Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (819)

Search Parameters:
Keywords = edge-lands

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 62899 KiB  
Essay
Monitoring and Historical Spatio-Temporal Analysis of Arable Land Non-Agriculturalization in Dachang County, Eastern China Based on Time-Series Remote Sensing Imagery
by Boyuan Li, Na Lin, Xian Zhang, Chun Wang, Kai Yang, Kai Ding and Bin Wang
Earth 2025, 6(3), 91; https://doi.org/10.3390/earth6030091 (registering DOI) - 6 Aug 2025
Abstract
The phenomenon of arable land non-agriculturalization has become increasingly severe, posing significant threats to the security of arable land resources and ecological sustainability. This study focuses on Dachang Hui Autonomous County in Langfang City, Hebei Province, a region located at the edge of [...] Read more.
The phenomenon of arable land non-agriculturalization has become increasingly severe, posing significant threats to the security of arable land resources and ecological sustainability. This study focuses on Dachang Hui Autonomous County in Langfang City, Hebei Province, a region located at the edge of the Beijing–Tianjin–Hebei metropolitan cluster. In recent years, the area has undergone accelerated urbanization and industrial transfer, resulting in drastic land use changes and a pronounced contradiction between arable land protection and the expansion of construction land. The study period is 2016–2023, which covers the key period of the Beijing–Tianjin–Hebei synergistic development strategy and the strengthening of the national arable land protection policy, and is able to comprehensively reflect the dynamic changes of arable land non-agriculturalization under the policy and urbanization process. Multi-temporal Sentinel-2 imagery was utilized to construct a multi-dimensional feature set, and machine learning classifiers were applied to identify arable land non-agriculturalization with optimized performance. GIS-based analysis and the geographic detector model were employed to reveal the spatio-temporal dynamics and driving mechanisms. The results demonstrate that the XGBoost model, optimized using Bayesian parameter tuning, achieved the highest classification accuracy (overall accuracy = 0.94) among the four classifiers, indicating its superior suitability for identifying arable land non-agriculturalization using multi-temporal remote sensing imagery. Spatio-temporal analysis revealed that non-agriculturalization expanded rapidly between 2016 and 2020, followed by a deceleration after 2020, exhibiting a pattern of “rapid growth–slowing down–partial regression”. Further analysis using the geographic detector revealed that socioeconomic factors are the primary drivers of arable land non-agriculturalization in Dachang Hui Autonomous County, while natural factors exerted relatively weaker effects. These findings provide technical support and scientific evidence for dynamic monitoring and policy formulation regarding arable land under urbanization, offering significant theoretical and practical implications. Full article
Show Figures

Figure 1

24 pages, 6924 KiB  
Article
Long-Term Time Series Estimation of Impervious Surface Coverage Rate in Beijing–Tianjin–Hebei Urbanization and Vulnerability Assessment of Ecological Environment Response
by Yuyang Cui, Yaxue Zhao and Xuecao Li
Land 2025, 14(8), 1599; https://doi.org/10.3390/land14081599 - 6 Aug 2025
Abstract
As urbanization processes are no longer characterized by simple linear expansion but exhibit leaping, edge-sparse, and discontinuous features, spatiotemporally continuous impervious surface coverage data are needed to better characterize urbanization processes. This study utilized GAIA impervious surface binary data and employed spatiotemporal aggregation [...] Read more.
As urbanization processes are no longer characterized by simple linear expansion but exhibit leaping, edge-sparse, and discontinuous features, spatiotemporally continuous impervious surface coverage data are needed to better characterize urbanization processes. This study utilized GAIA impervious surface binary data and employed spatiotemporal aggregation methods to convert thirty years of 30 m resolution data into 1 km resolution spatiotemporal impervious surface coverage data, constructing a long-term time series annual impervious surface coverage dataset for the Beijing–Tianjin–Hebei region. Based on this dataset, we analyzed urban expansion processes and landscape pattern indices in the Beijing–Tianjin–Hebei region, exploring the spatiotemporal response relationships of ecological environment changes. Results revealed that the impervious surface area increased dramatically from 7579.3 km2 in 1985 to 37,484.0 km2 in 2020, representing a year-on-year growth of 88.5%. Urban expansion rates showed two distinct peaks: 800 km2/year around 1990 and approximately 1700 km2/year during 2010–2015. In high-density urbanized areas with impervious surfaces, the average forest area significantly increased from approximately 2500 km2 to 7000 km2 during 1985–2005 before rapidly declining, grassland patch fragmentation intensified, while in low-density areas, grassland area showed fluctuating decline with poor ecosystem stability. Furthermore, by incorporating natural and social factors such as Fractional Vegetation Coverage (FVC), Habitat Quality Index (HQI), Land Surface Temperature (LST), slope, and population density, we assessed the vulnerability of urbanization development in the Beijing–Tianjin–Hebei region. Results showed that high vulnerability areas (EVI > 0.5) in the Beijing–Tianjin core region continue to expand, while the proportion of low vulnerability areas (EVI < 0.25) in the northern mountainous regions decreased by 4.2% in 2020 compared to 2005. This study provides scientific support for the sustainable development of the Beijing–Tianjin–Hebei urban agglomeration, suggesting location-specific and differentiated regulation of urbanization processes to reduce ecological risks. Full article
Show Figures

