profiling in the marine macroalgae P. hornemannii, with potential applicability in the development of food and fragrance products. Full article
(This article belongs to the Special Issue Extraction and Analysis of Natural Products in Food—2nd Edition)
Show Figures

Figure 1

19 pages, 1414 KB  
Article
Readiness to Change and the Intention to Consume Novel Foods: Evidence from Linear Discriminant Analysis
by Mirko Duradoni, Marina Baroni, Maria Fiorenza, Martina Bellotti, Gabriele Neri and Andrea Guazzini
Sustainability 2025, 17(11), 4902; https://doi.org/10.3390/su17114902 - 27 May 2025
Cited by 7 | Viewed by 1359
Abstract
The challenges associated with climate change have led to the need for pro-environmental behaviors, including the consumption of sustainable novel foods. Despite the importance of sustainable food for the environment, there is still a need to further investigate the psychological determinants of consumer [...] Read more.
The challenges associated with climate change have led to the need for pro-environmental behaviors, including the consumption of sustainable novel foods. Despite the importance of sustainable food for the environment, there is still a need to further investigate the psychological determinants of consumer behavior change putatively able to promote the use of novel foods. In line with this, the aim of the present study was to investigate the role of readiness to change (RTC) in shaping the intention to consume sustainable foods (e.g., chia seeds and edible insects). RTC refers to a valuable construct composed of seven different dimensions, namely perceived importance of the problem/change, motivation, self-efficacy, effectiveness of proposed solution, social support, action and involvement, and perceived readiness. In keeping with this, a cross-sectional study was conducted by collecting from 1252 participants through an online and anonymous survey. In line with the aim above, a linear discriminant analysis was performed to explore potential non-linear relationships between RTC and novel food consumption. The results highlighted certain RTC dimensions (e.g., perceived importance of the problem, action, and self-efficacy) able to positively support the intention to consume novel foods (e.g., chia seeds and spirulina algae). In conclusion, the study pointed out evidence regarding psychological determinants in terms of RTC able to improve sustainable behaviors, namely the use of novel foods. In the context of sustainability, the present study represents a groundwork for the implementation of future studies in this field of research as well as the development of future policies aimed at promoting awareness and encouraging the adoption of sustainable eating behaviors. Full article
(This article belongs to the Section Psychology of Sustainability and Sustainable Development)
Show Figures

Figure 1

15 pages, 1752 KB  
Review
Sodium Alginate: A Green Biopolymer Resource-Based Antimicrobial Edible Coating to Enhance Fruit Shelf-Life: A Review
by Anshika Sharma and Arun K. Singh
Colloids Interfaces 2025, 9(3), 32; https://doi.org/10.3390/colloids9030032 - 19 May 2025
Cited by 2 | Viewed by 4750
Abstract
Fruits are a significant source of natural nutrition for human health. However, the perishable nature and short shelf life of fruits lead to spoilage, nutrition safety challenges, and other substantial postharvest losses. Edible coatings have emerged as a novel approach in order to [...] Read more.
Fruits are a significant source of natural nutrition for human health. However, the perishable nature and short shelf life of fruits lead to spoilage, nutrition safety challenges, and other substantial postharvest losses. Edible coatings have emerged as a novel approach in order to enhance the shelf life of perishable fruits by forming a protective barrier against adverse environmental conditions and microbial infections. Sodium alginate is recognized as an excellent polysaccharide (derived from algae, seaweed, etc.) in the food industry for edible fruit coatings because of its non-allergic, biodegradable, non-toxic (safe for human health), inexpensive, and efficient gel/film-forming properties. However, the hydrophilicity of the polysaccharides is a significant concern to prevent the growth of mold and yeast. In recent years, various plant extracts (containing multiple bioactive compounds, including polyphenolic acids) and nanoparticles have been applied in sodium alginate-based edible films and fruit coatings to enhance antimicrobial activity. This review study summarized recent advancements in fabricating plant extracts incorporating sodium alginate-based films and coatings to enhance fruit shelf life. In addition, approaches to preparing edible films and the basic mechanism behind the role of coating materials in enhancing fruit shelf life are discussed. Moreover, the limitations associated with sodium alginate-based fruit coatings and films have been highlighted. Full article
(This article belongs to the Special Issue Food Colloids: 3rd Edition)
Show Figures

