Readiness to Change and the Intention to Consume Novel Foods: Evidence from Linear Discriminant Analysis
Abstract
:1. Introduction
1.1. Psychological Determinants of Novel Foods Consumption
1.2. The Construct of Readiness to Change
2. Methods
2.1. Recruitment of Participants
2.2. Measures
2.3. Data Analysis
3. Results
3.1. Descriptive Results
3.2. Inferential Results
3.2.1. Student’s T-Test Results
3.2.2. Correlation Analysis Results
3.3. Multivariate Results
3.3.1. Multiple Regression Analysis Results
3.3.2. Linear Discriminant Analysis Results
4. Discussion
Implication for Food Policies
5. Strengthens of the Study
6. Limitations of the Study
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Calvin, K.; Dasgupta, D.; Krinner, G.; Mukherji, A.; Thorne, P.W.; Trisos, C.; Romero, J.; Aldunce, P.; Barrett, K.; Blanco, G.; et al. Climate Change 2023: Synthesis Report. Contribution of Working Groups I, II and III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Lee, H., Romero, J., Eds.; IPCC: Geneva, Switzerland, 2023.
- Watts, N.; Adger, W.N.; Agnolucci, P.; Blackstock, J.; Byass, P.; Cai, W.; Chaytor, S.; Colbourn, T.; Collins, M.; Cooper, A.; et al. Health and Climate Change: Policy Responses to Protect Public Health. Lancet 2015, 386, 1861–1914. [Google Scholar] [CrossRef] [PubMed]
- Bell, M.L.; Gasparrini, A.; Benjamin, G.C. Climate Change, Extreme Heat, and Health. N. Engl. J. Med. 2024, 390, 1793–1801. [Google Scholar] [CrossRef] [PubMed]
- Radua, J.; De Prisco, M.; Oliva, V.; Fico, G.; Vieta, E.; Fusar-Poli, P. Impact of Air Pollution and Climate Change on Mental Health Outcomes: An Umbrella Review of Global Evidence. World Psychiatry 2024, 23, 244–256. [Google Scholar] [CrossRef] [PubMed]
- United Nations Framework Convention on Climate Change. COP 28 Outcomes and Decisions; United Nations Framework Convention on Climate Change: Rio de Janeiro, Brazil, 2023. [Google Scholar]
- Cook, J.; Oreskes, N.; Doran, P.T.; Anderegg, W.R.L.; Verheggen, B.; Maibach, E.W.; Carlton, J.S.; Lewandowsky, S.; Skuce, A.G.; Green, S.A.; et al. Consensus on Consensus: A Synthesis of Consensus Estimates on Human-Caused Global Warming. Environ. Res. Lett. 2016, 11, 048002. [Google Scholar] [CrossRef]
- Lynas, M.; Houlton, B.Z.; Perry, S. Greater than 99% Consensus on Human Caused Climate Change in the Peer-Reviewed Scientific Literature. Environ. Res. Lett. 2021, 16, 114005. [Google Scholar] [CrossRef]
- Tukker, A.; Jansen, B. Environmental Impacts of Products: A Detailed Review of Studies. J. Ind. Ecol. 2006, 10, 159–182. [Google Scholar] [CrossRef]
- Olofsdotter, M.; Juul, J. (Eds.) Climate Change and the Food Industry: Climate Labelling for Food Products; Potential and Limitations; Øresund Food Network [u.a.]: København, Denmark, 2008; ISBN 978-87-991717-1-2. [Google Scholar]
- Steinfeld, H.; Gerber, P.; Wassenaar, T.D.; Castel, V.; Rosales, M.; de Haan, C. Livestock’s Long Shadow: Environmental Issues and Options; Food and Agriculture Organization of the United Nations: Rome, Italy, 2006; ISBN 978-92-5-105571-7. [Google Scholar]
- Institution of Mechanical Engineers (IME). Global Food: Waste Not, Want Not; IME: London, UK, 2013. [Google Scholar]
- Coley, D.; Howard, M.; Winter, M. Local Food, Food Miles and Carbon Emissions: A Comparison of Farm Shop and Mass Distribution Approaches. Food Policy 2009, 34, 150–155. [Google Scholar] [CrossRef]
- Tian, Y.; Kamran, Q. Creating Value for Sustainability by Transforming the Food Well-Being Paradigm—Alternative New Food Product Development. J. Creat. Value 2023, 9, 291–308. [Google Scholar] [CrossRef]
- Schebesta, H.; Alessandrini, M.; Cazzini, F.; Rolandi, S.; Hillesheim, A.; Vos, E.; Helmlinger, M.; Calo, A.; Mezzacapo, E.; Delhomme, V.; et al. The future of food law: Synopsis article and research agenda. Riv. Dirit. Aliment. 2024, XVIII, 62–77. [Google Scholar]
- European Commission. A Farm to Fork Strategy for a Fair, Healthy and Environmentally-Friendly Food System; European Commission: Brussels, Belgium, 2020.
- Wesseler, J. The EU ’s Farm-to-Fork Strategy: An Assessment from the Perspective of Agricultural Economics. Appl. Econ. Perspect. Policy 2022, 44, 1826–1843. [Google Scholar] [CrossRef]
- Delgado, L.; Garino, C.; Moreno, F.J.; Zagon, J.; Broll, H. Sustainable Food Systems: EU Regulatory Framework and Contribution of Insects to the Farm-To-Fork Strategy. Food Rev. Int. 2023, 39, 6955–6976. [Google Scholar] [CrossRef]
- Chevance, G.; Fresán, U.; Hekler, E.; Edmondson, D.; Lloyd, S.J.; Ballester, J.; Litt, J.; Cvijanovic, I.; Araújo-Soares, V.; Bernard, P. Thinking Health-Related Behaviors in a Climate Change Context: A Narrative Review. Ann. Behav. Med. 2023, 57, 193–204. [Google Scholar] [CrossRef] [PubMed]
- König, L.M.; Araújo-Soares, V. Will the Farm to Fork Strategy Be Effective in Changing Food Consumption Behavior? A Health Psychology Perspective. Appl. Econ. Perspect. Policy 2023, 45, 785–802. [Google Scholar] [CrossRef]
- World Health Organization. One Health; World Health Organization: Geneva, Switzerland, 2017.
