Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (2,569)

Search Parameters:
Keywords = edge prediction

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 7670 KiB  
Article
Atomic-Scale Mechanisms of Stacking Fault Tetrahedra Formation, Growth, and Transformation in Aluminum via Vacancy Aggregation
by Xiang-Shan Kong, Zi-Yang Cao, Zhi-Yong Zhang and Tian-Li Su
Metals 2025, 15(8), 829; https://doi.org/10.3390/met15080829 (registering DOI) - 24 Jul 2025
Abstract
Stacking fault tetrahedra (SFTs) are typically considered improbable in high stacking fault energy metals like aluminum. Using molecular statics and dynamics simulations, we reveal the formation, growth, and transformation of SFTs in aluminum via vacancy aggregation. Three types—perfect, truncated, and defective SFTs—are characterized [...] Read more.
Stacking fault tetrahedra (SFTs) are typically considered improbable in high stacking fault energy metals like aluminum. Using molecular statics and dynamics simulations, we reveal the formation, growth, and transformation of SFTs in aluminum via vacancy aggregation. Three types—perfect, truncated, and defective SFTs—are characterized by their structure, formation energy, and binding energy across a range of vacancy cluster sizes. Formation energies of perfect and truncated SFTs follow a scaling relation; beyond a critical size, truncated SFTs become thermodynamically favored, indicating a size-dependent transformation pathway. Binding energy and structure evolution exhibit quasi-periodic behavior, where vacancies initially adsorb at the vertices or the midpoints of the edges of a perfect SFT, then aggregate along one facet, triggering fault nucleation and a binding energy jump as the system reconstructs into a new perfect SFT. Molecular dynamics simulations further confirm the SFT nucleation and growth via vacancy aggregation, consistent with thermodynamic predictions. SFTs exhibit notable thermal mobility, enabling coalescence and evolution into vacancy-type dislocation loops. BCC-like V5 clusters are identified as potential nucleation precursors. These findings explain the nanoscale, low-temperature nature of SFTs in aluminum and offer new insights into defect evolution and control in FCC metals. Full article
(This article belongs to the Section Computation and Simulation on Metals)
Show Figures

Graphical abstract

24 pages, 5980 KiB  
Article
Extraction of Agricultural Parcels Using Vector Contour Segmentation Network with Hybrid Backbone and Multiscale Edge Feature Extraction
by Feiyu Teng, Ling Wu and Shukuan Liu
Remote Sens. 2025, 17(15), 2556; https://doi.org/10.3390/rs17152556 - 23 Jul 2025
Abstract
The accurate acquisition of agricultural parcels from remote sensing images is crucial for agricultural management and crop production monitoring. Most of the existing agricultural parcel extraction methods comprise semantic segmentation through remote sensing images, pixel-level classification, and then vectorized raster data. However, this [...] Read more.
The accurate acquisition of agricultural parcels from remote sensing images is crucial for agricultural management and crop production monitoring. Most of the existing agricultural parcel extraction methods comprise semantic segmentation through remote sensing images, pixel-level classification, and then vectorized raster data. However, this approach faces challenges such as internal cavities, unclosed boundaries, and fuzzy edges, which hinder the accurate extraction of complete agricultural parcels. Therefore, this paper proposes a vector contour segmentation network based on the hybrid backbone and multiscale edge feature extraction module (HEVNet). We use the extraction of vector polygons of agricultural parcels by predicting the location of contour points, which avoids the above problems that may occur when raster data is converted to vector data. Simultaneously, this paper proposes a hybrid backbone for feature extraction. A hybrid backbone combines the respective advantages of the Resnet and Transformer backbone networks to balance local features and global features in feature extraction. In addition, we propose a multiscale edge feature extraction module, which can extract and enhance the edge features of different scales to prevent the possible loss of edge details in down sampling. This paper uses the datasets of Denmark, the Netherlands, iFLYTEK, and Hengyang in China to evaluate our model. The obtained IOU indexes were 67.92%, 81.35%, 78.02%, and 66.35%, which are higher than previous IOU indexes based on the optimal model (DBBANet). The results demonstrate that the proposed model significantly enhances the integrity and edge accuracy of agricultural parcel extraction. Full article
Show Figures