Figure 1

18 pages, 8682 KiB  
Article
Urban Carbon Metabolism Optimization Based on a Source–Sink–Flow Framework at the Functional Zone Scale
by Cui Wang, Liuchang Xu, Xingyu Xue and Xinyu Zheng
Land 2025, 14(8), 1600; https://doi.org/10.3390/land14081600 - 6 Aug 2025
Abstract
Carbon flow tracking and spatial pattern optimization at the scale of urban functional zones are key scientific challenges in achieving carbon neutrality. However, due to the complexity of carbon metabolism processes within urban functional zones, related studies remain limited. To address these scientific [...] Read more.
Carbon flow tracking and spatial pattern optimization at the scale of urban functional zones are key scientific challenges in achieving carbon neutrality. However, due to the complexity of carbon metabolism processes within urban functional zones, related studies remain limited. To address these scientific challenges, this study, based on the “source–sink–flow” ecosystem services framework, develops an integrated analytical approach at the scale of urban functional zones. The carbon balance is quantified using the CASA model in combination with multi-source data. A network model is employed to trace carbon flow pathways, identify critical nodes and interruption points, and optimize the urban spatial pattern through a low-carbon land use structure model. The research results indicate that the overall carbon balance in Hangzhou exhibits a spatial pattern of “deficit in the center and surplus in the periphery.” The main urban area shows a significant carbon deficit and relatively poor connectivity in the carbon flow network. Carbon sequestration services primarily flow from peripheral areas (such as Fuyang and Yuhang) with green spaces and agricultural functional zones toward high-emission residential–commercial and commercial–public functional zones in the central area. However, due to the interruption of multiple carbon flow paths, the overall carbon flow transmission capacity is significantly constrained. Through spatial optimization, some carbon deficit nodes were successfully converted into carbon surplus nodes, and disrupted carbon flow edges were repaired, particularly in the main urban area, where 369 carbon flow edges were restored, resulting in a significant improvement in the overall transmission efficiency of the carbon flow network. The carbon flow visualization and spatial optimization methods proposed in this paper provide a new perspective for urban carbon metabolism analysis and offer theoretical support for low-carbon city planning practices. Full article
(This article belongs to the Special Issue The Second Edition: Urban Planning Pathways to Carbon Neutrality)
Show Figures