- Garcia, S.N.; Osburn, B.I.; Jay-Russell, M.T. One Health for Food Safety, Food Security, and Sustainable Food Production. Front. Sustain. Food Syst. 2020, 4, 1. [Google Scholar] [CrossRef]
- Çakmakçı, R.; Salık, M.A.; Çakmakçı, S. Assessment and Principles of Environmentally Sustainable Food and Agriculture Systems. Agriculture 2023, 13, 1073. [Google Scholar] [CrossRef]
- Allen, T.; Prosperi, P. Modeling Sustainable Food Systems. Environ. Manag. 2016, 57, 956–975. [Google Scholar] [CrossRef]
- Hanh, N. Sustainable Food Systems: Concept and Framework; Food and Agriculture Organization of the United Nations (FAO): Rome, Italy, 2018. [Google Scholar]
- Fardet, A.; Gold, S.; Delgado, A.; Kopsahelis, N.; Kachrimanidou, V.; Kaur, L.; Galli, F.; Rock, E. How Can Food Processing Achieve Food and Nutrition Security? Sustain. Dev. 2024, 32, 4172–4185. [Google Scholar] [CrossRef]
- Laureati, M.; De Boni, A.; Saba, A.; Lamy, E.; Minervini, F.; Delgado, A.M.; Sinesio, F. Determinants of Consumers’ Acceptance and Adoption of Novel Food in View of More Resilient and Sustainable Food Systems in the EU: A Systematic Literature Review. Foods 2024, 13, 1534. [Google Scholar] [CrossRef]
- Srutee, R.; Sowmya, R.S.; Annapure, U.S. Clean Meat: Techniques for Meat Production and Its Upcoming Challenges. Anim. Biotechnol. 2022, 33, 1721–1729. [Google Scholar] [CrossRef]
- Morán, J.; Kilasoniya, A. Application of the “Novel Foods” Regulation to Botanicals in the European Union. Laws 2024, 13, 10. [Google Scholar] [CrossRef]
- European Parliament and Council of the European Union. Regulation (EU) 2015/2283 of the European Parliament and of the Council of 25 November 2015 on Novel Foods, Amending Regulation (EU) No 1169/2011 of the European Parliament and of the Council and Repealing Regulation (EC) No 258/97 of the European Parliament and of the Council and Commission Regulation (EC) No 1852/2001. Available online: https://eur-lex.europa.eu/eli/reg/2015/2283/oj/eng (accessed on 13 December 2024).
- Prüser, T.F.; Braun, P.G.; Wiacek, C. Microalgae as a Novel Food. Ernahr. Umschun 2021, 68, 78–85. [Google Scholar] [CrossRef]
- Masood, M.A.B. Chia seeds as potential nutritional and functional ingredients: A review of their applications for various food industries. J. Nutr. Food Sci. Technol. 2022, 4, 1–14. [Google Scholar]
- Monteiro, S.; Dias, J.; Lourenço, V.; Partidário, A.; Lageiro, M.; Lampreia, C.; Fernandes, J.; Lidon, F.; Reboredo, F.; Alvarenga, N. Development of a Functional Dark Chocolate with Baobab Pulp. Foods 2023, 12, 1711. [Google Scholar] [CrossRef]
- Wójtowicz, A.; Combrzyński, M.; Biernacka, B.; Oniszczuk, T.; Mitrus, M.; Różyło, R.; Gancarz, M.; Oniszczuk, A. Application of Edible Insect Flour as a Novel Ingredient in Fortified Snack Pellets: Processing Aspects and Physical Characteristics. Processes 2023, 11, 2561. [Google Scholar] [CrossRef]
- Fuso, A.; Leni, G.; Prandi, B.; Lolli, V.; Caligiani, A. Novel Foods/Feeds and Novel Frauds: The Case of Edible Insects. Trends Food Sci. Technol. 2024, 147, 104457. [Google Scholar] [CrossRef]
- Biasini, B.; Rosi, A.; Giopp, F.; Turgut, R.; Scazzina, F.; Menozzi, D. Understanding, Promoting and Predicting Sustainable Diets: A Systematic Review. Trends Food Sci. Technol. 2021, 111, 191–207. [Google Scholar] [CrossRef]
- Günden, C.; Atakan, P.; Yercan, M.; Mattas, K.; Knez, M. Consumer Response to Novel Foods: A Review of Behavioral Barriers and Drivers. Foods 2024, 13, 2051. [Google Scholar] [CrossRef]
- Monaco, A.; Kotz, J.; Al Masri, M.; Allmeta, A.; Purnhagen, K.; König, L.M. Consumers’ Perception of Novel Foods and the Impact of Heuristics and Biases: A Systematic Review. Appetite 2024, 196, 107285. [Google Scholar] [CrossRef]
- Wassmann, B.; Siegrist, M.; Hartmann, C. Correlates of the willingness to consume insects: A meta-analysis. J. Insects Food Feed 2021, 7, 909–922. [Google Scholar] [CrossRef]
- Crane, A.L.; Brown, G.E.; Chivers, D.P.; Ferrari, M.C.O. An Ecological Framework of Neophobia: From Cells to Organisms to Populations. Biol. Rev. 2020, 95, 218–231. [Google Scholar] [CrossRef]
