Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (4,954)

Search Parameters:
Keywords = edge enhanced

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 3792 KiB  
Article
An Improved Galerkin Framework for Solving Unsteady High-Reynolds Navier–Stokes Equations
by Jinlin Tang and Qiang Ma
Appl. Sci. 2025, 15(15), 8606; https://doi.org/10.3390/app15158606 (registering DOI) - 3 Aug 2025
Abstract
The numerical simulation of unsteady, high-Reynolds-number incompressible flows governed by the Navier–Stokes (NS) equations presents significant challenges in computational fluid dynamics, primarily concerning numerical stability and computational efficiency. Standard Galerkin finite element methods often suffer from non-physical oscillations in convection-dominated regimes, while the [...] Read more.
The numerical simulation of unsteady, high-Reynolds-number incompressible flows governed by the Navier–Stokes (NS) equations presents significant challenges in computational fluid dynamics, primarily concerning numerical stability and computational efficiency. Standard Galerkin finite element methods often suffer from non-physical oscillations in convection-dominated regimes, while the multiscale nature of these flows demands prohibitively high computational resources for uniformly refined meshes. This paper proposes an improved Galerkin framework that synergistically integrates a Variational Multiscale Stabilization (VMS) method with an adaptive mesh refinement (AMR) strategy to overcome these dual challenges. Based on the Ritz–Galerkin formulation with the stable Taylor–Hood (P2P1) element, a VMS term is introduced, derived from a generalized θ-scheme. This explicitly constructs a subgrid-scale model to effectively suppress numerical oscillations without introducing excessive artificial diffusion. To enhance computational efficiency, a novel a posteriori error estimator is developed based on dual residuals. This estimator provides the robust and accurate localization of numerical errors by dynamically weighting the momentum and continuity residuals within each element, as well as the flux jumps across element boundaries. This error indicator guides an AMR algorithm that combines longest-edge bisection with local Delaunay re-triangulation, ensuring optimal mesh adaptation to complex flow features such as boundary layers and vortices. Furthermore, the stability of the Taylor–Hood element, essential for stable velocity–pressure coupling, is preserved within this integrated framework. Numerical experiments are presented to verify the effectiveness of the proposed method, demonstrating its ability to achieve stable, high-fidelity solutions on adaptively refined grids with a substantial reduction in computational cost. Full article
25 pages, 6934 KiB  
Article
Feature Constraints Map Generation Models Integrating Generative Adversarial and Diffusion Denoising
by Chenxing Sun, Xixi Fan, Xiechun Lu, Laner Zhou, Junli Zhao, Yuxuan Dong and Zhanlong Chen
Remote Sens. 2025, 17(15), 2683; https://doi.org/10.3390/rs17152683 (registering DOI) - 3 Aug 2025
Abstract
The accelerated evolution of remote sensing technology has intensified the demand for real-time tile map generation, highlighting the limitations of conventional mapping approaches that rely on manual cartography and field surveys. To address the critical need for rapid cartographic updates, this study presents [...] Read more.
The accelerated evolution of remote sensing technology has intensified the demand for real-time tile map generation, highlighting the limitations of conventional mapping approaches that rely on manual cartography and field surveys. To address the critical need for rapid cartographic updates, this study presents a novel multi-stage generative framework that synergistically integrates Generative Adversarial Networks (GANs) with Diffusion Denoising Models (DMs) for high-fidelity map generation from remote sensing imagery. Specifically, our proposed architecture first employs GANs for rapid preliminary map generation, followed by a cascaded diffusion process that progressively refines topological details and spatial accuracy through iterative denoising. Furthermore, we propose a hybrid attention mechanism that strategically combines channel-wise feature recalibration with coordinate-aware spatial modulation, enabling the enhanced discrimination of geographic features under challenging conditions involving edge ambiguity and environmental noise. Quantitative evaluations demonstrate that our method significantly surpasses established baselines in both structural consistency and geometric fidelity. This framework establishes an operational paradigm for automated, rapid-response cartography, demonstrating a particular utility in time-sensitive applications including disaster impact assessment, unmapped terrain documentation, and dynamic environmental surveillance. Full article
Show Figures