Figure 1

19 pages, 313 KiB  
Article
Survey on the Role of Mechanistic Interpretability in Generative AI
by Leonardo Ranaldi
Big Data Cogn. Comput. 2025, 9(8), 193; https://doi.org/10.3390/bdcc9080193 - 23 Jul 2025
Abstract
The rapid advancement of artificial intelligence (AI) and machine learning has revolutionised how systems process information, make decisions, and adapt to dynamic environments. AI-driven approaches have significantly enhanced efficiency and problem-solving capabilities across various domains, from automated decision-making to knowledge representation and predictive [...] Read more.
The rapid advancement of artificial intelligence (AI) and machine learning has revolutionised how systems process information, make decisions, and adapt to dynamic environments. AI-driven approaches have significantly enhanced efficiency and problem-solving capabilities across various domains, from automated decision-making to knowledge representation and predictive modelling. These developments have led to the emergence of increasingly sophisticated models capable of learning patterns, reasoning over complex data structures, and generalising across tasks. As AI systems become more deeply integrated into networked infrastructures and the Internet of Things (IoT), their ability to process and interpret data in real-time is essential for optimising intelligent communication networks, distributed decision making, and autonomous IoT systems. However, despite these achievements, the internal mechanisms that drive LLMs’ reasoning and generalisation capabilities remain largely unexplored. This lack of transparency, compounded by challenges such as hallucinations, adversarial perturbations, and misaligned human expectations, raises concerns about their safe and beneficial deployment. Understanding the underlying principles governing AI models is crucial for their integration into intelligent network systems, automated decision-making processes, and secure digital infrastructures. This paper provides a comprehensive analysis of explainability approaches aimed at uncovering the fundamental mechanisms of LLMs. We investigate the strategic components contributing to their generalisation abilities, focusing on methods to quantify acquired knowledge and assess its representation within model parameters. Specifically, we examine mechanistic interpretability, probing techniques, and representation engineering as tools to decipher how knowledge is structured, encoded, and retrieved in AI systems. Furthermore, by adopting a mechanistic perspective, we analyse emergent phenomena within training dynamics, particularly memorisation and generalisation, which also play a crucial role in broader AI-driven systems, including adaptive network intelligence, edge computing, and real-time decision-making architectures. Understanding these principles is crucial for bridging the gap between black-box AI models and practical, explainable AI applications, thereby ensuring trust, robustness, and efficiency in language-based and general AI systems. Full article
Show Figures

Figure 1

27 pages, 21494 KiB  
Article
Deep Learning and Transformer Models for Groundwater Level Prediction in the Marvdasht Plain: Protecting UNESCO Heritage Sites—Persepolis and Naqsh-e Rustam
by Peyman Heidarian, Franz Pablo Antezana Lopez, Yumin Tan, Somayeh Fathtabar Firozjaee, Tahmouras Yousefi, Habib Salehi, Ava Osman Pour, Maria Elena Oscori Marca, Guanhua Zhou, Ali Azhdari and Reza Shahbazi
Remote Sens. 2025, 17(14), 2532; https://doi.org/10.3390/rs17142532 - 21 Jul 2025
Viewed by 232
Abstract
Groundwater level monitoring is crucial for assessing hydrological responses to climate change and human activities, which pose significant threats to the sustainability of semi-arid aquifers and the cultural heritage they sustain. This study presents an integrated remote sensing and transformer-based deep learning framework [...] Read more.
Groundwater level monitoring is crucial for assessing hydrological responses to climate change and human activities, which pose significant threats to the sustainability of semi-arid aquifers and the cultural heritage they sustain. This study presents an integrated remote sensing and transformer-based deep learning framework that combines diverse geospatial datasets to predict spatiotemporal variations across the plain near the Persepolis and Naqsh-e Rustam archaeological complexes—UNESCO World Heritage Sites situated at the plain’s edge. We assemble 432 synthetic aperture radar (SAR) scenes (2015–2022) and derive vertical ground motion rates greater than −180 mm yr−1, which are co-localized with multisource geoinformation, including hydrometeorological indices, biophysical parameters, and terrain attributes, to train transformer models with traditional deep learning methods. A sparse probabilistic transformer (ConvTransformer) trained on 95 gridded variables achieves an out-of-sample R2 = 0.83 and RMSE = 6.15 m, outperforming bidirectional deep learning models by >40%. Scenario analysis indicates that, in the absence of intervention, subsidence may exceed 200 mm per year within a decade, threatening irreplaceable Achaemenid stone reliefs. Our results indicate that attention-based networks, when coupled to synergistic geodetic constraints, enable early-warning quantification of groundwater stress over heritage sites and provide a scalable template for sustainable aquifer governance worldwide. Full article
Show Figures