- Karaağaç, Y.; Bellikci-Koyu, E. A Narrative Review on Food Neophobia throughout the Lifespan: Relationships with Dietary Behaviours and Interventions to Reduce It. Br. J. Nutr. 2023, 130, 793–826. [Google Scholar] [CrossRef] [PubMed]
- Duradoni, M.; Valdrighi, G.; Donati, A.; Fiorenza, M.; Puddu, L.; Guazzini, A. Development and Validation of the Readiness to Change Scale (RtC) for Sustainability. Sustainability 2024, 16, 4519. [Google Scholar] [CrossRef]
- Duradoni, M.; Baroni, M.; Valdrighi, G.; Guazzini, A. Readiness to Change and Pro-Environmental Transportation Behaviors: A Multidimensional and Gender-Sensitive Analysis. Sustainability 2025, 17, 3021. [Google Scholar] [CrossRef]
- DiClemente, C.C.; Prochaska, J.O. Toward a Comprehensive, Transtheoretical Model of Change. In Treating Addictive Behaviors; Miller, W.R., Heather, N., Eds.; Springer: Boston, MA, USA, 1998; pp. 3–24. ISBN 978-0-306-48450-6. [Google Scholar]
- Walinga, J. Toward a Theory of Change Readiness: The Roles of Appraisal, Focus, and Perceived Control. J. Appl. Behav. Sci. 2008, 44, 315–347. [Google Scholar] [CrossRef]
- Saulick, P.; Bekaroo, G.; Bokhoree, C.; Beeharry, Y.D. Investigating Pro-Environmental Behaviour among Students: Towards an Integrated Framework Based on the Transtheoretical Model of Behaviour Change. Environ. Dev. Sustain. 2023, 26, 6751–6780. [Google Scholar] [CrossRef]
- Rafferty, A.E.; Jimmieson, N.L.; Armenakis, A.A. Change Readiness: A Multilevel Review. J. Manag. 2013, 39, 110–135. [Google Scholar] [CrossRef]
- Fishbein, M. A Theory of Reasoned Action: Some Applications and Implications. Neb. Symp. Motiv. 1979, 27, 65–116. [Google Scholar]
- Ajzen, I. From Intentions to Actions: A Theory of Planned Behavior. In Action Control; Kuhl, J., Beckmann, J., Eds.; Springer: Berlin/Heidelberg, Germany, 1985; pp. 11–39. ISBN 978-3-642-69748-7. [Google Scholar]
- Ajzen, I. The Theory of Planned Behavior. Organ. Behav. Hum. Decis. Process. 1991, 50, 179–211. [Google Scholar] [CrossRef]
- Rogers, R.W. Cognitive and Physiological Processes in Fear Appeals and Attitude Change: A Revised Theory of Protection Motivation. In Social Psychophysiology; Cacioppo, J., Petty, R., Eds.; Guilford Press: New York, NY, USA, 1983. [Google Scholar]
- Prochaska, J.O.; Velicer, W.F. The Transtheoretical Model of Health Behavior Change. Am. J. Health Promot. 1997, 12, 38–48. [Google Scholar] [CrossRef]
- Markle, G.L. Pro-Environmental Behavior: Does It Matter How It’s Measured? Development and Validation of the Pro-Environmental Behavior Scale (PEBS). Hum. Ecol. 2013, 41, 905–914. [Google Scholar] [CrossRef]
- Van Doorn, J.; Verhoef, P.C.; Bijmolt, T.H.A. The Importance of Non-Linear Relationships between Attitude and Behaviour in Policy Research. J. Consum. Policy 2007, 30, 75–90. [Google Scholar] [CrossRef]
- Faul, F.; Erdfelder, E.; Lang, A.-G.; Buchner, A. G*Power 3: A Flexible Statistical Power Analysis Program for the Social, Behavioral, and Biomedical Sciences. Behav. Res. Methods 2007, 39, 175–191. [Google Scholar] [CrossRef] [PubMed]
- Faul, F.; Erdfelder, E.; Buchner, A.; Lang, A.-G. Statistical Power Analyses Using G*Power 3.1: Tests for Correlation and Regression Analyses. Behav. Res. Methods 2009, 41, 1149–1160. [Google Scholar] [CrossRef]
- Gignac, G.E.; Szodorai, E.T. Effect Size Guidelines for Individual Differences Researchers. Personal. Individ. Differ. 2016, 102, 74–78. [Google Scholar] [CrossRef]
- Ong, A.D.; Weiss, D.J. The Impact of Anonymity on Responses to Sensitive Questions. J. Appl. Soc. Psychol. 2000, 30, 1691–1708. [Google Scholar] [CrossRef]
- Hair, J.F. (Ed.) Multivariate Data Analysis: A Global Perspective, 7th ed.; Pearson: Upper Saddle River, NJ, USA, 2010; ISBN 978-0-13-515309-3. [Google Scholar]
- Green, P.E.; Carroll, J.D. Analyzing Multivariate Data; Dryden Press: Hinsdale, IL, USA, 1978; ISBN 978-0-03-020786-0. [Google Scholar]
- Xanthopoulos, P.; Pardalos, P.M.; Trafalis, T.B. Linear Discriminant Analysis. In Robust Data Mining; SpringerBriefs in Optimization; Springer: New York, NY, USA, 2013; pp. 27–33. ISBN 978-1-4419-9877-4. [Google Scholar]