Figure 1

28 pages, 10144 KiB  
Article
Decoding the Spatial–Temporal Coupling Dynamics of Land Use Intensity and Balance in China’s Chengdu–Chongqing Economic Circle: A 1 km Grid-Based Analysis
by Zijia Yan, Chenxi Zhou, Ziyi Tang, Hanfei Wang and Hao Li
Land 2025, 14(8), 1597; https://doi.org/10.3390/land14081597 - 5 Aug 2025
Abstract
Amid China’s national strategic prioritization of the Chengdu–Chongqing Economic Circle and accelerated territorial spatial planning, this study deciphered the synergistic evolution of Land Use Intensity (LUI) and Balance Degree of Land Use Structure (BDLUS) during rapid urbanization. Leveraging 1 km grid units and [...] Read more.
Amid China’s national strategic prioritization of the Chengdu–Chongqing Economic Circle and accelerated territorial spatial planning, this study deciphered the synergistic evolution of Land Use Intensity (LUI) and Balance Degree of Land Use Structure (BDLUS) during rapid urbanization. Leveraging 1 km grid units and integrating emerging spatiotemporal hotspot analysis, BFAST, and geographic detectors, we systematically analyzed spatiotemporal patterns and drivers of LUI, BDLUS, and their Coupling Coordination Degree (CCD) from 2000 to 2022. Key findings: (1) LUI strongly correlated with economic growth, with core areas reaching high-intensity development (average > 2.96) versus ecologically constrained marginal zones (<2.42), marked by abrupt changes during 2011–2014; (2) BDLUS improvements covered 82.22% of the study area, driven by the Yangtze River Economic Belt strategy (21.96% hotspot concentration), yet structural imbalance persisted in transitional zones (18.81% cold spots); (3) CCD exhibited center-edge dichotomy, contrasting high-value cores (CCD > 0.68) with ecologically sensitive edges (9.80% cold spots), peaking in regulatory shifts around 2010; (4) terrain constraints and intensified human activities (the interaction effect between nighttime lighting and population density increased by 219.49% after 2020) jointly governed coupling mechanisms, with urbanization and industrial transition becoming dominant drivers. This research advances an “intensity–structure–coordination” framework and elucidates “dual-core resonance” dynamics, offering theoretical foundations for spatial optimization and ecological civilization. Full article
(This article belongs to the Special Issue Integration of Remote Sensing and GIS for Land Use Change Assessment)
Show Figures

Figure 1

24 pages, 10342 KiB  
Article
Land-Use Evolution and Driving Forces in Urban Fringe Archaeological Sites: A Case Study of the Western Han Imperial Mausoleums
by Huihui Liu, Boxiang Zhao, Junmin Liu and Yingning Shen
Land 2025, 14(8), 1554; https://doi.org/10.3390/land14081554 - 29 Jul 2025
Viewed by 337
Abstract
Archaeological sites located on the edge of growing cities often struggle to reconcile heritage protection with rapid development. To understand this tension, we examined a 50.83 km2 zone around the Western Han Imperial Mausoleums in the Qin-Han New District. Using Landsat images [...] Read more.
Archaeological sites located on the edge of growing cities often struggle to reconcile heritage protection with rapid development. To understand this tension, we examined a 50.83 km2 zone around the Western Han Imperial Mausoleums in the Qin-Han New District. Using Landsat images from 1992, 2002, 2012, and 2022, this study applied supervised classification, land-use transfer matrices, and dynamic-degree analysis to trace three decades of land-use change. From 1992 to 2022, built-up land expanded by 29.85 percentage points, largely replacing farmland, which shrank by 35.64 percentage points and became fragmented. Forest cover gained a modest 5.78 percentage points and migrated eastward toward the mausoleums. Overall, urban growth followed a “spread–integrate–connect” pattern along major roads. This study interprets these trends through five interrelated drivers, including policy, planning, economy, population, and heritage protection, and proposes an integrated management model. The model links archaeological pre-assessment with land-use compatibility zoning and active community participation. Together, these measures offer a practical roadmap for balancing conservation and sustainable land management at imperial burial complexes and similar urban fringe heritage sites. Full article
Show Figures

Figure 1

21 pages, 4490 KiB  
Article
DFANet: A Deep Feature Attention Network for Building Change Detection in Remote Sensing Imagery
by Peigeng Lu, Haiyong Ding and Xiang Tian
Remote Sens. 2025, 17(15), 2575; https://doi.org/10.3390/rs17152575 - 24 Jul 2025
Viewed by 281
Abstract
Change detection (CD) in remote sensing (RS) is a fundamental task that seeks to identify changes in land cover by analyzing bitemporal images. In recent years, deep learning (DL)-based approaches have demonstrated remarkable success in a wide range of CD applications. However, most [...] Read more.
Change detection (CD) in remote sensing (RS) is a fundamental task that seeks to identify changes in land cover by analyzing bitemporal images. In recent years, deep learning (DL)-based approaches have demonstrated remarkable success in a wide range of CD applications. However, most existing methods have limitations in detecting building edges and addressing pseudo-changes, and lack the ability to model feature context. In this paper, we introduce DFANet—a Deep Feature Attention Network specifically designed for building CD in RS imagery. First, we devise a spatial-channel attention module to strengthen the network’s capacity to extract change cues from bitemporal feature maps and reduce the occurrence of pseudo-changes. Second, we introduce a GatedConv module to improve the network’s capability for building edge detection. Finally, Transformer is introduced to capture long-range dependencies across bitemporal images, enabling the network to better understand feature change patterns and the relationships between different regions and land cover categories. We carried out comprehensive experiments on two publicly available building CD datasets—LEVIR-CD and WHU-CD. The results demonstrate that DFANet achieves exceptional performance in evaluation metrics such as precision, F1 score, and IoU, consistently outperforming existing state-of-the-art approaches. Full article
Show Figures