Figure 1

40 pages, 16352 KiB  
Review
Surface Protection Technologies for Earthen Sites in the 21st Century: Hotspots, Evolution, and Future Trends in Digitalization, Intelligence, and Sustainability
by Yingzhi Xiao, Yi Chen, Yuhao Huang and Yu Yan
Coatings 2025, 15(7), 855; https://doi.org/10.3390/coatings15070855 - 20 Jul 2025
Viewed by 422
Abstract
As vital material carriers of human civilization, earthen sites are experiencing continuous surface deterioration under the combined effects of weathering and anthropogenic damage. Traditional surface conservation techniques, due to their poor compatibility and limited reversibility, struggle to address the compound challenges of micro-scale [...] Read more.
As vital material carriers of human civilization, earthen sites are experiencing continuous surface deterioration under the combined effects of weathering and anthropogenic damage. Traditional surface conservation techniques, due to their poor compatibility and limited reversibility, struggle to address the compound challenges of micro-scale degradation and macro-scale deformation. With the deep integration of digital twin technology, spatial information technologies, intelligent systems, and sustainable concepts, earthen site surface conservation technologies are transitioning from single-point applications to multidimensional integration. However, challenges remain in terms of the insufficient systematization of technology integration and the absence of a comprehensive interdisciplinary theoretical framework. Based on the dual-core databases of Web of Science and Scopus, this study systematically reviews the technological evolution of surface conservation for earthen sites between 2000 and 2025. CiteSpace 6.2 R4 and VOSviewer 1.6 were used for bibliometric visualization analysis, which was innovatively combined with manual close reading of the key literature and GPT-assisted semantic mining (error rate < 5%) to efficiently identify core research themes and infer deeper trends. The results reveal the following: (1) technological evolution follows a three-stage trajectory—from early point-based monitoring technologies, such as remote sensing (RS) and the Global Positioning System (GPS), to spatial modeling technologies, such as light detection and ranging (LiDAR) and geographic information systems (GIS), and, finally, to today’s integrated intelligent monitoring systems based on multi-source fusion; (2) the key surface technology system comprises GIS-based spatial data management, high-precision modeling via LiDAR, 3D reconstruction using oblique photogrammetry, and building information modeling (BIM) for structural protection, while cutting-edge areas focus on digital twin (DT) and the Internet of Things (IoT) for intelligent monitoring, augmented reality (AR) for immersive visualization, and blockchain technologies for digital authentication; (3) future research is expected to integrate big data and cloud computing to enable multidimensional prediction of surface deterioration, while virtual reality (VR) will overcome spatial–temporal limitations and push conservation paradigms toward automation, intelligence, and sustainability. This study, grounded in the technological evolution of surface protection for earthen sites, constructs a triadic framework of “intelligent monitoring–technological integration–collaborative application,” revealing the integration needs between DT and VR for surface technologies. It provides methodological support for addressing current technical bottlenecks and lays the foundation for dynamic surface protection, solution optimization, and interdisciplinary collaboration. Full article
Show Figures