Figure 1

4 pages, 162 KiB  
Editorial
Synthesis, Characterization, and Application of Polymer-Based Materials
by Zlatan Zlatev Denchev and Nadya Vasileva Dencheva
Molecules 2025, 30(15), 3244; https://doi.org/10.3390/molecules30153244 (registering DOI) - 2 Aug 2025
Abstract
The field of polymer-based materials is advancing rapidly, driven by the growing demand for sustainable technologies, enhanced functionalities, and cutting-edge manufacturing methods [...] Full article
19 pages, 2359 KiB  
Article
Research on Concrete Crack Damage Assessment Method Based on Pseudo-Label Semi-Supervised Learning
by Ming Xie, Zhangdong Wang and Li’e Yin
Buildings 2025, 15(15), 2726; https://doi.org/10.3390/buildings15152726 (registering DOI) - 1 Aug 2025
Abstract
To address the inefficiency of traditional concrete crack detection methods and the heavy reliance of supervised learning on extensive labeled data, in this study, an intelligent assessment method of concrete damage based on pseudo-label semi-supervised learning and fractal geometry theory is proposed to [...] Read more.
To address the inefficiency of traditional concrete crack detection methods and the heavy reliance of supervised learning on extensive labeled data, in this study, an intelligent assessment method of concrete damage based on pseudo-label semi-supervised learning and fractal geometry theory is proposed to solve two core tasks: one is binary classification of pixel-level cracks, and the other is multi-category assessment of damage state based on crack morphology. Using three-channel RGB images as input, a dual-path collaborative training framework based on U-Net encoder–decoder architecture is constructed, and a binary segmentation mask of the same size is output to achieve the accurate segmentation of cracks at the pixel level. By constructing a dual-path collaborative training framework and employing a dynamic pseudo-label refinement mechanism, the model achieves an F1-score of 0.883 using only 50% labeled data—a mere 1.3% decrease compared to the fully supervised benchmark DeepCrack (F1 = 0.896)—while reducing manual annotation costs by over 60%. Furthermore, a quantitative correlation model between crack fractal characteristics and structural damage severity is established by combining a U-Net segmentation network with the differential box-counting algorithm. The experimental results demonstrate that under a cyclic loading of 147.6–221.4 kN, the fractal dimension monotonically increases from 1.073 (moderate damage) to 1.189 (failure), with 100% accuracy in damage state identification, closely aligning with the degradation trend of macroscopic mechanical properties. In complex crack scenarios, the model attains a recall rate (Re = 0.882), surpassing U-Net by 13.9%, with significantly enhanced edge reconstruction precision. Compared with the mainstream models, this method effectively alleviates the problem of data annotation dependence through a semi-supervised strategy while maintaining high accuracy. It provides an efficient structural health monitoring solution for engineering practice, which is of great value to promote the application of intelligent detection technology in infrastructure operation and maintenance. Full article
Show Figures