- Balakrishnama, S.; Ganapathiraju, A. Linear Discriminant Analysis—A Brief Tutorial; Institute for Signal and Information Processing: Mississippi State, MS, USA, 1998; Volume 18. [Google Scholar]
- Welling, M. Fisher Linear Discriminant Analysis; Department of Computer Science, University of Toronto: Toronto, ON, Canada, 2003; Volume 3. [Google Scholar]
- Pan, F.; Song, G.; Gan, X.; Gu, Q. Consistent Feature Selection and Its Application to Face Recognition. J. Intell. Inf. Syst. 2014, 43, 307–321. [Google Scholar] [CrossRef]
- Tharwat, A.; Gaber, T.; Ibrahim, A.; Hassanien, A.E. Linear Discriminant Analysis: A Detailed Tutorial. AI Commun. 2017, 30, 169–190. [Google Scholar] [CrossRef]
- Ayerza, R.; Coates, W. Chia: Rediscovering a Forgotten Crop of the Aztecs; University of Arizona Press: Tucson, AZ, USA, 2005. [Google Scholar]
- Jamboonsri, W.; Phillips, T.D.; Geneve, R.L.; Cahill, J.P.; Hildebrand, D.F. Extending the Range of an Ancient Crop, Salvia hispanica L.—A New Ω3 Source. Genet. Resour. Crop Evol. 2012, 59, 171–178. [Google Scholar] [CrossRef]
- Nege, A.S.; Dewi Masithah, E.; Khotib, J. Trends in the Uses of Spirulina Microalga: A Mini-Review. J. Ilm. Perikan. Dan Kelaut. 2020, 12, 149–166. [Google Scholar] [CrossRef]
- Motyka, S.; Skała, E.; Ekiert, H.; Szopa, A. Health-Promoting Approaches of the Use of Chia Seeds. J. Funct. Foods 2023, 103, 105480. [Google Scholar] [CrossRef]
- Orona-Tamayo, D.; Paredes-López, O. Chia—The New Golden Seed for the 21st Century: Nutraceutical Properties and Technological Uses. In Sustainable Protein Sources; Elsevier: Amsterdam, The Netherlands, 2024; pp. 443–470. ISBN 978-0-323-91652-3. [Google Scholar]
- Пешук, Л.В.; Приходько, Д.Ю.; Кожемяка, О.В.; Петренко, С.О. ЗЕЛЕНІ ВОДОРОСТІ: ФОКУС НА НОВАЦІЇ, ФУНКЦІОНАЛЬНІСТЬ ТА НАТУРАЛЬНІСТЬ. [Green algae: Focus on innovation, functionality and naturalness]. J. Chem. Technol. 2024, 32, 138–152. [Google Scholar] [CrossRef]
- CBI—Ministry of Foreign Affairs. Entering the European Market for Chia Seeds; CBI—Centre for the Promotion of Imports from Developing Countries: The Hague, The Netherlands, 2023; Available online: https://www.cbi.eu/market-information/grains-pulses-oilseeds/chia-seeds/market-potential (accessed on 17 May 2025).
- Podgórska-Kryszczuk, I. Spirulina—An Invaluable Source of Macro- and Micronutrients with Broad Biological Activity and Application Potential. Molecules 2024, 29, 5387. [Google Scholar] [CrossRef] [PubMed]
- Gaydhane, M.K.; Mahanta, U.; Sharma, C.S.; Khandelwal, M.; Ramakrishna, S. Cultured Meat: State of the Art and Future. Biomanuf. Rev. 2018, 3, 1. [Google Scholar] [CrossRef]
- Santos, E.; Brunheta, R.; Ivan, T.; Pereira, C.D.; Ribeiro, V. Cricket-Based Food Production (Acheta Domesticus): Nutritional and Sustainability Considerations, Production Methods and HACCP Implementation—A Narrative Review. In ICoWEFS 2024 Sustainability Proceedings; Brito, P.S., Da Costa Sanches Galvão, J.R., Almeida, H., Rosa Ferreira, L.C., Alves Flores De Oliveira Gala, P.E., Eds.; Lecture Notes on Multidisciplinary Industrial Engineering; Springer Nature: Cham, Switzerland, 2025; pp. 351–360. ISBN 978-3-031-80329-1. [Google Scholar]
- Sbicca, J. Eco-queer movemen(s). Challenging heteronormative space through (re)imagining nature and food. Eur. J. Ecopsychol. 2012, 3, 33–52. [Google Scholar]
- Motoki, K.; Park, J.; Spence, C.; Velasco, C. Contextual Acceptance of Novel and Unfamiliar Foods: Insects, Cultured Meat, Plant-Based Meat Alternatives, and 3D Printed Foods. Food Qual. Prefer. 2022, 96, 104368. [Google Scholar] [CrossRef]
- Owino, V.; Kumwenda, C.; Ekesa, B.; Parker, M.E.; Ewoldt, L.; Roos, N.; Lee, W.T.; Tome, D. The Impact of Climate Change on Food Systems, Diet Quality, Nutrition, and Health Outcomes: A Narrative Review. Front. Clim. 2022, 4, 941842. [Google Scholar] [CrossRef]
- Hassoun, A.; Bekhit, A.E.-D.; Jambrak, A.R.; Regenstein, J.M.; Chemat, F.; Morton, J.D.; Gudjónsdóttir, M.; Carpena, M.; Prieto, M.A.; Varela, P.; et al. The Fourth Industrial Revolution in the Food Industry—Part II: Emerging Food Trends. Crit. Rev. Food Sci. Nutr. 2024, 64, 407–437. [Google Scholar] [CrossRef]