Graphical abstract

26 pages, 5914 KiB  
Article
BiDGCNLLM: A Graph–Language Model for Drone State Forecasting and Separation in Urban Air Mobility Using Digital Twin-Augmented Remote ID Data
by Zhang Wen, Junjie Zhao, An Zhang, Wenhao Bi, Boyu Kuang, Yu Su and Ruixin Wang
Drones 2025, 9(7), 508; https://doi.org/10.3390/drones9070508 - 19 Jul 2025
Viewed by 228
Abstract
Accurate prediction of drone motion within structured urban air corridors is essential for ensuring safe and efficient operations in Urban Air Mobility (UAM) systems. Although real-world Remote Identification (Remote ID) regulations require drones to broadcast critical flight information such as velocity, access to [...] Read more.
Accurate prediction of drone motion within structured urban air corridors is essential for ensuring safe and efficient operations in Urban Air Mobility (UAM) systems. Although real-world Remote Identification (Remote ID) regulations require drones to broadcast critical flight information such as velocity, access to large-scale, high-quality broadcast data remains limited. To address this, this study leverages a Digital Twin (DT) framework to augment Remote ID spatio-temporal broadcasts, emulating the sensing environment of dense urban airspace. Using Remote ID data, we propose BiDGCNLLM, a hybrid prediction framework that integrates a Bidirectional Graph Convolutional Network (BiGCN) with Dynamic Edge Weighting and a reprogrammed Large Language Model (LLM, Qwen2.5–0.5B) to capture spatial dependencies and temporal patterns in drone speed trajectories. The model forecasts near-future speed variations in surrounding drones, supporting proactive conflict avoidance in constrained air corridors. Results from the AirSUMO co-simulation platform and a DT replica of the Cranfield University campus show that BiDGCNLLM outperforms state-of-the-art time series models in short-term velocity prediction. Compared to Transformer-LSTM, BiDGCNLLM marginally improves the R2 by 11.59%. This study introduces the integration of LLMs into dynamic graph-based drone prediction. It shows the potential of Remote ID broadcasts to enable scalable, real-time airspace safety solutions in UAM. Full article
Show Figures

Figure 1

28 pages, 43087 KiB  
Article
LWSARDet: A Lightweight SAR Small Ship Target Detection Network Based on a Position–Morphology Matching Mechanism
by Yuliang Zhao, Yang Du, Qiutong Wang, Changhe Li, Yan Miao, Tengfei Wang and Xiangyu Song
Remote Sens. 2025, 17(14), 2514; https://doi.org/10.3390/rs17142514 - 19 Jul 2025
Viewed by 175
Abstract
The all-weather imaging capability of synthetic aperture radar (SAR) confers unique advantages for maritime surveillance. However, ship detection under complex sea conditions still faces challenges, such as high-frequency noise interference and the limited computational power of edge computing platforms. To address these challenges, [...] Read more.
The all-weather imaging capability of synthetic aperture radar (SAR) confers unique advantages for maritime surveillance. However, ship detection under complex sea conditions still faces challenges, such as high-frequency noise interference and the limited computational power of edge computing platforms. To address these challenges, we propose a lightweight SAR small ship detection network, LWSARDet, which mitigates feature redundancy and reduces computational complexity in existing models. Specifically, based on the YOLOv5 framework, a dual strategy for the lightweight network is adopted as follows: On the one hand, to address the limited nonlinear representation ability of the original network, a global channel attention mechanism is embedded and a feature extraction module, GCCR-GhostNet, is constructed, which can effectively enhance the network’s feature extraction capability and high-frequency noise suppression, while reducing computational cost. On the other hand, to reduce feature dilution and computational redundancy in traditional detection heads when focusing on small targets, we replace conventional convolutions with simple linear transformations and design a lightweight detection head, LSD-Head. Furthermore, we propose a Position–Morphology Matching IoU loss function, P-MIoU, which integrates center distance constraints and morphological penalty mechanisms to more precisely capture the spatial and structural differences between predicted and ground truth bounding boxes. Extensive experiments conduct on the High-Resolution SAR Image Dataset (HRSID) and the SAR Ship Detection Dataset (SSDD) demonstrate that LWSARDet achieves superior overall performance compared to existing state-of-the-art (SOTA) methods. Full article
Show Figures