Graphical abstract

27 pages, 5629 KB  
Review
Valorization of Algal Biomass to Biofuel: A Review
by Vijitha Amalapridman, Peter A. Ofori and Lord Abbey
Biomass 2025, 5(2), 26; https://doi.org/10.3390/biomass5020026 - 5 May 2025
Cited by 5 | Viewed by 7554
Abstract
Concerns about sustainable energy sources arise due to the non-renewable nature of petroleum. Escalating demand for fossil fuels and price inflation negatively impact the energy security and economy of a country. The generation and usage of biofuel could be suggested as a sustainable [...] Read more.
Concerns about sustainable energy sources arise due to the non-renewable nature of petroleum. Escalating demand for fossil fuels and price inflation negatively impact the energy security and economy of a country. The generation and usage of biofuel could be suggested as a sustainable alternative to fossil fuels. Several studies have investigated the potential of using edible crops for biofuel production. However, the usage of algae as suitable feedstock is currently being promoted due to its ability to withstand adverse environmental conditions, capacity to generate more oil per area, and potential to mitigate energy crises and climate change with no detrimental impact on the environment and food supply. Furthermore, the biorefinery approach in algae-based biofuel production controls the economy of algal cultivation. Hence, this article critically reviews different cultivation systems of algae with critical parameters including harvesting methods, intended algae-based biofuels with relevant processing techniques, other applications of valorized algal biomass, merits and demerits, and limitations and challenges in algae-based biofuel production. Full article
Show Figures

Graphical abstract

11 pages, 2844 KB  
Article
Genetic Diversity of the Traditional Economic Green Alga Capsosiphon fulvescens in Republic of Korea
by Soon Jeong Lee, Eun-Young Lee and Sang-Rae Lee
Diversity 2025, 17(2), 132; https://doi.org/10.3390/d17020132 - 14 Feb 2025
Viewed by 1198
Abstract
The taxonomic position of the green alga Capsosiphon fulvescens was first reported from Northern Europe and has since been reported from all over the world, including Korea. In Korea, C. fulvescens has been used as an essential edible economic alga for approximately 570 [...] Read more.
The taxonomic position of the green alga Capsosiphon fulvescens was first reported from Northern Europe and has since been reported from all over the world, including Korea. In Korea, C. fulvescens has been used as an essential edible economic alga for approximately 570 years, from the time of the Joseon Dynasty to the present, and is currently under development as a new aquaculture strain. Therefore, examining the taxonomic relationships between the European and Korean C. fulvescens is important. In this study, we analyzed nuclear 18S rDNA and ITS regions and compared them with the DNA sequences of authentic materials of North Atlantic C. fulvescens. Additionally, rbcL and tufA genes were sequenced to analyze genetic variations among populations. The results showed that the Korean and European C. fulvescens were different species. Moreover, the Korean C. fulvescens was distantly related to the North Atlantic C. fulvescens at the order level. Moreover, the Korean C. fulvescens formed a sister group with the North Pacific Pseudothrix borealis. Cryptic genetic diversity was observed at the intraspecific level among the Korean populations. These findings will help in tracing the origin of the Korean C. fulvescens and provide new genetic insights into this species. Full article
Show Figures