- Mosikyan, S.; Dolan, R.; Corsi, A.M.; Bastian, S. A Systematic Literature Review and Future Research Agenda to Study Consumer Acceptance of Novel Foods and Beverages. Appetite 2024, 203, 107655. [Google Scholar] [CrossRef]
- Slade, P. If You Build It, Will They Eat It? Consumer Preferences for Plant-Based and Cultured Meat Burgers. Appetite 2018, 125, 428–437. [Google Scholar] [CrossRef]
- Burt, K.G.; Kotao, T.; Lopez, I.; Koeppel, J.; Goldstein, A.; Samuel, L.; Stopler, M. Acceptance of Using Cricket Flour as a Low Carbohydrate, High Protein, Sustainable Substitute for All-Purpose Flour in Muffins. J. Culin. Sci. Technol. 2020, 18, 201–213. [Google Scholar] [CrossRef]
- Bryant, C.J.; Barnett, J.C. What’s in a Name? Consumer Perceptions of in Vitro Meat under Different Names. Appetite 2019, 137, 104–113. [Google Scholar] [CrossRef] [PubMed]
- Kouarfaté, B.B.; Durif, F.N. A Systematic Review of Determinants of Cultured Meat Adoption: Impacts and Guiding Insights. Br. Food J. 2023, 125, 2737–2763. [Google Scholar] [CrossRef]
- Van Valkengoed, A.M.; Steg, L. Meta-Analyses of Factors Motivating Climate Change Adaptation Behaviour. Nat. Clim. Change 2019, 9, 158–163. [Google Scholar] [CrossRef]
- House, J. Consumer Acceptance of Insect-Based Foods in the Netherlands: Academic and Commercial Implications. Appetite 2016, 107, 47–58. [Google Scholar] [CrossRef]
- Siegrist, M.; Sütterlin, B.; Hartmann, C. Perceived Naturalness and Evoked Disgust Influence Acceptance of Cultured Meat. Meat Sci. 2018, 139, 213–219. [Google Scholar] [CrossRef]
- Tsimitri, P.; Michailidis, A.; Loizou, F.; Mantzouridou, F.T.; Gkatzionis, K.; Mugampoza, E. Bioeconomy and the production of novel food products from agro-industrial wastes and residues under the context of food neophobia. AgBioForum 2018, 21, 97–106. [Google Scholar]
- Cardello, A.V.; Chheang, S.L.; Hedderley, D.I.; Guo, L.F.; Hunter, D.C.; Jaeger, S.R. Toward a New Scale to Measure Consumers’ “Need for Uniqueness” in Foods and Beverages: The 31-Item FBNFU Scale. Food Qual. Prefer. 2019, 72, 159–171. [Google Scholar] [CrossRef]
- Lin, W.; Ortega, D.L.; Caputo, V.; Lusk, J.L. Personality Traits and Consumer Acceptance of Controversial Food Technology: A Cross-Country Investigation of Genetically Modified Animal Products. Food Qual. Prefer. 2019, 76, 10–19. [Google Scholar] [CrossRef]
- Ardebili, A.T.; Rickertsen, K. Personality Traits, Knowledge, and Consumer Acceptance of Genetically Modified Plant and Animal Products. Food Qual. Prefer. 2020, 80, 103825. [Google Scholar] [CrossRef]
- La Barbera, F.; Verneau, F.; Videbæk, P.N.; Amato, M.; Grunert, K.G. A Self-Report Measure of Attitudes toward the Eating of Insects: Construction and Validation of the Entomophagy Attitude Questionnaire. Food Qual. Prefer. 2020, 79, 103757. [Google Scholar] [CrossRef]
- Modlinska, K.; Adamczyk, D.; Goncikowska, K.; Maison, D.; Pisula, W. The Effect of Labelling and Visual Properties on the Acceptance of Foods Containing Insects. Nutrients 2020, 12, 2498. [Google Scholar] [CrossRef] [PubMed]
- La Barbera, F.; Amato, M.; Fasanelli, R.; Verneau, F. Perceived Risk of Insect-Based Foods: An Assessment of the Entomophagy Attitude Questionnaire Predictive Validity. Insects 2021, 12, 403. [Google Scholar] [CrossRef] [PubMed]
- Chriki, S.; Payet, V.; Pflanzer, S.B.; Ellies-Oury, M.-P.; Liu, J.; Hocquette, É.; Rezende-de-Souza, J.H.; Hocquette, J.-F. Brazilian Consumers’ Attitudes towards So-Called “Cell-Based Meat”. Foods 2021, 10, 2588. [Google Scholar] [CrossRef] [PubMed]
- Bisconsin-Júnior, A.; Rodrigues, H.; Behrens, J.H.; Da Silva, M.A.A.P.; Mariutti, L.R.B. “Food Made with Edible Insects”: Exploring the Social Representation of Entomophagy Where It Is Unfamiliar. Appetite 2022, 173, 106001. [Google Scholar] [CrossRef]
- Park, S.Y. Korean Consumers’ Perceptions of Unfamiliar Subtropical Vegetables: The Potential Effect of the Use of Social Media. Food Stud. Interdiscip. J. 2022, 13, 89–105. [Google Scholar] [CrossRef]