Figure 1

19 pages, 3923 KiB  
Article
Automated Aneurysm Boundary Detection and Volume Estimation Using Deep Learning
by Alireza Bagheri Rajeoni, Breanna Pederson, Susan M. Lessner and Homayoun Valafar
Diagnostics 2025, 15(14), 1804; https://doi.org/10.3390/diagnostics15141804 - 17 Jul 2025
Viewed by 219
Abstract
Background/Objective: Precise aneurysm volume measurement offers a transformative edge for risk assessment and treatment planning in clinical settings. Currently, clinical assessments rely heavily on manual review of medical imaging, a process that is time-consuming and prone to inter-observer variability. The widely accepted standard [...] Read more.
Background/Objective: Precise aneurysm volume measurement offers a transformative edge for risk assessment and treatment planning in clinical settings. Currently, clinical assessments rely heavily on manual review of medical imaging, a process that is time-consuming and prone to inter-observer variability. The widely accepted standard of care primarily focuses on measuring aneurysm diameter at its widest point, providing a limited perspective on aneurysm morphology and lacking efficient methods to measure aneurysm volumes. Yet, volume measurement can offer deeper insight into aneurysm progression and severity. In this study, we propose an automated approach that leverages the strengths of pre-trained neural networks and expert systems to delineate aneurysm boundaries and compute volumes on an unannotated dataset from 60 patients. The dataset includes slice-level start/end annotations for aneurysm but no pixel-wise aorta segmentations. Method: Our method utilizes a pre-trained UNet to automatically locate the aorta, employs SAM2 to track the aorta through vascular irregularities such as aneurysms down to the iliac bifurcation, and finally uses a Long Short-Term Memory (LSTM) network or expert system to identify the beginning and end points of the aneurysm within the aorta. Results: Despite no manual aorta segmentation, our approach achieves promising accuracy, predicting the aneurysm start point with an R2 score of 71%, the end point with an R2 score of 76%, and the volume with an R2 score of 92%. Conclusions: This technique has the potential to facilitate large-scale aneurysm analysis and improve clinical decision-making by reducing dependence on annotated datasets. Full article
(This article belongs to the Section Machine Learning and Artificial Intelligence in Diagnostics)
Show Figures

Figure 1

15 pages, 3364 KiB  
Article
Potential Benefits of Polar Transformation of Time–Frequency Electrocardiogram (ECG) Signals for Evaluation of Cardiac Arrhythmia
by Hanbit Kang, Daehyun Kwon and Yoon-Chul Kim
Appl. Sci. 2025, 15(14), 7980; https://doi.org/10.3390/app15147980 - 17 Jul 2025
Viewed by 128
Abstract
There is a lack of studies on the effectiveness of polar-transformed spectrograms in the visualization and prediction of cardiac arrhythmias from electrocardiogram (ECG) data. In this study, single-lead ECG waveforms were converted into two-dimensional rectangular time–frequency spectrograms and polar time–frequency spectrograms. Three pre-trained [...] Read more.
There is a lack of studies on the effectiveness of polar-transformed spectrograms in the visualization and prediction of cardiac arrhythmias from electrocardiogram (ECG) data. In this study, single-lead ECG waveforms were converted into two-dimensional rectangular time–frequency spectrograms and polar time–frequency spectrograms. Three pre-trained convolutional neural network (CNN) models (ResNet50, MobileNet, and DenseNet121) served as baseline networks for model development and testing. Prediction performance and visualization quality were evaluated across various image resolutions. The trade-offs between image resolution and model capacity were quantitatively analyzed. Polar-transformed spectrograms demonstrated superior delineation of R-R intervals at lower image resolutions (e.g., 96 × 96 pixels) compared to conventional spectrograms. For deep-learning-based classification of cardiac arrhythmias, polar-transformed spectrograms achieved comparable accuracy to conventional spectrograms across all evaluated resolutions. The results suggest that polar-transformed spectrograms are particularly advantageous for deep CNN predictions at lower resolutions, making them suitable for edge computing applications where the reduced use of computing resources, such as memory and power consumption, is desirable. Full article
Show Figures