Figure 1

29 pages, 6638 KiB  
Article
Forest Fragmentation in Bavaria: A First-Time Quantitative Analysis Based on Earth Observation Data
by Kjirsten Coleman and Claudia Kuenzer
Remote Sens. 2025, 17(15), 2558; https://doi.org/10.3390/rs17152558 - 23 Jul 2025
Viewed by 388
Abstract
Anthropogenic and climatic pressures can transform contiguous forests into smaller, less connected fragments. Forest biodiversity and ecosystem functioning can furthermore be compromised or enhanced. We present a descriptive analysis of forest fragmentation in Bavaria, the largest federal state in Germany. We calculated 22 [...] Read more.
Anthropogenic and climatic pressures can transform contiguous forests into smaller, less connected fragments. Forest biodiversity and ecosystem functioning can furthermore be compromised or enhanced. We present a descriptive analysis of forest fragmentation in Bavaria, the largest federal state in Germany. We calculated 22 metrics of fragmentation using forest polygons, aggregated within administrative units and with respect to both elevation and aspect orientation. Using a forest mask from September 2024, we found 2.384 million hectares of forest across Bavaria, distributed amongst 83,253 forest polygons 0.1 hectare and larger. The smallest patch category (XS, <25 ha) outnumbered all other size classes by nearly 13 to 1. Edge zones accounted for more than 1.68 million hectares, leaving less than 703,000 hectares as core forest. Although south-facing slopes dominated the state, the highest forest cover (~36%) was found on the least abundant east-oriented slopes. Most of the area is located at 400–600 m.a.s.l., with around 30% of this area covered by forests; however, XL forest patches (>3594 ha) dominated higher elevations, covering 30–60% of land surface area between 600 and 1400 m.a.s.l. The distribution of the largest patches follows the higher terrain and corresponds well to protected areas. K-Means clustering delineated 3 clusters, which corresponded well with the predominance of patchiness, aggregation, and edginess within districts. Full article
(This article belongs to the Special Issue Application of Remote Sensing in Landscape Ecology)
Show Figures

Graphical abstract

24 pages, 10199 KiB  
Article
How Does Eco-Migration Influence Habitat Fragmentation in Resettlement Areas? Evidence from the Shule River Resettlement Project
by Lucang Wang, Ting Liao and Jing Gao
Land 2025, 14(8), 1514; https://doi.org/10.3390/land14081514 - 23 Jul 2025
Viewed by 257
Abstract
Eco-migration (EM) constitutes a specialized form of migration aimed at enhancing living environments and alleviating ecological pressure. Nevertheless, large-scale external migration has intensified habitat fragmentation (HF) in resettlement areas. This paper takes the Shule River Resettlement Project (SRRP) as a case, based on [...] Read more.
Eco-migration (EM) constitutes a specialized form of migration aimed at enhancing living environments and alleviating ecological pressure. Nevertheless, large-scale external migration has intensified habitat fragmentation (HF) in resettlement areas. This paper takes the Shule River Resettlement Project (SRRP) as a case, based on the China Land Cover Dataset (CLCD) data of the resettlement area from 1996 to 2020, using the Landscape Pattern Index (LPI) and the land use transfer matrix (LTM) to clearly define the stages of migration and the types of resettlement areas and to quantitative explore how EM affects HF. The results show that (1) EM accelerates the transformation of natural habitats (NHs) to artificial habitats (AHs) and shows the characteristics of sudden changes in the initial stage (1996–2002), with stability in the middle stage (2002–2006) and late stage (2007–2010) and dramatic changes in the post-migration stage (2011–2020). In IS, MS, LS, and PS, AH increased by 26.145 km2, 21.573 km2, 22.656 km2, and 16.983 km2, respectively, while NH changed by 73.116 km2, −21.575 km2, −22.655 km2, −121.82 km2, and −213.454 km2, respectively. The more dispersed the resettlement areas are the more obvious the expansion of AH will be, indicating that the resettlement methods for migrants have a significant effect on habitat changes. (2) During the resettlement process, the total number of plaques (NP), edge density (ED), diversity (SHDI), and dominance index (SHEI) all continued to increase, while the contagion index (C) and aggregation index (AI) continued to decline, indicating that the habitat is transforming towards fragmentation, diversification, and complexity. Compared with large-scale migration bases (LMBs), both small-scale migration bases (SMBs), and scattered migration settlement points (SMSPs) exhibit a higher degree of HF, which reflects how the scale of migration influences the extent of habitat fragmentation. While NHs are experiencing increasing fragmentation, AHs tend to show a decreasing trend in fragmentation. Ecological migrants play a dual role: they contribute to the alteration and fragmentation of natural habitat patterns, while simultaneously promoting the formation and continuity of artificial habitat structures. This study offers valuable practical insights and cautionary lessons for the resettlement of ecological migrants. Full article
Show Figures