Figure 1

32 pages, 2962 KiB  
Article
Optimizing Passive Thermal Enhancement via Embedded Fins: A Multi-Parametric Study of Natural Convection in Square Cavities
by Saleh A. Bawazeer
Energies 2025, 18(15), 4098; https://doi.org/10.3390/en18154098 (registering DOI) - 1 Aug 2025
Abstract
Internal fins are commonly utilized as a passive technique to enhance natural convection, but their efficiency depends on complex interplay between fin design, material properties, and convective strength. This study presents an extensive numerical analysis of buoyancy-driven flow in square cavities containing a [...] Read more.
Internal fins are commonly utilized as a passive technique to enhance natural convection, but their efficiency depends on complex interplay between fin design, material properties, and convective strength. This study presents an extensive numerical analysis of buoyancy-driven flow in square cavities containing a single horizontal fin on the hot wall. Over 9000 simulations were conducted, methodically varying the Rayleigh number (Ra = 10 to 105), Prandtl number (Pr = 0.1 to 10), and fin characteristics, such as length, vertical position, thickness, and the thermal conductivity ratio (up to 1000), to assess their overall impact on thermal efficiency. Thermal enhancements compared to scenarios without fins are quantified using local and average Nusselt numbers, as well as a Nusselt number ratio (NNR). The results reveal that, contrary to conventional beliefs, long fins positioned centrally can actually decrease heat transfer by up to 11.8% at high Ra and Pr due to the disruption of thermal plumes and diminished circulation. Conversely, shorter fins located near the cavity’s top and bottom wall edges can enhance the Nusselt numbers for the hot wall by up to 8.4%, thereby positively affecting the development of thermal boundary layers. A U-shaped Nusselt number distribution related to fin placement appears at Ra ≥ 103, where edge-aligned fins consistently outperform those positioned mid-height. The benefits of high-conductivity fins become increasingly nonlinear at larger Ra, with advantages limited to designs that minimally disrupt core convective patterns. These findings challenge established notions regarding passive thermal enhancement and provide a predictive thermogeometric framework for designing enclosures. The results can be directly applied to passive cooling systems in electronics, battery packs, solar thermal collectors, and energy-efficient buildings, where optimizing heat transfer is vital without employing active control methods. Full article
22 pages, 6482 KiB  
Article
Surface Damage Detection in Hydraulic Structures from UAV Images Using Lightweight Neural Networks
by Feng Han and Chongshi Gu
Remote Sens. 2025, 17(15), 2668; https://doi.org/10.3390/rs17152668 (registering DOI) - 1 Aug 2025
Abstract
Timely and accurate identification of surface damage in hydraulic structures is essential for maintaining structural integrity and ensuring operational safety. Traditional manual inspections are time-consuming, labor-intensive, and prone to subjectivity, especially for large-scale or inaccessible infrastructure. Leveraging advancements in aerial imaging, unmanned aerial [...] Read more.
Timely and accurate identification of surface damage in hydraulic structures is essential for maintaining structural integrity and ensuring operational safety. Traditional manual inspections are time-consuming, labor-intensive, and prone to subjectivity, especially for large-scale or inaccessible infrastructure. Leveraging advancements in aerial imaging, unmanned aerial vehicles (UAVs) enable efficient acquisition of high-resolution visual data across expansive hydraulic environments. However, existing deep learning (DL) models often lack architectural adaptations for the visual complexities of UAV imagery, including low-texture contrast, noise interference, and irregular crack patterns. To address these challenges, this study proposes a lightweight, robust, and high-precision segmentation framework, called LFPA-EAM-Fast-SCNN, specifically designed for pixel-level damage detection in UAV-captured images of hydraulic concrete surfaces. The developed DL-based model integrates an enhanced Fast-SCNN backbone for efficient feature extraction, a Lightweight Feature Pyramid Attention (LFPA) module for multi-scale context enhancement, and an Edge Attention Module (EAM) for refined boundary localization. The experimental results on a custom UAV-based dataset show that the proposed damage detection method achieves superior performance, with a precision of 0.949, a recall of 0.892, an F1 score of 0.906, and an IoU of 87.92%, outperforming U-Net, Attention U-Net, SegNet, DeepLab v3+, I-ST-UNet, and SegFormer. Additionally, it reaches a real-time inference speed of 56.31 FPS, significantly surpassing other models. The experimental results demonstrate the proposed framework’s strong generalization capability and robustness under varying noise levels and damage scenarios, underscoring its suitability for scalable, automated surface damage assessment in UAV-based remote sensing of civil infrastructure. Full article
Show Figures

