Functionality-Driven Optimization of Green Ultrasound-Assisted Extraction of Antioxidant Compounds from Edible Brown Algae
Abstract
1. Introduction
2. Results
2.1. Optimization of the UAE Variables
2.1.1. Amount of Algae
2.1.2. Type of Solvent
2.1.3. Solvent Concentration
2.1.4. Ultrasound Extraction Time and Power
2.1.5. Temperature
2.1.6. Validation of Antioxidant Activity
2.2. Chemical Characterization of the Optimized Extracts
2.2.1. Determination of Polyphenols by UHPLC-MS/MS
2.2.2. Determination of Pigments by HPLC-Fl
3. Discussion
3.1. Optimization of the Ultrasound-Assisted Extraction Process
3.2. Comparative Antioxidant Activity
3.3. Characterization of Antioxidant Compounds
4. Materials and Methods
4.1. Sample Collection
4.2. Ultrasound-Assisted Extraction (UAE)
4.3. Antioxidant Activity
4.3.1. DPPH Free Radical Scavenging Activity (DPPH-RSA)
4.3.2. Oxygen Radical Absorbance Capacity (ORAC) Assay
4.3.3. Ferric Reducing Antioxidant Power (FRAP) Assay
4.4. Chromatographic Analysis
4.4.1. Polyphenol Analysis (UHPLC/MS-MS)
4.4.2. Pigment Analysis (HPLC/Fl)
4.5. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| UAE | Ultrasound-Assisted Extraction |
| DPPH | 2,2-diphenyl, 1-picrylhydrazyl |
| ORAC | Oxygen Radical Absorbance Capacity |
| FRAP | Ferric Reducing Antioxidant Power |
| TPTZ | 2,4,6-tripyridyl-s-triazine |
References
- de Paula, R.; Fernandes, P.; Trindade, M.A.; de Melo, M.P. Chapter 2—Natural Antioxidants and Food Applications: Healthy Perspectives. In Handbook of Food Bioengineering, Alternative and Replacement Foods; Holban, A.M., Grumezescu, A.M., Eds.; Academic Press: London, UK, 2018; pp. 31–64. [Google Scholar] [CrossRef]
- Morone, J.; Lopes, G.; Morais, J.; Neves, J.; Vasconcelos, V.; Martins, R. Cosmetic Application of Cyanobacteria Extracts with a Sustainable Vision to Skincare: Role in the Antioxidant and Antiaging Process. Mar. Drugs. 2022, 20, 761. [Google Scholar] [CrossRef]
- Paraschiv, M.; Turcov, D.; Zbranca-Toporaş, A.; Ciubotaru, B.-I.; Grădinaru, I.; Galaction, A.-I. Engineering Antioxidants with Pharmacological Applications: Biotechnological Perspectives. Antioxidants 2025, 14, 1110. [Google Scholar] [CrossRef]
- Xu, X.; Liu, A.; Hu, S.; Ares, I.; Martínez-Larrañaga, M.-R.; Wang, X.; Martínez, M.; Anadón, A.; Martínez, M.-A. Synthetic phenolic antioxidants: Metabolism, hazards and mechanism of action. Food Chem. 2021, 353, 129488. [Google Scholar] [CrossRef]
- Esim, N.; Dawar, P.; Arslan, N.P.; Orak, T.; Doymus, M.; Azad, F.; Ortucu, S.; Albayrak, S.; Taskin, M. Natural metabolites with antioxidant activity from micro- and macro-algae. Food Biosci. 2024, 62, 105089. [Google Scholar] [CrossRef]
- Santiago-Díaz, P.; Rivero, A.; Rico, M.; Gómez-Pinchetti, J.L. Characterization of Novel Selected Microalgae for Antioxidant Activity and Polyphenols, Amino Acids, and Carbohydrates. Mar. Drugs 2022, 20, 40. [Google Scholar] [CrossRef] [PubMed]