Figure 1

35 pages, 10235 KiB  
Article
GIS-Driven Spatial Planning for Resilient Communities: Walkability, Social Cohesion, and Green Infrastructure in Peri-Urban Jordan
by Sara Al-Zghoul and Majd Al-Homoud
Sustainability 2025, 17(14), 6637; https://doi.org/10.3390/su17146637 - 21 Jul 2025
Viewed by 445
Abstract
Amman’s rapid population growth and sprawling urbanization have resulted in car-centric, fragmented neighborhoods that lack social cohesion and are vulnerable to the impacts of climate change. This study reframes walkability as a climate adaptation strategy, demonstrating how pedestrian-oriented spatial planning can reduce vehicle [...] Read more.
Amman’s rapid population growth and sprawling urbanization have resulted in car-centric, fragmented neighborhoods that lack social cohesion and are vulnerable to the impacts of climate change. This study reframes walkability as a climate adaptation strategy, demonstrating how pedestrian-oriented spatial planning can reduce vehicle emissions, mitigate urban heat island effects, and enhance the resilience of green infrastructure in peri-urban contexts. Using Deir Ghbar, a rapidly developing marginal area on Amman’s western edge, as a case study, we combine objective walkability metrics (street connectivity and residential and retail density) with GIS-based spatial regression analysis to examine relationships with residents’ sense of community. Employing a quantitative, correlational research design, we assess walkability using a composite objective walkability index, calculated from the land-use mix, street connectivity, retail density, and residential density. Our results reveal that higher residential density and improved street connectivity significantly strengthen social cohesion, whereas low-density zones reinforce spatial and socioeconomic disparities. Furthermore, the findings highlight the potential of targeted green infrastructure interventions, such as continuous street tree canopies and permeable pavements, to enhance pedestrian comfort and urban ecological functions. By visualizing spatial patterns and correlating built-environment attributes with community outcomes, this research provides actionable insights for policymakers and urban planners. These strategies contribute directly to several Sustainable Development Goals (SDGs), particularly SDG 11 (Sustainable Cities and Communities) and SDG 13 (Climate Action), by fostering more inclusive, connected, and climate-resilient neighborhoods. Deir Ghbar emerges as a model for scalable, GIS-driven spatial planning in rural and marginal peri-urban areas throughout Jordan and similar regions facing accelerated urban transitions. By correlating walkability metrics with community outcomes, this study operationalizes SDGs 11 and 13, offering a replicable framework for climate-resilient urban planning in arid regions. Full article
Show Figures