Figure 1

17 pages, 4110 KB  
Article
Antioxidant Peptides from Hizikia fusiformis: A Study of the Preparation, Identification, Molecular Docking, and Cytoprotective Function of H2O2-Damaged A549 Cells by Regulating the Keap1/Nrf2 Pathway
by Shang Lv, Bin Hu, Su-Zhen Ran, Min Zhang, Chang-Feng Chi and Bin Wang
Foods 2025, 14(3), 400; https://doi.org/10.3390/foods14030400 - 26 Jan 2025
Cited by 32 | Viewed by 2612
Abstract
Hijiki (Hizikia fusiformis) is a seaweed native to warm-temperate and subtropical regions that has a high edible value and economic value, with a production of about 2 × 105 tons/year. Current research has clearly shown that the pharmacological activities of [...] Read more.
Hijiki (Hizikia fusiformis) is a seaweed native to warm-temperate and subtropical regions that has a high edible value and economic value, with a production of about 2 × 105 tons/year. Current research has clearly shown that the pharmacological activities of active ingredients from hijiki have covered a broad spectrum of areas, including antioxidant, hypoglycemic, antiviral, anticoagulant, anti-inflammatory, intestinal flora modulation, anti-aging, antineoplastic and antibacterial, and anti-Alzheimer’s disease areas. However, no studies have reported on the production of antioxidant peptides from hijiki proteins. The objectives of this study were to optimize the preparation process and explore the cytoprotective function and mechanisms of antioxidant peptides from hijiki protein. The results indicated that papain is more suitable for hydrolyzing hijiki protein than pepsin, trypsin, alkaline protease, and neutral protease. Under the optimized parameters of an enzyme dosage of 3%, a material–liquid ratio of 1:30, and an enzyme digestion time of 5 h, hijiki hydrolysate with a high radical scavenging activity was generated. Using ultrafiltration and serial chromatographic methods, ten antioxidant oligopeptides were purified from the papain-prepared hydrolysate and identified as DGPD, TIPEE, TYRPG, YTPAP, MPW, YPSKPT, YGALT, YTLLQ, FGYGP, and FGYPA with molecular weights of 402.35, 587.61, 592.64, 547.60, 532.53, 691.77, 523.57, 636.73, 539.58, and 553.60 Da, respectively. Among them, tripeptide MPW could regulate the Keap1/Nrf2 pathway to significantly ameliorate H2O2-induced oxidative damage of A549 cells by increasing cell viability and antioxidant enzyme (SOD, CAT, and GSH-Px) activity, decreasing ROS and MDA levels, and reducing the apoptosis rate. Molecular docking experiments show that HFP5 (MPW) exerts its inhibitory effect mainly through hydrogen bonds and hydrophobic interactions with the Kelch domain of the Keap1 protein, eventually facilitating the translocation of Nrf2 to the nucleus. Therefore, antioxidant peptides from hijiki can be applied to develop algae-derived health foods for treating diseases associated with oxidative stress. Full article
Show Figures

Figure 1

16 pages, 2179 KB  
Article
Ishophloroglucin A Isolated from Ishige okamurae Protects Glomerular Cells from Methylglyoxal-Induced Diacarbonyl Stress and Inhibits the Pathogenesis of Diabetic Nephropathy
by Chi-Heung Cho, Min-Gyeong Kim, Bomi Ryu and Sang-Hoon Lee
Mar. Drugs 2025, 23(1), 48; https://doi.org/10.3390/md23010048 - 20 Jan 2025
Viewed by 1861
Abstract
Ishige okamurae (I. okamuare), an edible brown alga, is rich in isophloroglucin A (IPA) phlorotannin compounds and is effective in preventing diseases, including diabetes. We evaluated its anti-glycation ability, intracellular reactive oxygen species scavenging activity, inhibitory effect on the accumulation of [...] Read more.
Ishige okamurae (I. okamuare), an edible brown alga, is rich in isophloroglucin A (IPA) phlorotannin compounds and is effective in preventing diseases, including diabetes. We evaluated its anti-glycation ability, intracellular reactive oxygen species scavenging activity, inhibitory effect on the accumulation of intracellular MGO/MGO-derived advanced glycation end products (AGE), and regulation of downstream signaling pathways related to the AGE–receptor for AGEs (RAGE) interaction. IPA (0.2, 1, and 5 μM) demonstrated anti-glycation ability by inhibiting the formation of glucose-fructose-BSA-derived AGEs by up to 54.63% compared to the untreated control, reducing the formation of irreversible cross-links between MGO-derived AGEs and collagen by 67.68% and the breaking down of existing cross-links by approximately 91% (p < 0.001). IPA protected cells from MGO-induced oxidative stress by inhibiting intracellular MGO accumulation (untreated cells: 1.62 μg/mL, MGO treated cells: 25.27 μg/mL, and IPA 5 μM: 11.23 μg/mL) (p < 0.001) and AGE generation and inhibited MGO-induced renal cell damage via the downregulation of MGO-induced RAGE protein expression (relative protein expression levels of MGO treated cells: 9.37 and IPA 5 μM:1.74) (p < 0.001). Overall, these results suggest that IPA has the potential to be utilized as a useful natural agent for the prevention and management of AGE-related diabetic nephropathy, owing to its strong anti-glycation activity. Full article
(This article belongs to the Special Issue Marine Natural Products in Anti-obesity and Metabolic Syndrome)
Show Figures