- Cadar, E.; Popescu, A.; Dragan, A.-M.-L.; Pesterau, A.-M.; Pascale, C.; Anuta, V.; Prasacu, I.; Velescu, B.S.; Tomescu, C.L.; Bogdan-Andreescu, C.F.; et al. Bioactive Compounds of Marine Algae and Their Potential Health and Nutraceutical Applications: A Review. Mar. Drugs 2025, 23, 152. [Google Scholar] [CrossRef] [PubMed]
- Nkurunziza, D.; Coad, B.R.; Bulone, V. A review on integrated biorefining of brown algae focusing on bioactive compounds and holistic biomass valorisation. J. Ind. Eng. Chem. 2025, 151, 200–215. [Google Scholar] [CrossRef]
- Barzkar, N.; Babich, O.; Sukhikh, S.; Sukoso; Khan, B. Conventional extraction methods for bioactive compounds from marine microalgae. Algal Res. 2025, 91, 104297. [Google Scholar] [CrossRef]
- Petchidurai, G.; Nagoth, J.A.; John, M.S.; Sahayaraj, K.; Murugesan, N.; Pucciarelli, S. Standardization and quantification of total tannins, condensed tannin and soluble phlorotannins extracted from thirty-two drifted coastal macroalgae using high performance liquid chromatography. Bioresour. Technol. Rep. 2019, 7, 100273. [Google Scholar] [CrossRef]
- Kumar, K.; Srivastav, S.; Sharanagat, V.S. Ultrasound assisted extraction (UAE) of bioactive compounds from fruit and vegetable processing by-products: A review. Ultrason. Sonochem. 2021, 70, 105325. [Google Scholar] [CrossRef]
- Gisbert, M.; Sineiro, J.; Moreira, R. Polyphenols extraction kinetics from Ascophyllum nodosum seaweed employing water and saltwater: Effect of ultrasound sonication. Algal Res. 2022, 66, 102773. [Google Scholar] [CrossRef]
- Lee, Z.J.; Xie, C.; Duan, X.; Ng, K.; Suleria, H.A.R. Optimization of Ultrasonic Extraction Parameters for the Recovery of Phenolic Compounds in Brown Seaweed: Comparison with Conventional Techniques. Antioxidants 2024, 13, 409. [Google Scholar] [CrossRef]
- Kadam, S.U.; Tiwari, B.K.; Smyth, T.J.; O’Donnell, C.P. Optimization of ultrasound assisted extraction of bioactive components from brown seaweed Ascophyllum nodosum using response surface methodology. Ultrason. Sonochem. 2015, 23, 308–316. [Google Scholar] [CrossRef]
- Devi, A.C.; Tavanandi, H.A.; Govindaraju, K.; Raghavarao, K.S.M.S. An effective method for extraction of high purity phycocyanins (C-PC and A-PC) from dry biomass of Arthrospira maxima. J. Appl. Phycol. 2020, 32, 1141–1151. [Google Scholar] [CrossRef]
- Hermund, D.B.; Plaza, M.; Turner, C.; Jónsdóttir, R.; Kristinsson, H.G.; Jacobsen, C.; Nielsen, K.F. Structure dependent antioxidant capacity of phlorotannins from Icelandic Fucus vesiculosus by UHPLC-DAD-ECD-QTOFMS. Food Chem. 2018, 240, 904–909. [Google Scholar] [CrossRef]
- Shibata, T.; Ishimaru, K.; Kawaguchi, S.; Yoshikawa, H.; Hama, Y. Antioxidant activities of phlorotannins isolated from Japanese Laminariaceous brown algae. J. Appl. Phycol. 2008, 20, 705–711. [Google Scholar] [CrossRef]