Figure 1

30 pages, 14631 KiB  
Article
Unsupervised Plot Morphology Classification via Graph Attention Networks: Evidence from Nanjing’s Walled City
by Ziyu Liu and Yacheng Song
Land 2025, 14(7), 1469; https://doi.org/10.3390/land14071469 - 15 Jul 2025
Viewed by 330
Abstract
Urban plots are pivotal links between individual buildings and the city fabric, yet conventional plot classification methods often overlook how buildings interact within each plot. This oversight is particularly problematic in the irregular fabrics typical of many Global South cities. This study aims [...] Read more.
Urban plots are pivotal links between individual buildings and the city fabric, yet conventional plot classification methods often overlook how buildings interact within each plot. This oversight is particularly problematic in the irregular fabrics typical of many Global South cities. This study aims to create a plot classification method that jointly captures metric and configurational characteristics. Our approach converts each cadastral plot into a graph whose nodes are building centroids and whose edges reflect Delaunay-based proximity. The model then learns unsupervised graph embeddings with a two-layer Graph Attention Network guided by a triple loss that couples building morphology with spatial topology. We then cluster the embeddings together with normalized plot metrics. Applying the model to 8973 plots in Nanjing’s historic walled city yields seven distinct plot morphological types. The framework separates plots that share identical FAR–GSI values but differ in internal organization. The baseline and ablation experiments confirm the indispensability of both configurational and metric information. Each type aligns with specific renewal strategies, from incremental upgrades of courtyard slabs to skyline management of high-rise complexes. By integrating quantitative graph learning with classical typo-morphology theory, this study not only advances urban form research but also offers planners a tool for context-sensitive urban regeneration and land-use management. Full article
Show Figures

Figure 1

24 pages, 3062 KiB  
Article
Sustainable IoT-Enabled Parking Management: A Multiagent Simulation Framework for Smart Urban Mobility
by Ibrahim Mutambik
Sustainability 2025, 17(14), 6382; https://doi.org/10.3390/su17146382 - 11 Jul 2025
Cited by 1 | Viewed by 401
Abstract
The efficient management of urban parking systems has emerged as a pivotal issue in today’s smart cities, where increasing vehicle populations strain limited parking infrastructure and challenge sustainable urban mobility. Aligned with the United Nations 2030 Agenda for Sustainable Development and the strategic [...] Read more.
The efficient management of urban parking systems has emerged as a pivotal issue in today’s smart cities, where increasing vehicle populations strain limited parking infrastructure and challenge sustainable urban mobility. Aligned with the United Nations 2030 Agenda for Sustainable Development and the strategic goals of smart city planning, this study presents a sustainability-driven, multiagent simulation-based framework to model, analyze, and optimize smart parking dynamics in congested urban settings. The system architecture integrates ground-level IoT sensors installed in parking spaces, enabling real-time occupancy detection and communication with a centralized system using low-power wide-area communication protocols (LPWAN). This study introduces an intelligent parking guidance mechanism that dynamically directs drivers to the nearest available slots based on location, historical traffic flow, and predicted availability. To manage real-time data flow, the framework incorporates message queuing telemetry transport (MQTT) protocols and edge processing units for low-latency updates. A predictive algorithm, combining spatial data, usage patterns, and time-series forecasting, supports decision-making for future slot allocation and dynamic pricing policies. Field simulations, calibrated with sensor data in a representative high-density urban district, assess system performance under peak and off-peak conditions. A comparative evaluation against traditional first-come-first-served and static parking systems highlights significant gains: average parking search time is reduced by 42%, vehicular congestion near parking zones declines by 35%, and emissions from circling vehicles drop by 27%. The system also improves user satisfaction by enabling mobile app-based reservation and payment options. These findings contribute to broader sustainability goals by supporting efficient land use, reducing environmental impacts, and enhancing urban livability—key dimensions emphasized in sustainable smart city strategies. The proposed framework offers a scalable, interdisciplinary solution for urban planners and policymakers striving to design inclusive, resilient, and environmentally responsible urban mobility systems. Full article
Show Figures