Figure 1

42 pages, 6065 KiB  
Review
Digital Alchemy: The Rise of Machine and Deep Learning in Small-Molecule Drug Discovery
by Abdul Manan, Eunhye Baek, Sidra Ilyas and Donghun Lee
Int. J. Mol. Sci. 2025, 26(14), 6807; https://doi.org/10.3390/ijms26146807 - 16 Jul 2025
Viewed by 509
Abstract
This review provides a comprehensive analysis of the transformative impact of artificial intelligence (AI) and machine learning (ML) on modern drug design, specifically focusing on how these advanced computational techniques address the inherent limitations of traditional small-molecule drug design methodologies. It begins by [...] Read more.
This review provides a comprehensive analysis of the transformative impact of artificial intelligence (AI) and machine learning (ML) on modern drug design, specifically focusing on how these advanced computational techniques address the inherent limitations of traditional small-molecule drug design methodologies. It begins by outlining the historical challenges of the drug discovery pipeline, including protracted timelines, exorbitant costs, and high clinical failure rates. Subsequently, it examines the core principles of structure-based virtual screening (SBVS) and ligand-based virtual screening (LBVS), establishing the critical bottlenecks that have historically impeded efficient drug development. The central sections elucidate how cutting-edge ML and deep learning (DL) paradigms, such as generative models and reinforcement learning, are revolutionizing chemical space exploration, enhancing binding affinity prediction, improving protein flexibility modeling, and automating critical design tasks. Illustrative real-world case studies demonstrating quantifiable accelerations in discovery timelines and improved success probabilities are presented. Finally, the review critically examines prevailing challenges, including data quality, model interpretability, ethical considerations, and evolving regulatory landscapes, while offering forward-looking critical perspectives on the future trajectory of AI-driven pharmaceutical innovation. Full article
(This article belongs to the Special Issue Advances in Computer-Aided Drug Design Strategies)
Show Figures

Graphical abstract

18 pages, 3225 KiB  
Article
Autonomous Tracking of Steel Lazy Wave Risers Using a Hybrid Vision–Acoustic AUV Framework
by Ali Ghasemi and Hodjat Shiri
J. Mar. Sci. Eng. 2025, 13(7), 1347; https://doi.org/10.3390/jmse13071347 - 15 Jul 2025
Viewed by 202
Abstract
Steel lazy wave risers (SLWRs) are critical in offshore hydrocarbon transport for linking subsea wells to floating production facilities in deep-water environments. The incorporation of buoyancy modules reduces curvature-induced stress concentrations in the touchdown zone (TDZ); however, extended operational exposure under cyclic environmental [...] Read more.
Steel lazy wave risers (SLWRs) are critical in offshore hydrocarbon transport for linking subsea wells to floating production facilities in deep-water environments. The incorporation of buoyancy modules reduces curvature-induced stress concentrations in the touchdown zone (TDZ); however, extended operational exposure under cyclic environmental and operational loads results in repeated seabed contact. This repeated interaction modifies the seabed soil over time, gradually forming a trench and altering the riser configuration, which significantly impacts stress patterns and contributes to fatigue degradation. Accurately reconstructing the riser’s evolving profile in the TDZ is essential for reliable fatigue life estimation and structural integrity evaluation. This study proposes a simulation-based framework for the autonomous tracking of SLWRs using a fin-actuated autonomous underwater vehicle (AUV) equipped with a monocular camera and multibeam echosounder. By fusing visual and acoustic data, the system continuously estimates the AUV’s relative position concerning the riser. A dedicated image processing pipeline, comprising bilateral filtering, edge detection, Hough transform, and K-means clustering, facilitates the extraction of the riser’s centerline and measures its displacement from nearby objects and seabed variations. The framework was developed and validated in the underwater unmanned vehicle (UUV) Simulator, a high-fidelity underwater robotics and pipeline inspection environment. Simulated scenarios included the riser’s dynamic lateral and vertical oscillations, in which the system demonstrated robust performance in capturing complex three-dimensional trajectories. The resulting riser profiles can be integrated into numerical models incorporating riser–soil interaction and non-linear hysteretic behavior, ultimately enhancing fatigue prediction accuracy and informing long-term infrastructure maintenance strategies. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