- Yotsu-Yamashita, M.; Yoshida, A.; Uchida, T.; Sugimoto, A.; Nara, M.; Kajiwara, H.; Yasumoto, T. Isolation and structural determination of two novel phlorotannins from Ecklonia kurome Okamura. Chem. Pharm. Bull. 2013, 61, 594–599. [Google Scholar] [CrossRef]
- Airanthi, M.K.; Hosokawa, M.; Miyashita, K. Comparative antioxidant activity of edible Japanese brown seaweeds. J. Food Sci. 2011, 76, C104–C111. [Google Scholar] [CrossRef] [PubMed]
- Sánchez-Bonet, D.; García-Oms, S.; Belda-Antolí, M.; Padrón-Sanz, C.; Lloris-Carsi, J.M.; Cejalvo-Lapeña, D. RP-HPLC-DAD determination of the differences in the polyphenol content of Fucus vesiculosus extracts with similar antioxidant activity. J. Chromatogr. B 2021, 1184, 122978. [Google Scholar] [CrossRef] [PubMed]
- Mahendran, S.; Sankaralingam, S.; Sethupathi, S.M.; Kathiresan, D.; Muthumani, M.; Kousalya, L.; Palpperumal, S.; Harinathan, B. Evaluation of antioxidant and cytotoxicity activities of polyphenol extracted from brown seaweed Sargassum tenerrimum biomass. Biomass Convers. Bioref. 2024, 14, 2063–2069. [Google Scholar] [CrossRef]
- Zeb, L.; Gerhardt, A.S.; Johannesen, B.A.; Underhaug, J.; Jordheim, M. Ultrasonic-assisted water-rich natural deep eutectic solvents for sustainable polyphenol extraction from seaweed: A case study on cultivated Saccharina latissima. ACS Sustain. Chem. Eng. 2024, 12, 14921–14929. [Google Scholar] [CrossRef] [PubMed]
- Quitério, E.; Grosso, C.; Ferraz, R.; Delerue-Matos, C.; Soares, C. A critical comparison of the advanced extraction techniques applied to obtain health-promoting compounds from seaweeds. Mar. Drugs 2022, 20, 677. [Google Scholar] [CrossRef] [PubMed]
- Irianto, I.; Naryaningsih, A.; Trisnawati, N.W.; Astuti, A.; Komariyah, K.; Qomariyah, L.; Chaidir, C.; Saputri, A.; Wulandari, R.; Rizkiyah, D.N.; et al. From sea to solution: A review of green extraction approaches for unlocking the potential of brown algae. S. Afr. J. Chem. Eng. 2024, 48, 1–21. [Google Scholar] [CrossRef]
- Santos, S.A.O.; Félix, R.; Pais, A.C.S.; Rocha, S.M.; Silvestre, A.J.D. The Quest for Phenolic Compounds from Macroalgae: A Review of Extraction and Identification Methodologies. Biomolecules 2019, 9, 847. [Google Scholar] [CrossRef]
- Ummat, V.; Tiwari, B.K.; Jaiswal, A.K.; Condon, K.; Garcia-Vaquero, M.; O’Doherty, J.; O’Donnell, C.; Rajauria, G. Optimisation of Ultrasound Frequency, Extraction Time and Solvent for the Recovery of Polyphenols, Phlorotannins and Associated Antioxidant Activity from Brown Seaweeds. Mar. Drugs 2020, 18, 250. [Google Scholar] [CrossRef] [PubMed]
- Garcia-Vaquero, M.; Ummat, V.; Tiwari, B.; Rajauria, G. Exploring Ultrasound, Microwave and Ultrasound–Microwave Assisted Extraction Technologies to Increase the Extraction of Bioactive Compounds and Antioxidants from Brown Macroalgae. Mar. Drugs 2020, 18, 172. [Google Scholar] [CrossRef]