- Ribeiro, J.C.; Gonçalves, A.T.S.; Moura, A.P.; Varela, P.; Cunha, L.M. Insects as Food and Feed in Portugal and Norway—Cross-Cultural Comparison of Determinants of Acceptance. Food Qual. Prefer. 2022, 102, 104650. [Google Scholar] [CrossRef]
- Mishyna, M.; Fischer, A.R.H.; Steenbekkers, B.L.P.A.; Janssen, A.M.; Bos-Brouwers, H.E.J. Consumption and Production of Edible Insects in an Urban Circularity Context: Opinions and Intentions of Urban Residents. Sustain. Prod. Consum. 2023, 42, 234–246. [Google Scholar] [CrossRef]
- Elhoushy, S. Consumers’ Sustainable Food Choices: Antecedents and Motivational Imbalance. Int. J. Hosp. Manag. 2020, 89, 102554. [Google Scholar] [CrossRef]
- Schwarzer, R. Modeling Health Behavior Change: How to Predict and Modify the Adoption and Maintenance of Health Behaviors. Appl. Psychol. 2008, 57, 1–29. [Google Scholar] [CrossRef]
- Thøgersen, J.; Noblet, C. Does Green Consumerism Increase the Acceptance of Wind Power? Energy Policy 2012, 51, 854–862. [Google Scholar] [CrossRef]
- Van Der Werff, E.; Steg, L.; Keizer, K. I Am What I Am, by Looking Past the Present: The Influence of Biospheric Values and Past Behavior on Environmental Self-Identity. Environ. Behav. 2014, 46, 626–657. [Google Scholar] [CrossRef]
- Lauren, N.; Fielding, K.S.; Smith, L.; Louis, W.R. You Did, so You Can and You Will: Self-Efficacy as a Mediator of Spillover from Easy to More Difficult pro-Environmental Behaviour. J. Environ. Psychol. 2016, 48, 191–199. [Google Scholar] [CrossRef]
- Tan, L.P.; Johnstone, M.-L.; Yang, L. Barriers to Green Consumption Behaviours: The Roles of Consumers’ Green Perceptions. Australas. Mark. J. 2016, 24, 288–299. [Google Scholar] [CrossRef]
- Arli, D.; Tan, L.P.; Tjiptono, F.; Yang, L. Exploring Consumers’ Purchase Intention towards Green Products in an Emerging Market: The Role of Consumers’ Perceived Readiness. Int. J. Consum. Stud. 2018, 42, 389–401. [Google Scholar] [CrossRef]
- Tjiptono, F. Examining the Challenges of Responsible Consumption in an Emerging Market. In Ergonomics and Human Factors for a Sustainable Future; Thatcher, A., Yeow, P.H.P., Eds.; Springer: Singapore, 2018; pp. 299–327. ISBN 978-981-10-8071-5. [Google Scholar]
- Popa, A.; Niculiă܉, P. An exploratory study on consumer perception of food innovation in Romania. AgroLife Sci. J. 2013, 2, 121–126. [Google Scholar]
- Menozzi, D.; Sogari, G.; Veneziani, M.; Simoni, E.; Mora, C. Eating Novel Foods: An Application of the Theory of Planned Behaviour to Predict the Consumption of an Insect-Based Product. Food Qual. Prefer. 2017, 59, 27–34. [Google Scholar] [CrossRef]
- Chong, M.; Leung, A.K.-y.; Lua, V. A Cross-Country Investigation of Social Image Motivation and Acceptance of Lab-Grown Meat in Singapore and the United States. Appetite 2022, 173, 105990. [Google Scholar] [CrossRef]
- Sogari, G.; Bogueva, D.; Marinova, D. Australian Consumers’ Response to Insects as Food. Agriculture 2019, 9, 108. [Google Scholar] [CrossRef]
- Cicatiello, C.; Vitali, A.; Lacetera, N. How Does It Taste? Appreciation of Insect-Based Snacks and Its Determinants. Int. J. Gastron. Food Sci. 2020, 21, 100211. [Google Scholar] [CrossRef]
- Darr, D.; Chopi-Msadala, C.; Namakhwa, C.D.; Meinhold, K.; Munthali, C. Processed Baobab (Adansonia digitata L.) Food Products in Malawi: From Poor Men’s to Premium-Priced Specialty Food? Forests 2020, 11, 698. [Google Scholar] [CrossRef]
- Ho, S.S.; Ou, M.; Ong, Z.T. Exploring the General Public’s and Experts’ Risk and Benefit Perceptions of Cultured Meat in Singapore: A Mental Models Approach. PLoS ONE 2023, 18, e0295265. [Google Scholar] [CrossRef] [PubMed]
- Bradley, G.L.; Babutsidze, Z.; Chai, A.; Reser, J.P. The Role of Climate Change Risk Perception, Response Efficacy, and Psychological Adaptation in pro-Environmental Behavior: A Two Nation Study. J. Environ. Psychol. 2020, 68, 101410. [Google Scholar] [CrossRef]
- Zeng, J.; Jiang, M.; Yuan, M. Environmental Risk Perception, Risk Culture, and Pro-Environmental Behavior. Int. J. Environ. Res. Public. Health 2020, 17, 1750. [Google Scholar] [CrossRef] [PubMed]