Figure 1

21 pages, 3146 KiB  
Article
TnP as a Multifaceted Therapeutic Peptide with System-Wide Regulatory Capacity
by Geonildo Rodrigo Disner, Emma Wincent, Carla Lima and Monica Lopes-Ferreira
Pharmaceuticals 2025, 18(8), 1146; https://doi.org/10.3390/ph18081146 (registering DOI) - 1 Aug 2025
Viewed by 52
Abstract
Background: The candidate therapeutic peptide TnP demonstrates broad, system-level regulatory capacity, revealed through integrated network analysis from transcriptomic data in zebrafish. Our study primarily identifies TnP as a multifaceted modulator of drug metabolism, wound healing, proteolytic activity, and pigmentation pathways. Results: Transcriptomic profiling [...] Read more.
Background: The candidate therapeutic peptide TnP demonstrates broad, system-level regulatory capacity, revealed through integrated network analysis from transcriptomic data in zebrafish. Our study primarily identifies TnP as a multifaceted modulator of drug metabolism, wound healing, proteolytic activity, and pigmentation pathways. Results: Transcriptomic profiling of TnP-treated larvae following tail fin amputation revealed 558 differentially expressed genes (DEGs), categorized into four functional networks: (1) drug-metabolizing enzymes (cyp3a65, cyp1a) and transporters (SLC/ABC families), where TnP alters xenobiotic processing through Phase I/II modulation; (2) cellular trafficking and immune regulation, with upregulated myosin genes (myhb/mylz3) enhancing wound repair and tlr5-cdc42 signaling fine-tuning inflammation; (3) proteolytic cascades (c6ast4, prss1) coupled to autophagy (ulk1a, atg2a) and metabolic rewiring (g6pca.1-tg axis); and (4) melanogenesis-circadian networks (pmela/dct-fbxl3l) linked to ubiquitin-mediated protein turnover. Key findings highlight TnP’s unique coordination of rapid (protease activation) and sustained (metabolic adaptation) responses, enabled by short network path lengths (1.6–2.1 edges). Hub genes, such as nr1i2 (pxr), ppara, and bcl6aa/b, mediate crosstalk between these systems, while potential risks—including muscle hypercontractility (myhb overexpression) or cardiovascular effects (ace2-ppp3ccb)—underscore the need for targeted delivery. The zebrafish model validated TnP-conserved mechanisms with human relevance, particularly in drug metabolism and tissue repair. TnP’s ability to synchronize extracellular matrix remodeling, immune resolution, and metabolic homeostasis supports its development for the treatment of fibrosis, metabolic disorders, and inflammatory conditions. Conclusions: Future work should focus on optimizing tissue-specific delivery and assessing genetic variability to advance clinical translation. This system-level analysis positions TnP as a model example for next-generation multi-pathway therapeutics. Full article
Show Figures

Graphical abstract

28 pages, 10224 KiB  
Article
A Vulnerability Identification Method for Distribution Networks Integrating Fuzzy Local Dimension and Topological Structure
by Kangzheng Huang, Weichuan Zhang, Yongsheng Xu, Chenkai Wu and Weibo Li
Processes 2025, 13(8), 2438; https://doi.org/10.3390/pr13082438 - 1 Aug 2025
Viewed by 121
Abstract
As the scale of shipboard power systems expands, their vulnerability becomes increasingly prominent. Identifying vulnerable points in ship power grids is essential for enhancing system stability, optimizing overall performance, and ensuring safe navigation. To address this issue, this paper proposes an algorithm based [...] Read more.
As the scale of shipboard power systems expands, their vulnerability becomes increasingly prominent. Identifying vulnerable points in ship power grids is essential for enhancing system stability, optimizing overall performance, and ensuring safe navigation. To address this issue, this paper proposes an algorithm based on fuzzy local dimension and topology (FLDT). The algorithm distinguishes contributions from nodes at different radii and within the same radius to a central node using fuzzy sets, and then derives the final importance value of each node by combining the local dimension and topology. Experimental results on nine datasets demonstrate that the FLDT algorithm outperforms degree centrality (DC), closeness centrality (CC), local dimension (LD), fuzzy local dimension (FLD), local link similarity (LLS), and mixed degree decomposition (MDD) algorithms in three metrics: network efficiency (NE), largest connected component (LCC), and monotonicity. Furthermore, in a ship power grid experiment, when 40% of the most important nodes were removed, FLDT caused a network efficiency drop of 99.78% and reduced the LCC to 2.17%, significantly outperforming traditional methods. Additional experiments under topological perturbations—including edge addition, removal, and rewiring—also show that FLDT maintains superior performance, highlighting its robustness to structural changes. This indicates that the FLDT algorithm is more effective in identifying and evaluating vulnerable points and distinguishing nodes with varying levels of importance. Full article
Show Figures