- Song, Y.; Lee, J.; Kwon, H.K.; Kim, M.; Shin, S.; Kim, S.; Son, H.; Park, C.; Yoo, H.Y. Efficient Ultrasound-Assisted Extraction of Bioactive Molecules from Brown Macroalga Sargassum horneri: Optimal Extraction, Antioxidant and Cytotoxicity Evaluation. Int. J. Mol. Sci. 2025, 26, 2749. [Google Scholar] [CrossRef]
- Maadane, A.; Merghoub, N.; Ainane, T.; El Arroussi, H.; Benhima, R.; Amzazi, S.; Bakri, Y.; Wahby, I. Antioxidant activity of some Moroccan marine microalgae: PUFA profiles, carotenoids and phenolic content. J. Biotechnol. 2015, 215, 13–19. [Google Scholar] [CrossRef]
- Belda, M.; Sánchez, D.; Bover, E.; Prieto, B.; Padrón, C.; Cejalvo, D.; Lloris, J.M. Extraction of polyphenols in Himanthalia elongata and determination by high performance liquid chromatography with diode array detector prior to its potential use against oxidative stress. J. Chromatogr. B 2016, 1033–1034, 334–341. [Google Scholar] [CrossRef]
- López, A.; Rico, M.; Rivero, A.; Suárez de Tangil, M. The effects of solvents on the phenolic contents and antioxidant activity of Stypocaulon scoparium algae extracts. Food Chem. 2011, 125, 1104–1109. [Google Scholar] [CrossRef]
- Horta, A.; Duarte, A.M.; Barroso, S.; Pinto, F.R.; Mendes, S.; Lima, V.; Saraiva, J.A.; Gil, M.M. Extraction of Antioxidants from Brown Macroalgae Fucus spiralis. Molecules 2024, 29, 2271. [Google Scholar] [CrossRef]
- Dang, T.T.; Van Vuong, Q.; Schreider, M.J.; Bowyer, M.C.; Van Altena, I.A.; Scarlett, C.J. Optimisation of ultrasound-assisted extraction conditions for phenolic content and antioxidant activities of the alga Hormosira banksii using response surface methodology. J. Appl. Phycol. 2017, 29, 3161–3173. [Google Scholar] [CrossRef]
- Men’shova, R.V.; Ermakova, S.P.; Um, B.H.; Zvyagintseva, T.N. The composition and structural characteristics of polysaccharides of the brown alga Eisenia bicyclis. Russ. J. Mar. Biol. 2013, 39, 208–213. [Google Scholar] [CrossRef]
- Moreira, R.; Sineiro, J.; Chenlo, F.; Arufe, S.; Díaz-Varela, D. Aqueous extracts of Ascophyllum nodosum obtained by ultrasound-assisted extraction: Effects of drying temperature of seaweed on the properties of extracts. J. Appl. Phycol. 2017, 29, 3191–3200. [Google Scholar] [CrossRef]
- Tierney, M.S.; Smyth, T.J.; Hayes, M.; Soler-Vila, A.; Croft, A.K.; Brunton, N. Influence of pressurised liquid extraction and solid–liquid extraction methods on the phenolic content and antioxidant activities of Irish macroalgae. Int. J. Food Sci. Technol. 2013, 48, 860–869. [Google Scholar] [CrossRef]
- Yuan, Y.; Zhang, J.; Fan, J.; Clark, J.; Shen, P.; Li, Y.; Zhang, C. Microwave assisted extraction of phenolic compounds from four economic brown macroalgae species and evaluation of their antioxidant activities and inhibitory effects on α-amylase, α-glucosidase, pancreatic lipase and tyrosinase. Food Res. Int. 2018, 113, 288–297. [Google Scholar] [CrossRef] [PubMed]