- Vlek, C. Essential Psychology for Environmental Policy Making. Int. J. Psychol. 2000, 35, 153–167. [Google Scholar] [CrossRef]
- Vlek, C.A.J.; Steg, L.; Jager, W. Modellen En Strategieën Voor Gedragsverandering Ter Vermindering van Collectieve Risico’s. Ned. Tijdschr. Voor Psychol. 1997, 4, 174–191. [Google Scholar]
- Hassan, E. Recall Bias Can Be a Threat to Retrospective and Prospective Research Designs. Internet J. Epidemiol. 2005, 3, 4. [Google Scholar]
Males | Females | LGBTQIA+ | Total | |
---|---|---|---|---|
% | 31.0 | 64.6 | 4.4 | 100 |
Mean age (sd) | 27.825 (10.913) | 27.800 (11.188) | 30.345 (14.275) | 27.919 (11.258) |
Variables | Min. | Max. | Mean | Sd | Skew. | Kurt. |
---|---|---|---|---|---|---|
RTC—Perceived importance of the problem | 4 | 20 | 15.53 | 2.720 | −0.885 | 1.874 |
RTC— Motivation for change | 4 | 20 | 14.81 | 3.029 | −0.685 | 1.004 |
RTC—Self-efficacy | 5 | 25 | 18.04 | 3.365 | −0.569 | 1.130 |
RTC—Effectiveness of proposed solution | 4 | 20 | 14.41 | 2.555 | −0.458 | 0.827 |
RTC—Social support | 4 | 20 | 13.50 | 2.786 | −0.301 | 0.369 |
RTC—Action | 4 | 20 | 14.69 | 2.845 | −0.662 | 0.887 |
RTC—Perceived readiness | 4 | 20 | 14.80 | 2.740 | −0.493 | 0.748 |
Mean | SD | St. EM | t | df | Cohen’s d | SE Cohen’s d | ||
---|---|---|---|---|---|---|---|---|
RTC-PI | Non-consumer | 15.24 | 2.726 | 0.098 | −4.774 *** | 1053.297 | −0.278 | 0.058 |
Consumer | 15.99 | 2.651 | 0.120 | |||||
RTC-M | Non-consumer | 14.49 | 3.041 | 0.110 | −4.821 *** | 1057.885 | −0.281 | 0.058 |
Consumer | 15.33 | 2.940 | 0.133 | |||||
RTC-SE | Non-consumer | 17.69 | 3.387 | 0.122 | −4.695 *** | 1061.794 | −0.273 | 0.058 |
Consumer | 18.60 | 3.258 | 0.148 | |||||
RTC-ES | Non-consumer | 14.18 | 2.540 | 0.092 | −3.905 *** | 1031.978 | −0.226 | 0.058 |
Consumer | 14.76 | 2.541 | 0.115 | |||||
RTC-SS | Non-consumer | 13.37 | 2.820 | 0.102 | −2.128 * | 1059.600 | −0.124 | 0.058 |
Consumer | 13.71 | 2.720 | 0.123 | |||||
RTC-A | Non-consumer | 14.24 | 2.868 | 0.104 | −7.211 *** | 1087.512 | −0.415 | 0.059 |
Consumer | 15.39 | 2.665 | 0.121 | |||||
RTC-PR | Non-consumer | 14.48 | 2.757 | 0.100 | −5.148 *** | 1064.260 | −0.300 | 0.058 |
Consumer | 15.29 | 2.643 | 0.120 |
RTC Dimensions | Mean | SD | St. EM | t | df | Cohen’s d | SE Cohen’s d | |
---|---|---|---|---|---|---|---|---|
RTC-PI | Non-consumer | 15.45 | 2.789 | 0.096 | −1.409 | 855.540 | −0.086 | 0.060 |
Consumer | 15.69 | 2.566 | 0.128 | |||||
RTC-M | Non-consumer | 14.74 | 3.141 | 0.108 | −1.275 | 887.384 | −0.075 | 0.060 |
Consumer | 14.96 | 2.776 | 0.138 | |||||
RTC-SE | Non-consumer | 17.92 | 3.424 | 0.118 | −1.880 | 836.528 | −0.115 | 0.061 |
Consumer | 18.30 | 3.228 | 0.161 | |||||
RTC-ES | Non-consumer | 14.26 | 2.641 | 0.091 | −3.033 ** | 885.961 | −0.179 | 0.061 |
Consumer | 14.71 | 2.338 | 0.116 | |||||
RTC-SS | Non-consumer | 13.42 | 2.792 | 0.096 | −1.463 | 798.553 | −0.089 | 0.060 |
Consumer | 13.67 | 2.770 | 0.138 | |||||
RTC-A | Non-consumer | 14.58 | 2.861 | 0.098 | −1.975 * | 807.874 | −0.120 | 0.061 |
Consumer | 14.92 | 2.802 | 0.139 | |||||
RTC-PR | Non-consumer | 14.75 | 2.744 | 0.094 | −0.845 | 795.791 | −0.051 | 0.060 |
Consumer | 14.89 | 2.733 | 0.136 |
RTC | Chia Seeds | Water Chestnuts | Spirulina Algae | Baobab Pulp | Krill Oil | Clean Meat | Cricket Flour | Edible Insects |
---|---|---|---|---|---|---|---|---|
RTC-PI | 0.256 ** | 0.174 ** | 0.192 ** | 0.230 ** | 0.116 ** | 0.141 ** | 0.153 ** | 0.084 ** |
RTC-M | 0.259 ** | 0.162 ** | 0.161 ** | 0.227 ** | 0.113 ** | 0.139 ** | 0.116 ** | 0.079 ** |
RTC-SE | 0.157 ** | 0.098 ** | 0.111 ** | 0.088 ** | 0.064 * | −0.059 * | −0.010 | 0.015 |
RTC-ES | 0.146 ** | 0.112 ** | 0.114 ** | 0.141 ** | 0.103 ** | 0.080 ** | 0.054 | 0.061 * |
RTC-SS | 0.061 * | 0.037 | 0.010 | 0.049 | 0.034 | −0.019 | 0.011 | −0.005 |
RTC-A | 0.272 ** | 0.162 ** | 0.153 ** | 0.203 ** | 0.086 ** | 0.091 ** | 0.086 ** | 0.071 * |
RTC-PR | 0.265 *** | 0.151 *** | 0.147 *** | 0.203 *** | 0.101 *** | 0.110 *** | 0.091 ** | 0.079 ** |