Figure 1

28 pages, 9666 KiB  
Article
An Efficient Path Planning Algorithm Based on Delaunay Triangular NavMesh for Off-Road Vehicle Navigation
by Ting Tian, Huijing Wu, Haitao Wei, Fang Wu and Jiandong Shang
World Electr. Veh. J. 2025, 16(7), 382; https://doi.org/10.3390/wevj16070382 - 7 Jul 2025
Viewed by 342
Abstract
Off-road path planning involves navigating vehicles through areas lacking established road networks, which is critical for emergency response in disaster events, but is limited by the complex geographical environments in natural conditions. How to model the vehicle’s off-road mobility effectively and represent environments [...] Read more.
Off-road path planning involves navigating vehicles through areas lacking established road networks, which is critical for emergency response in disaster events, but is limited by the complex geographical environments in natural conditions. How to model the vehicle’s off-road mobility effectively and represent environments is critical for efficient path planning in off-road environments. This paper proposed an improved A* path planning algorithm based on a Delaunay triangular NavMesh model with off-road environment representation. Firstly, a land cover off-road mobility model is constructed to determine the navigable regions by quantifying the mobility of different geographical factors. This model maps passable areas by considering factors such as slope, elevation, and vegetation density and utilizes morphological operations to minimize mapping noise. Secondly, a Delaunay triangular NavMesh model is established to represent off-road environments. This mesh leverages Delaunay triangulation’s empty circle and maximum-minimum angle properties, which accurately represent irregular obstacles without compromising computational efficiency. Finally, an improved A* path planning algorithm is developed to find the optimal off-road mobility path from a start point to an end point, and identify a path triangle chain with which to calculate the shortest path. The improved road-off path planning A* algorithm proposed in this paper, based on the Delaunay triangulation navigation mesh, uses the Euclidean distance between the midpoint of the input edge and the midpoint of the output edge as the cost function g(n), and the Euclidean distance between the centroids of the current triangle and the goal as the heuristic function h(n). Considering that the improved road-off path planning A* algorithm could identify a chain of path triangles for calculating the shortest path, the funnel algorithm was then introduced to transform the path planning problem into a dynamic geometric problem, iteratively approximating the optimal path by maintaining an evolving funnel region, obtaining a shortest path closer to the Euclidean shortest path. Research results indicate that the proposed algorithms yield optimal path-planning results in terms of both time and distance. The navigation mesh-based path planning algorithm saves 5~20% of path length than hexagonal and 8-directional grid algorithms used widely in previous research by using only 1~60% of the original data loading. In general, the path planning algorithm is based on a national-level navigation mesh model, validated at the national scale through four cases representing typical natural and social landscapes in China. Although the algorithms are currently constrained by the limited data accessibility reflecting real-time transportation status, these findings highlight the generalizability and efficiency of the proposed off-road path-planning algorithm, which is useful for path-planning solutions for emergency operations, wilderness adventures, and mineral exploration. Full article
Show Figures

Figure 1

11 pages, 4042 KiB  
Article
Assessment of ERA5-Land Reanalysis Precipitation Data in the Qilian Mountains of China
by Lihui Qian and Peng Zhao
Atmosphere 2025, 16(7), 826; https://doi.org/10.3390/atmos16070826 - 7 Jul 2025
Viewed by 291
Abstract
Precipitation serves as a crucial indicator of climate change and a vital part of the water cycle in mountainous regions. ERA5-Land, a cutting-edge global reanalysis dataset designed for land applications, has been extensively utilized in climate-related studies. In this research, we assessed the [...] Read more.
Precipitation serves as a crucial indicator of climate change and a vital part of the water cycle in mountainous regions. ERA5-Land, a cutting-edge global reanalysis dataset designed for land applications, has been extensively utilized in climate-related studies. In this research, we assessed the reliability of ERA5-Land monthly averaged reanalysis precipitation data in the Qilian Mountains (QLM). We did this by comparing it with the observations from 17 meteorological stations spanning from 1979 to 2017. The findings indicated that, overall, the ERA5-Land reanalysis precipitation data tended to overestimate the observed precipitation in the Qilian Mountains. The determination coefficient (R2) of the linear regression between ERA5-Land reanalysis precipitation and the observations was 0.97. This value implies that ERA5-Land reanalysis precipitation generally has good applicability in the Qilian Mountains. However, the annual-scale root mean square error (RMSE) was 3.97. This suggests that ERA5-Land reanalysis precipitation data cannot be directly applied to studies at a single meteorological station. The deviation between the ERA5-Land reanalysis precipitation data and the observed precipitation data can be ascribed to the altitude difference between meteorological stations and ERA5-Land grid points. Generally, as the altitude difference between meteorological stations and ERA5-Land grid points increases, the precipitation deviation also rises. This research can furnish a reference for the application of ERA5-Land reanalysis precipitation data in the Qilian Mountains. Full article
(This article belongs to the Section Meteorology)
Show Figures