- Sánchez-Camargo, A.P.; Montero, L.; Stiger-Pouvreau, V.; Tanniou, A.; Cifuentes, A.; Herrero, M.; Ibáñez, E. Considerations on the use of enzyme-assisted extraction in combination with pressurized liquids to recover bioactive compounds from algae. Food Chem. 2016, 192, 67–74. [Google Scholar] [CrossRef] [PubMed]
- Agregán, R.; Munekata, P.E.S.; Franco, D.; Carballo, J.; Barba, F.J.; Lorenzo, J.M. Antioxidant potential of extracts obtained from macro- (Ascophyllum nodosum, Fucus vesiculosus and Bifurcaria bifurcata) and micro-algae (Chlorella vulgaris and Spirulina platensis) assisted by ultrasound. Medicines 2018, 5, 33. [Google Scholar] [CrossRef]
- Silva, A.; Rodrigues, C.; Garcia-Oliveira, P.; Lourenço-Lopes, C.; Silva, S.A.; Garcia-Perez, P.; Carvalho, A.P.; Domingues, V.F.; Barroso, M.F.; Delerue-Matos, C.; et al. Screening of Bioactive Properties in Brown Algae from the Northwest Iberian Peninsula. Foods 2021, 10, 1915. [Google Scholar] [CrossRef] [PubMed]
- Goiris, K.; Muylaert, K.; Fraeye, I.; Foubert, I.; De Brabanter, J.; De Cooman, L. Antioxidant potential of microalgae in relation to their phenolic and carotenoid content. J. Appl. Phycol. 2012, 24, 1477–1486. [Google Scholar] [CrossRef]
- Jung, H.A.; Roy, A.; Jung, J.H.; Choi, J.S. Evaluation of the inhibitory effects of eckol and dieckol isolated from edible brown alga Eisenia bicyclis on human monoamine oxidases A and B. Arch. Pharm. Res. 2017, 40, 480–491. [Google Scholar] [CrossRef] [PubMed]
- Wang, T.; Jónsdóttir, R.; Ólafsdóttir, G. Total phenolic compounds, radical scavenging and metal chelation of extracts from Icelandic seaweeds. Food Chem. 2009, 116, 240–248. [Google Scholar] [CrossRef]
- Farvin, K.H.S.; Jacobsen, C. Phenolic compounds and antioxidant activities of selected species of seaweeds from Danish coast. Food Chem. 2013, 138, 1670–1681. [Google Scholar] [CrossRef] [PubMed]
- Ktari, L.; Mdallel, C.; Aoun, B.; Chebil Ajjabi, L.; Sadok, S. Fucoxanthin and Phenolic Contents of Six Dictyotales from the Tunisian Coasts with an Emphasis on Green Extraction Using a Supercritical CO2 Method. Front. Mar. Sci. 2021, 8, 647159. [Google Scholar] [CrossRef]
- Maeda, H.; Fukuda, S.; Izumi, H.; Saga, N. Anti-Oxidant and Fucoxanthin Contents of Brown Alga Ishimozuku (Sphaerotrichia divaricata) from the West Coast of Aomori, Japan. Mar. Drugs 2018, 16, 255. [Google Scholar] [CrossRef]
- Blois, M.S. Antioxidant determinations by the use of a stable free radical. Nature 1958, 181, 1199–1200. [Google Scholar] [CrossRef]
- Cao, G.; Alessio, H.M.; Cutler, R.G. Oxygen-radical absorbance capacity assay for antioxidants. Free Radic. Biol. Med. 1993, 14, 303–311. [Google Scholar] [CrossRef]
- Munteanu, I.G.; Apetrei, C. Analytical methods used in determining antioxidant activity: A review. Int. J. Mol. Sci. 2021, 22, 3380. [Google Scholar] [CrossRef]






| Algae | DPPH (% ± σ) | ORAC (μmol TE g−1 DW ± σ) 1 | FRAP (µmol Fe+2 g−1 DW ± σ) 2 |
|---|---|---|---|
| Eisenia bicyclis | 87.43 ± 0.26 | 491.30 ± 17.42 | 87.65 ± 4.29 |