39 pages, 7470 KiB  
Article
Estimation of Fractal Dimension and Semantic Segmentation of Motion-Blurred Images by Knowledge Distillation in Autonomous Vehicle
by Seong In Jeong, Min Su Jeong and Kang Ryoung Park
Fractal Fract. 2025, 9(7), 460; https://doi.org/10.3390/fractalfract9070460 - 15 Jul 2025
Viewed by 313
Abstract
Research on semantic segmentation for remote sensing road scenes advanced significantly, driven by autonomous driving technology. However, motion blur from camera or subject movements hampers segmentation performance. To address this issue, we propose a knowledge distillation-based semantic segmentation network (KDS-Net) that is robust [...] Read more.
Research on semantic segmentation for remote sensing road scenes advanced significantly, driven by autonomous driving technology. However, motion blur from camera or subject movements hampers segmentation performance. To address this issue, we propose a knowledge distillation-based semantic segmentation network (KDS-Net) that is robust to motion blur, eliminating the need for image restoration networks. KDS-Net leverages innovative knowledge distillation techniques and edge-enhanced segmentation loss to refine edge regions and improve segmentation precision across various receptive fields. To enhance the interpretability of segmentation quality under motion blur, we incorporate fractal dimension estimation to quantify the geometric complexity of class-specific regions, allowing for a structural assessment of predictions generated by the proposed knowledge distillation framework for autonomous driving. Experiments on well-known motion-blurred remote sensing road scene datasets (CamVid and KITTI) demonstrate mean IoU scores of 72.42% and 59.29%, respectively, surpassing state-of-the-art methods. Additionally, the lightweight KDS-Net (21.44 M parameters) enables real-time edge computing, mitigating data privacy concerns and communication overheads in internet of vehicles scenarios. Full article
Show Figures

Figure 1

16 pages, 6900 KiB  
Article
Infrared Small Target Detection via Modified Fast Saliency and Weighted Guided Image Filtering
by Yi Cui, Tao Lei, Guiting Chen, Yunjing Zhang, Gang Zhang and Xuying Hao
Sensors 2025, 25(14), 4405; https://doi.org/10.3390/s25144405 - 15 Jul 2025
Viewed by 224
Abstract
The robust detection of small targets is crucial in infrared (IR) search and tracking applications. Considering that many state-of-the-art (SOTA) methods are still unable to suppress various edges satisfactorily, especially under complex backgrounds, an effective infrared small target detection algorithm inspired by modified [...] Read more.
The robust detection of small targets is crucial in infrared (IR) search and tracking applications. Considering that many state-of-the-art (SOTA) methods are still unable to suppress various edges satisfactorily, especially under complex backgrounds, an effective infrared small target detection algorithm inspired by modified fast saliency and the weighted guided image filter (WGIF) is presented in this paper. Initially, the fast saliency map modulated by the steering kernel (SK) is calculated. Then, a set of edge-preserving smoothed images are produced by WGIF using different filter radii and regularization parameters. After that, utilizing the fuzzy sets technique, the background image is predicted reasonably according to the results of the saliency map and smoothed or non-smoothed images. Finally, the differential image is calculated by subtracting the predicted image from the original one, and IR small targets are detected through a simple thresholding. Experimental results on four sequences demonstrate that the proposed method can not only suppress background clutter effectively under strong edge interference but also detect targets accurately with a low false alarm rate. Full article
Show Figures