Graphical abstract

16 pages, 4718 KB  
Article
Anti-Melanogenic Activities of Sargassum fusiforme Polyphenol-Rich Extract on α-MSH-Stimulated B16F10 Cells via PI3K/Akt and MAPK/ERK Pathways
by Bei Chen, Honghong Chen, Kun Qiao, Min Xu, Jingna Wu, Yongchang Su, Yan Shi, Lina Ke, Zhiyu Liu and Qin Wang
Foods 2024, 13(22), 3556; https://doi.org/10.3390/foods13223556 - 7 Nov 2024
Cited by 4 | Viewed by 2752
Abstract
Background: Melanin overproduction leads to pigmented skin diseases. Brown algae polyphenols, non-toxic secondary metabolites, exhibit potential bioactivities. Sargassum fusiforme, an edible seaweed, has been underexplored in the field of beauty despite its polyphenol richness. Methods: Polyphenols from S. fusiforme were extracted using [...] Read more.
Background: Melanin overproduction leads to pigmented skin diseases. Brown algae polyphenols, non-toxic secondary metabolites, exhibit potential bioactivities. Sargassum fusiforme, an edible seaweed, has been underexplored in the field of beauty despite its polyphenol richness. Methods: Polyphenols from S. fusiforme were extracted using macroporous resin (SFRP) and ethyl acetate (SFEP). Their antioxidant and anti-aging properties, tyrosinase inhibitory activities, and mechanisms were assessed. The melanogenesis inhibition effect and mechanism by SFRP was examined in B16F10 melanoma cells. Results: Both SFRP and SFEP demonstrated scavenging activities against DPPH, superoxide anion, and hydroxyl radicals. SFRP showed stronger anti-collagenase and anti-elastase effects. They dose-dependently inhibited mushroom tyrosinase, with IC50 values of 9.89 μg/mL for SFRP and 0.99 μg/mL for SFEP. SFRP reversibly inhibited tyrosinase, while SFEP showed irreversible inhibition. SFRP also suppressed melanin content and intracellular tyrosinase activity in B16F10 cells, downregulating the expression of microphthalmia-associated transcription factor, tyrosinase, and tyrosinase-related protein 1 and 2 expression through the PI3K/Akt and MAPK/ERK signal pathways. Conclusions: S. fusiforme polyphenols, especially SFRP, exhibit promising antioxidant, anti-aging, and melanogenesis inhibitory properties, highlighting their potential application as novel anti-melanogenic agents in cosmetics and the food industry. Full article
(This article belongs to the Section Nutraceuticals, Functional Foods, and Novel Foods)
Show Figures

Figure 1

12 pages, 3575 KB  
Article
NBF2, an Algal Fiber-Rich Formula, Reverses Diabetic Dyslipidemia and Hyperglycemia In Vivo
by Nlandu Roger Ngatu, Akram Hossain, Nao Maruo, Steeve Akumwami, Asadur Md. Rahman, Masamitsu Eitoku, Kanae Kanda, Akira Nishiyama, Narufumi Suganuma and Tomohiro Hirao
Int. J. Mol. Sci. 2024, 25(19), 10828; https://doi.org/10.3390/ijms251910828 - 9 Oct 2024
Viewed by 1899
Abstract
Ulva prolifera, known as Aonori in Japan, is an edible alga species that is mass-cultivated in Japan. Supplementation with Aonori-derived biomaterials has been reported to enhance metabolic health in previous studies. This was an experimental study that evaluated the metabolic health effects [...] Read more.
Ulva prolifera, known as Aonori in Japan, is an edible alga species that is mass-cultivated in Japan. Supplementation with Aonori-derived biomaterials has been reported to enhance metabolic health in previous studies. This was an experimental study that evaluated the metabolic health effects of NBF2, a formula made of algal and junos Tanaka citrus-derived biomaterials, on obesity and type 2 diabetes (T2DM). We used 18 obese and hyperglycemic Otsuka Long-Evans Tokushima Fatty (OLETF) rats that were assigned randomly to three groups of six animals: a high-dose NBF2 drink (20 mg/kg) group, a low-dose (10 mg/kg) NBF2 drink group and the control group that received 2 mL of tap water daily for a total of six weeks. We also used eight LETO rats as the normal control group. In addition to the glucose tolerance test (OGTT), ELISA and real-time PCR assays were performed. High-dose and lowdose NBF2 improved insulin sensitivity, as well as glycemic and lipid profiles, as compared with control rats. The OGTT showed that both NBF2 groups and LETO rats had normalized glycemia by the 90-min time-point. NBF2 up-regulated PPARα/γ-mRNA and Sirt2-mRNA gene expressions in BAT and improved the blood pressure profile. These findings suggest that the NBF2 formula, which activates PPAR-α/γ mRNA and Sirt2-mRNA, may reverse dyslipidemia and hyperglycemia in T2DM. Full article
Show Figures

Figure 1

Back to TopTop