Figure 1

30 pages, 59872 KiB  
Article
Advancing 3D Seismic Fault Identification with SwiftSeis-AWNet: A Lightweight Architecture Featuring Attention-Weighted Multi-Scale Semantics and Detail Infusion
by Ang Li, Rui Li, Yuhao Zhang, Shanyi Li, Yali Guo, Liyan Zhang and Yuqing Shi
Electronics 2025, 14(15), 3078; https://doi.org/10.3390/electronics14153078 (registering DOI) - 31 Jul 2025
Viewed by 133
Abstract
The accurate identification of seismic faults, which serve as crucial fluid migration pathways in hydrocarbon reservoirs, is of paramount importance for reservoir characterization. Traditional interpretation is inefficient. It also struggles with complex geometries, failing to meet the current exploration demands. Deep learning boosts [...] Read more.
The accurate identification of seismic faults, which serve as crucial fluid migration pathways in hydrocarbon reservoirs, is of paramount importance for reservoir characterization. Traditional interpretation is inefficient. It also struggles with complex geometries, failing to meet the current exploration demands. Deep learning boosts fault identification significantly but struggles with edge accuracy and noise robustness. To overcome these limitations, this research introduces SwiftSeis-AWNet, a novel lightweight and high-precision network. The network is based on an optimized MedNeXt architecture for better fault edge detection. To address the noise from simple feature fusion, a Semantics and Detail Infusion (SDI) module is integrated. Since the Hadamard product in SDI can cause information loss, we engineer an Attention-Weighted Semantics and Detail Infusion (AWSDI) module that uses dynamic multi-scale feature fusion to preserve details. Validation on field seismic datasets from the Netherlands F3 and New Zealand Kerry blocks shows that SwiftSeis-AWNet mitigates challenges like the loss of small-scale fault features and misidentification of fault intersection zones, enhancing the accuracy and geological reliability of automated fault identification. Full article
Show Figures

Figure 1

21 pages, 1573 KiB  
Review
A Novel Real-Time Battery State Estimation Using Data-Driven Prognostics and Health Management
by Juliano Pimentel, Alistair A. McEwan and Hong Qing Yu
Appl. Sci. 2025, 15(15), 8538; https://doi.org/10.3390/app15158538 (registering DOI) - 31 Jul 2025
Viewed by 82
Abstract
This paper presents a novel data-driven framework for real-time State of Charge (SOC) estimation in lithium-ion battery systems using a data-driven Prognostics and Health Management (PHM) approach. The method leverages an optimized bidirectional Long Short-Term Memory (Bi-LSTM) network, trained with enhanced datasets filtered [...] Read more.
This paper presents a novel data-driven framework for real-time State of Charge (SOC) estimation in lithium-ion battery systems using a data-driven Prognostics and Health Management (PHM) approach. The method leverages an optimized bidirectional Long Short-Term Memory (Bi-LSTM) network, trained with enhanced datasets filtered via exponentially weighted moving averages (EWMAs) and refined through SHAP-based feature attribution. Compared against a Extended Kalman Filter (EKF) and Unscented Kalman Filter (UKF) across ten diverse drive cycles, the proposed model consistently achieved superior performance, with mean absolute errors (MAEs) as low as 0.40%, outperforming EKF (0.66%) and UKF (1.36%). The Bi-LSTM model also demonstrated higher R2 values (up to 0.9999) and narrower 95% confidence intervals, confirming its precision and robustness. Real-time implementation on embedded platforms yielded inference times of 1.3–2.2 s, validating its deployability for edge applications. The framework’s model-free nature makes it adaptable to other nonlinear, time-dependent systems beyond battery SOC estimation. Full article
(This article belongs to the Special Issue Design and Applications of Real-Time Embedded Systems)
Show Figures

Figure 1

20 pages, 2649 KiB  
Article
GreenRP: Task-Aware Discharge-Resilient Routing for Sustainable Edge AI in Satellite Optical Networks
by Huibin Zhang, Dandan Du, Kunpeng Zheng, Yuan Cao, Lihan Zhao, Yongli Zhao and Jie Zhang
Electronics 2025, 14(15), 3075; https://doi.org/10.3390/electronics14153075 (registering DOI) - 31 Jul 2025
Viewed by 118
Abstract
Research in on-orbit processing enables edge AI deployment over satellite optical networks. However, these operations induce frequent battery discharge cycles, particularly depth-of-discharge (DoD) events, which accelerate degradation and curtail satellite longevity. To address this, we propose green task-aware routing planning (GreenRP), a task-aware [...] Read more.
Research in on-orbit processing enables edge AI deployment over satellite optical networks. However, these operations induce frequent battery discharge cycles, particularly depth-of-discharge (DoD) events, which accelerate degradation and curtail satellite longevity. To address this, we propose green task-aware routing planning (GreenRP), a task-aware routing framework that achieves sustainable edge AI through dynamic task offloading and discharge-resilient path orchestration. GreenRP employs a novel battery aging model explicitly coupling DoD effects with laser inter-satellite link dynamics under AI workloads, enhancing system sustainability. Comprehensive evaluation on a 1152-satellite constellation demonstrates that GreenRP extends network lifetime by 176% over shortest-path routing while meeting latency and completion rate targets. This work enables reliable edge AI via sustainable satellite resource utilization. Full article
(This article belongs to the Special Issue Security and Privacy in Emerging Edge AI Systems and Applications)
Show Figures