Figure 1

19 pages, 51503 KiB  
Article
LSANet: Lightweight Super Resolution via Large Separable Kernel Attention for Edge Remote Sensing
by Tingting Yong and Xiaofang Liu
Appl. Sci. 2025, 15(13), 7497; https://doi.org/10.3390/app15137497 - 3 Jul 2025
Viewed by 337
Abstract
In recent years, remote sensing imagery has become indispensable for applications such as environmental monitoring, land use classification, and urban planning. However, the physical constraints of satellite imaging systems frequently limit the spatial resolution of these images, impeding the extraction of fine-grained information [...] Read more.
In recent years, remote sensing imagery has become indispensable for applications such as environmental monitoring, land use classification, and urban planning. However, the physical constraints of satellite imaging systems frequently limit the spatial resolution of these images, impeding the extraction of fine-grained information critical to downstream tasks. Super-resolution (SR) techniques thus emerge as a pivotal solution to enhance the spatial fidelity of remote sensing images via computational approaches. While deep learning-based SR methods have advanced reconstruction accuracy, their high computational complexity and large parameter counts restrict practical deployment in real-world remote sensing scenarios—particularly on edge or low-power devices. To address this gap, we propose LSANet, a lightweight SR network customized for remote sensing imagery. The core of LSANet is the large separable kernel attention mechanism, which efficiently expands the receptive field while retaining low computational overhead. By integrating this mechanism into an enhanced residual feature distillation module, the network captures long-range dependencies more effectively than traditional shallow residual blocks. Additionally, a residual feature enhancement module, leveraging contrast-aware channel attention and hierarchical skip connections, strengthens the extraction and integration of multi-level discriminative features. This design preserves fine textures and ensures smooth information propagation across the network. Extensive experiments on public datasets such as UC Merced Land Use and NWPU-RESISC45 demonstrate LSANet’s competitive or superior performance compared to state-of-the-art methods. On the UC Merced Land Use dataset, LSANet achieves a PSNR of 34.33, outperforming the best-baseline HSENet with its PSNR of 34.23 by 0.1. For SSIM, LSANet reaches 0.9328, closely matching HSENet’s 0.9332 while demonstrating excellent metric-balancing performance. On the NWPU-RESISC45 dataset, LSANet attains a PSNR of 35.02, marking a significant improvement over prior methods, and an SSIM of 0.9305, maintaining strong competitiveness. These results, combined with the notable reduction in parameters and floating-point operations, highlight the superiority of LSANet in remote sensing image super-resolution tasks. Full article
Show Figures

Figure 1

27 pages, 6828 KiB  
Article
A Lightweight Remote-Sensing Image-Change Detection Algorithm Based on Asymmetric Convolution and Attention Coupling
by Enze Zhang, Yan Li, Haifeng Lin and Min Xia
Remote Sens. 2025, 17(13), 2226; https://doi.org/10.3390/rs17132226 - 29 Jun 2025
Viewed by 393
Abstract
Remote-sensing image-change detection is indispensable for land management, environmental monitoring and related applications. In recent years, breakthroughs in satellite sensor technology have generated vast volumes of data and complex scenes, presenting significant challenges for change-detection algorithms. Traditional methods rely on handcrafted features, which [...] Read more.
Remote-sensing image-change detection is indispensable for land management, environmental monitoring and related applications. In recent years, breakthroughs in satellite sensor technology have generated vast volumes of data and complex scenes, presenting significant challenges for change-detection algorithms. Traditional methods rely on handcrafted features, which struggle to address the impacts of multi-source data heterogeneity and imaging condition differences. In this context, technology based on deep learning has made substantial breakthroughs in change-detection performance by automatically extracting high-level feature representations of the data. However, although the existing deep-learning models improve the detection accuracy through end-to-end learning, their high parameter count and computational inefficiency hinder suitability for real-time monitoring and edge device deployment. Therefore, to address the need for lightweight solutions in scenarios with limited computing resources, this paper proposes an attention-based lightweight remote sensing change detection network (ABLRCNet), which achieves a balance between computational efficiency and detection accuracy by using lightweight residual convolution blocks (LRCBs), multi-scale spatial-attention modules (MSAMs) and feature-difference enhancement modules (FDEMs). The experimental results demonstrate that the ABLRCNet achieves excellent performance on three datasets, significantly enhancing both the accuracy and robustness of change detection, while exhibiting efficient detection capabilities in resource-limited scenarios. Full article
Show Figures

Figure 1

Back to TopTop