| Sargassum fusiforme | 86.97 ± 0.27 | 20.75 ± 0.26 | 7.64 ± 0.47 |
| Himanthalia elongata | 94.68 ± 0.06 | 114.39 ± 4.15 | 36.2 ± 2.40 |
| Laminaria ochroleuca | 69.17 ± 1.62 | 18.63 ± 1.51 | 1.24 ± 0.11 |
| Compound | tR (min) | E. bicyclis (ng g−1 DW) | S. fusiforme (ng g−1 DW) | H. elongata (ng g−1 DW) | L. ochroleuca (ng g−1 DW) |
|---|---|---|---|---|---|
| 2,3,4-trihydroxybenzoic acid b | 5.57 | <LOD | 22.11 ± 1.68 | <LOD | <LOD |
| 2,3-dihydroxybenzoic acid b | 10.15 | 64.14 ± 4.15 | 87.62 ± 7.48 | 278.91 ± 16.22 | 46.29 ± 1.54 |
| 2,4,6-trihydroxybenzoic acid a | 4.78 | 2672.54 ± 116.00 | 189.93 ± 16.07 | 475.09 ± 28.95 | 125.87 ± 9.85 |
| 2,5-dihydroxybenzoic acid b | 8.02 | <LOD | 31.06 ± 2.28 | 9.45 ± 0.24 | 5.63 ± 0.35 |
| 3,4-dihydroxybenzoic acid a | 5.65 | 404.55 ± 9.94 | 813.52 ± 61.60 | 438.34 ± 29.78 | 625.75 ± 25.77 |
| 3-hydroxybenzoic acid b | 10.48 | <LOD | 40.57 ± 1.52 | <LOD | 34.27 ± 2.55 |
| 2-phloroeckol *c (×103) | 14.96 | 1.37 ± 0.08 | <LOD | <LOD | <LOD |
| 7-phloroeckol *c (×103) | 14.76 | 124.28 ± 7.33 | <LOD | <LOD | <LOD |
| Dieckol a (×103) | 21.32 | 129.85 ± 64.76 | <LOD | <LOD | <LOD |
| Eckol *c (×103) | 14.35 | 534.61 ± 18.71 | <LOD | <LOD | <LOD |
| Compound | tR a (min) | λexc. b (nm) | λem. c (nm) | E. bicyclis (ng g−1 DW± σ) | S. fusiforme (ng g−1 DW± σ) | H. elongata (ng g−1 DW± σ) | L. ochroleuca (ng g−1 DW± σ) |
|---|---|---|---|---|---|---|---|
| Fucoxanthin | 10.1 | 461 | 515 | 5.35 ± 0.20 | <LOD | 0.96 ± 0.02 | 18.70 ± 0.01 |
| Violaxanthin | 11.03 | 472 | 512 | <LOD | <LOD | <LOD | 0.20 ± 0.01 |
| Lutein | 13.23 | 472 | 512 | 4.17 ± 0.01 | <LOD | 0.50 ± 0.04 | 0.28 ± 0.01 |
| Chlorophyll a | 27.01 | 430 | 675 | 4.13 ± 0.25 | 0.27 ± 0.01 | 0.70 ± 0.07 | 1.23 ± 0.17 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Padrón-Sanz, C.; García-Oms, S.; Pacheco-Juárez, J.; Pasquali, L.; Cejalvo-Lapeña, D. Functionality-Driven Optimization of Green Ultrasound-Assisted Extraction of Antioxidant Compounds from Edible Brown Algae. Mar. Drugs 2025, 23, 469. https://doi.org/10.3390/md23120469
Padrón-Sanz C, García-Oms S, Pacheco-Juárez J, Pasquali L, Cejalvo-Lapeña D. Functionality-Driven Optimization of Green Ultrasound-Assisted Extraction of Antioxidant Compounds from Edible Brown Algae. Marine Drugs. 2025; 23(12):469. https://doi.org/10.3390/md23120469
Chicago/Turabian StylePadrón-Sanz, Carolina, Samanta García-Oms, Javier Pacheco-Juárez, Lorena Pasquali, and Dolores Cejalvo-Lapeña. 2025. "Functionality-Driven Optimization of Green Ultrasound-Assisted Extraction of Antioxidant Compounds from Edible Brown Algae" Marine Drugs 23, no. 12: 469. https://doi.org/10.3390/md23120469
APA StylePadrón-Sanz, C., García-Oms, S., Pacheco-Juárez, J., Pasquali, L., & Cejalvo-Lapeña, D. (2025). Functionality-Driven Optimization of Green Ultrasound-Assisted Extraction of Antioxidant Compounds from Edible Brown Algae. Marine Drugs, 23(12), 469. https://doi.org/10.3390/md23120469