Figure 1

37 pages, 6916 KiB  
Review
The Role of IoT in Enhancing Sports Analytics: A Bibliometric Perspective
by Yuvanshankar Azhagumurugan, Jawahar Sundaram, Zenith Dewamuni, Pritika, Yakub Sebastian and Bharanidharan Shanmugam
IoT 2025, 6(3), 43; https://doi.org/10.3390/iot6030043 (registering DOI) - 31 Jul 2025
Viewed by 205
Abstract
The use of Internet of Things (IoT) for sports innovation has transformed the way athletes train, compete, and recover in any sports activity. This study performs a bibliometric analysis to examine research trends, collaborations, and publications in the realm of IoT and Sports. [...] Read more.
The use of Internet of Things (IoT) for sports innovation has transformed the way athletes train, compete, and recover in any sports activity. This study performs a bibliometric analysis to examine research trends, collaborations, and publications in the realm of IoT and Sports. Our analysis included 780 Scopus articles and 150 WoS articles published during 2012–2025, and duplicates were removed. We analyzed and visualized the bibliometric data using R version 3.6.1, VOSviewer version 1.6.20, and the bibliometrix library. The study provides insights from a bibliometric analysis, showcasing the allocation of topics, scientific contributions, patterns of co-authorship, prominent authors and their productivity over time, notable terms, key sources, publications with citations, analysis of citations, source-specific citation analysis, yearly publication patterns, and the distribution of research papers. The results indicate that China and India have the leading scientific production in the development of IoT and Sports research, with prominent authors like Anton Umek, Anton Kos, and Emiliano Schena making significant contributions. Wearable technology and wearable sensors are the most trending topics in IoT and Sports, followed by medical sciences and artificial intelligence paradigms. The analysis also emphasizes the importance of open-access journals like ‘Journal of Physics: Conference Series’ and ‘IEEE Access’ for their contributions to IoT and Sports research. Future research directions focus on enhancing effective, lightweight, and efficient wearable devices while implementing technologies like edge computing and lightweight AI in wearable technologies. Full article
Show Figures

Figure 1

24 pages, 2325 KiB  
Review
Personalization of AI-Based Digital Twins to Optimize Adaptation in Industrial Design and Manufacturing—Review
by Izabela Rojek, Dariusz Mikołajewski, Ewa Dostatni, Jan Cybulski and Mirosław Kozielski
Appl. Sci. 2025, 15(15), 8525; https://doi.org/10.3390/app15158525 (registering DOI) - 31 Jul 2025
Viewed by 83
Abstract
The growing scale of big data and artificial intelligence (AI)-based models has heightened the urgency of developing real-time digital twins (DTs), particularly those capable of simulating personalized behavior in dynamic environments. In this study, we examine the personalization of AI-based digital twins (DTs), [...] Read more.
The growing scale of big data and artificial intelligence (AI)-based models has heightened the urgency of developing real-time digital twins (DTs), particularly those capable of simulating personalized behavior in dynamic environments. In this study, we examine the personalization of AI-based digital twins (DTs), with a focus on overcoming computational latencies that hinder real-time responses—especially in complex, large-scale systems and networks. We use bibliometric analysis to map current trends, prevailing themes, and technical challenges in this field. The key findings highlight the growing emphasis on scalable model architectures, multimodal data integration, and the use of high-performance computing platforms. While existing research has focused on model decomposition, structural optimization, and algorithmic integration, there remains a need for fast DT platforms that support diverse user requirements. This review synthesizes these insights to outline new directions for accelerating adaptation and enhancing personalization. By providing a structured overview of the current research landscape, this study contributes to a better understanding of how AI and edge computing can drive the development of the next generation of real-time personalized DTs. Full article
(This article belongs to the Section Computing and Artificial Intelligence)
Show Figures