Independent Variables | Beta | t | Sig. | CI (95%) | R2 | R2-Adjusted | |
---|---|---|---|---|---|---|---|
LB | UB | ||||||
Chia seeds | |||||||
RTC-Action | 0.192 | 6.233 | 0.000 | 0.052 | 0.100 | 0.094 | 0.092 |
RTC-Perceived importance of the problem | 0.162 | 5.260 | 0.000 | 0.042 | 0.092 | ||
Water chestnuts | |||||||
RTC-Perceived importance of the problem | 0.125 | 3.931 | 0.000 | 0.025 | 0.075 | 0.038 | 0.036 |
RTC-Action | 0.100 | 3.156 | 0.002 | 0.015 | 0.062 | ||
Spirulina algae | |||||||
RTC-Perceived importance of the problem | 0.158 | 4.961 | 0.000 | 0.045 | 0.104 | 0.045 | 0.042 |
RTC-Action | 0.099 | 2.967 | 0.003 | 0.015 | 0.074 | ||
RTC-Social support | −0.062 | −2.070 | 0.039 | −0.056 | −0.001 | ||
Baobab pulp | |||||||
RTC-Perceived importance of the problem | 0.172 | 5.491 | 0.000 | 0.045 | 0.096 | 0.064 | 0.062 |
RTC-Action | 0.119 | 3.779 | 0.000 | 0.022 | 0.071 | ||
Krill oil | |||||||
RTC-Perceived importance of the problem | 0.087 | 2.791 | 0.005 | 0.010 | 0.056 | 0.017 | 0.015 |
RTC-Effectiveness solution | 0.064 | 2.048 | 0.041 | 0.001 | 0.050 | ||
Clean meat | |||||||
RTC-Perceived importance of the problem | 0.116 | 3.488 | 0.001 | 0.026 | 0.093 | 0.052 | 0.049 |
RTC-Self-efficacy | −0.230 | −6.313 | 0.000 | −0.125 | −0.066 | ||
RTC-Perceived readiness | 0.146 | 3.881 | 0.000 | 0.037 | 0.112 | ||
RTC-Effective solution | 0.079 | 2.258 | 0.024 | 0.006 | 0.081 | ||
Cricket flour | |||||||
RTC-Perceived importance of the problem | 0.181 | 6.032 | 0.000 | 0.056 | 0.110 | 0.028 | 0.027 |
RTC-Self-efficacy | −0.076 | −2.526 | 0.012 | −0.050 | −0.006 | ||
Edible insects | |||||||
RTC-Perceived importance of the problem | 0.084 | 2.983 | 0.003 | 0.011 | 0.056 | 0.007 | 0.006 |
Groups | Accuracy | Precision | Recall | Sensitivity | Specificity |
---|---|---|---|---|---|
Chia seeds | 0.839 | 0.822 | 0.839 | 0.712 | 0.660 |
Water chestnuts | 0.771 | 0.728 | 0.771 | 0.639 | 0.564 |
Spirulina algae | 0.577 | 0.596 | 0.577 | 0.583 | 0.587 |
Baobab pulp | 0.857 | 0.753 | 0.857 | 0.632 | 0.500 |
Krill oil | 0.957 | 0.916 | 0.957 | 0.657 | 0.500 |
Clean meat | 0.734 | 0.729 | 0.734 | 0.628 | 0.565 |
Cricket flour | 0.924 | 0.854 | 0.924 | 0.649 | 0.500 |
Edible insects | 0.958 | 0.917 | 0.958 | 0.657 | 0.500 |
RTC | Chia Seeds | Water Chestnuts | Spirulina Algae | Baobab Pulp | Krill Oil | Clean Meat | Cricket Flour | Edible Insects |
---|---|---|---|---|---|---|---|---|
RTC−PI | 0.492 | 0.823 | 0.957 | 0.361 | −0.196 | 0.152 | 0.545 | −0.312 |
RTC−M | 0.281 | −0.322 | −0.482 | 0.235 | 0.263 | 0.177 | −0.048 | 0.753 |
RTC−SE | −0.166 | −0.108 | 0.200 | −0.458 | 0.228 | −0.905 | −0.841 | −0.309 |
RTC−ES | −0.119 | −0.017 | −0.116 | −0.006 | 0.510 | 0.701 | 0.255 | 0.380 |
RTC−SS | −0.358 | −0.230 | −0.277 | 0.028 | −0.430 | −0.514 | −0.093 | −0.689 |
RTC−A | 0.353 | 0.758 | 0.444 | 0.450 | 0.700 | 0.187 | 0.513 | 0.168 |
RTC−PR | 0.399 | 0.062 | 0.236 | 0.402 | −0.215 | 0.556 | 0.343 | 0.406 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Duradoni, M.; Baroni, M.; Fiorenza, M.; Bellotti, M.; Neri, G.; Guazzini, A. Readiness to Change and the Intention to Consume Novel Foods: Evidence from Linear Discriminant Analysis. Sustainability 2025, 17, 4902. https://doi.org/10.3390/su17114902
Duradoni M, Baroni M, Fiorenza M, Bellotti M, Neri G, Guazzini A. Readiness to Change and the Intention to Consume Novel Foods: Evidence from Linear Discriminant Analysis. Sustainability. 2025; 17(11):4902. https://doi.org/10.3390/su17114902
Chicago/Turabian StyleDuradoni, Mirko, Marina Baroni, Maria Fiorenza, Martina Bellotti, Gabriele Neri, and Andrea Guazzini. 2025. "Readiness to Change and the Intention to Consume Novel Foods: Evidence from Linear Discriminant Analysis" Sustainability 17, no. 11: 4902. https://doi.org/10.3390/su17114902
APA StyleDuradoni, M., Baroni, M., Fiorenza, M., Bellotti, M., Neri, G., & Guazzini, A. (2025). Readiness to Change and the Intention to Consume Novel Foods: Evidence from Linear Discriminant Analysis. Sustainability, 17(11), 4902. https://doi.org/10.3390/su17114902