Figure 1

27 pages, 5958 KiB  
Review
Trends and Trajectories: A Bibliometric Analysis of Financial Risk (2015–2024)
by Jiajia Liu, Yibin Liu, Lijun Ren, Xuerong Li and Shouyang Wang
Int. J. Financial Stud. 2025, 13(3), 132; https://doi.org/10.3390/ijfs13030132 - 15 Jul 2025
Viewed by 297
Abstract
This study conducts a comprehensive bibliometric analysis and predictive modeling of financial risk research from 2015 to 2024, integrating conceptual, knowledge, and collaboration perspectives. Utilizing the PRISMA framework for literature screening, the study identifies publications, research areas, and research institutions. A co-citation network [...] Read more.
This study conducts a comprehensive bibliometric analysis and predictive modeling of financial risk research from 2015 to 2024, integrating conceptual, knowledge, and collaboration perspectives. Utilizing the PRISMA framework for literature screening, the study identifies publications, research areas, and research institutions. A co-citation network approach reveals the intellectual structure and milestone works, while emergent keyword detection highlights cutting-edge topics such as economic policy uncertainty, climate risk, and green innovation. Furthermore, the study proposes a novel semantic forecasting model, SEF-ACLSTM (Semantic Evolution Forecasting with Aligned Clustered LSTM), to predict the evolution of research themes through 2030. The results identify three major thematic clusters: methodological innovation, traditional risk management, and green finance. The predictive analysis indicates a growing emphasis on methodological and sustainability-oriented topics, suggesting a paradigmatic shift in financial risk research. The findings offer theoretical insights and strategic guidance for future academic inquiry and policy formulation. Full article
Show Figures

Figure 1

29 pages, 2211 KiB  
Article
Big Data Analytics Framework for Decision-Making in Sports Performance Optimization
by Dan Cristian Mănescu
Data 2025, 10(7), 116; https://doi.org/10.3390/data10070116 - 14 Jul 2025
Viewed by 410
Abstract
The rapid proliferation of wearable sensors and advanced tracking technologies has revolutionized data collection in elite sports, enabling continuous monitoring of athletes’ physiological and biomechanical states. This study proposes a comprehensive big data analytics framework that integrates data acquisition, processing, analytics, and decision [...] Read more.
The rapid proliferation of wearable sensors and advanced tracking technologies has revolutionized data collection in elite sports, enabling continuous monitoring of athletes’ physiological and biomechanical states. This study proposes a comprehensive big data analytics framework that integrates data acquisition, processing, analytics, and decision support, demonstrated through synthetic datasets in football, basketball, and athletics case scenarios, modeled to represent typical data patterns and decision-making workflows observed in elite sport environments. Analytical methods, including gradient boosting classifiers, logistic regression, and multilayer perceptron models, were employed to predict injury risk, optimize in-game tactical decisions, and personalize sprint mechanics training. Key results include a 12% reduction in hamstring injury rates in football, a 16% improvement in clutch decision-making accuracy in basketball, and an 8% decrease in 100 m sprint times among athletes. The framework’s visualization tools and alert systems supported actionable insights for coaches and medical staff. Challenges such as data quality, privacy compliance, and model interpretability are addressed, with future research focusing on edge computing, federated learning, and augmented reality integration for enhanced real-time feedback. This study demonstrates the potential of integrated big data analytics to transform sports performance optimization, offering a reproducible and ethically sound platform for advancing personalized, data-driven athlete management. Full article
(This article belongs to the Special Issue Big Data and Data-Driven Research in Sports)
Show Figures

Figure 1

Back to TopTop