Figure 1

20 pages, 10604 KiB  
Article
A Safety-Based Approach for the Design of an Innovative Microvehicle
by Michelangelo-Santo Gulino, Susanna Papini, Giovanni Zonfrillo, Thomas Unger, Peter Miklis and Dario Vangi
Designs 2025, 9(4), 90; https://doi.org/10.3390/designs9040090 (registering DOI) - 31 Jul 2025
Viewed by 109
Abstract
The growing popularity of Personal Light Electric Vehicles (PLEVs), such as e-scooters, has revolutionized urban mobility by offering compact, cost-effective, and environmentally friendly transportation solutions. However, safety concerns, including inadequate infrastructure, poor protective measures, and high accident rates, remain critical challenges. This paper [...] Read more.
The growing popularity of Personal Light Electric Vehicles (PLEVs), such as e-scooters, has revolutionized urban mobility by offering compact, cost-effective, and environmentally friendly transportation solutions. However, safety concerns, including inadequate infrastructure, poor protective measures, and high accident rates, remain critical challenges. This paper presents the design and development of an innovative self-balancing microvehicle under the H2020 LEONARDO project, which aims to address these challenges through advanced engineering and user-centric design. The vehicle combines features of monowheels and e-scooters, integrating cutting-edge technologies to enhance safety, stability, and usability. The design adheres to European regulations, including Germany’s eKFV standards, and incorporates user preferences identified through representative online surveys of 1500 PLEV users. These preferences include improved handling on uneven surfaces, enhanced signaling capabilities, and reduced instability during maneuvers. The prototype features a lightweight composite structure reinforced with carbon fibers, a high-torque motorized front wheel, and multiple speed modes tailored to different conditions, such as travel in pedestrian areas, use by novice riders, and advanced users. Braking tests demonstrate deceleration values of up to 3.5 m/s2, comparable to PLEV market standards and exceeding regulatory minimums, while smooth acceleration ramps ensure rider stability and safety. Additional features, such as identification plates and weight-dependent motor control, enhance compliance with local traffic rules and prevent misuse. The vehicle’s design also addresses common safety concerns, such as curb navigation and signaling, by incorporating large-diameter wheels, increased ground clearance, and electrically operated direction indicators. Future upgrades include the addition of a second rear wheel for enhanced stability, skateboard-like rear axle modifications for improved maneuverability, and hybrid supercapacitors to minimize fire risks and extend battery life. With its focus on safety, regulatory compliance, and rider-friendly innovations, this microvehicle represents a significant advancement in promoting safe and sustainable urban mobility. Full article
(This article belongs to the Section Vehicle Engineering Design)
Show Figures

Figure 1

25 pages, 21958 KiB  
Article
ESL-YOLO: Edge-Aware Side-Scan Sonar Object Detection with Adaptive Quality Assessment
by Zhanshuo Zhang, Changgeng Shuai, Chengren Yuan, Buyun Li, Jianguo Ma and Xiaodong Shang
J. Mar. Sci. Eng. 2025, 13(8), 1477; https://doi.org/10.3390/jmse13081477 - 31 Jul 2025
Viewed by 64
Abstract
Focusing on the problem of insufficient detection accuracy caused by blurred target boundaries, variable scales, and severe noise interference in side-scan sonar images, this paper proposes a high-precision detection network named ESL-YOLO, which integrates edge perception and adaptive quality assessment. Firstly, an Edge [...] Read more.
Focusing on the problem of insufficient detection accuracy caused by blurred target boundaries, variable scales, and severe noise interference in side-scan sonar images, this paper proposes a high-precision detection network named ESL-YOLO, which integrates edge perception and adaptive quality assessment. Firstly, an Edge Fusion Module (EFM) is designed, which integrates the Sobel operator into depthwise separable convolution. Through a dual-branch structure, it realizes effective fusion of edge features and spatial features, significantly enhancing the ability to recognize targets with blurred boundaries. Secondly, a Self-Calibrated Dual Attention (SCDA) Module is constructed. By means of feature cross-calibration and multi-scale channel attention fusion mechanisms, it achieves adaptive fusion of shallow details and deep-rooted semantic content, improving the detection accuracy for small-sized targets and targets with elaborate shapes. Finally, a Location Quality Estimator (LQE) is introduced, which quantifies localization quality using the statistical characteristics of bounding box distribution, effectively reducing false detections and missed detections. Experiments on the SIMD dataset show that the mAP@0.5 of ESL-YOLO reaches 84.65%. The precision and recall rate reach 87.67% and 75.63%, respectively. Generalization experiments on additional sonar datasets further validate the effectiveness of the proposed method across different data distributions and target types, providing an effective technical solution for side-scan sonar image target detection. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

Back to TopTop