Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (4,946)

Search Parameters:
Keywords = edge enhance

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
30 pages, 59872 KiB  
Article
Advancing 3D Seismic Fault Identification with SwiftSeis-AWNet: A Lightweight Architecture Featuring Attention-Weighted Multi-Scale Semantics and Detail Infusion
by Ang Li, Rui Li, Yuhao Zhang, Shanyi Li, Yali Guo, Liyan Zhang and Yuqing Shi
Electronics 2025, 14(15), 3078; https://doi.org/10.3390/electronics14153078 (registering DOI) - 31 Jul 2025
Abstract
The accurate identification of seismic faults, which serve as crucial fluid migration pathways in hydrocarbon reservoirs, is of paramount importance for reservoir characterization. Traditional interpretation is inefficient. It also struggles with complex geometries, failing to meet the current exploration demands. Deep learning boosts [...] Read more.
The accurate identification of seismic faults, which serve as crucial fluid migration pathways in hydrocarbon reservoirs, is of paramount importance for reservoir characterization. Traditional interpretation is inefficient. It also struggles with complex geometries, failing to meet the current exploration demands. Deep learning boosts fault identification significantly but struggles with edge accuracy and noise robustness. To overcome these limitations, this research introduces SwiftSeis-AWNet, a novel lightweight and high-precision network. The network is based on an optimized MedNeXt architecture for better fault edge detection. To address the noise from simple feature fusion, a Semantics and Detail Infusion (SDI) module is integrated. Since the Hadamard product in SDI can cause information loss, we engineer an Attention-Weighted Semantics and Detail Infusion (AWSDI) module that uses dynamic multi-scale feature fusion to preserve details. Validation on field seismic datasets from the Netherlands F3 and New Zealand Kerry blocks shows that SwiftSeis-AWNet mitigates challenges like the loss of small-scale fault features and misidentification of fault intersection zones, enhancing the accuracy and geological reliability of automated fault identification. Full article
Show Figures

Figure 1

21 pages, 1573 KiB  
Review
A Novel Real-Time Battery State Estimation Using Data-Driven Prognostics and Health Management
by Juliano Pimentel, Alistair A. McEwan and Hong Qing Yu
Appl. Sci. 2025, 15(15), 8538; https://doi.org/10.3390/app15158538 (registering DOI) - 31 Jul 2025
Abstract
This paper presents a novel data-driven framework for real-time State of Charge (SOC) estimation in lithium-ion battery systems using a data-driven Prognostics and Health Management (PHM) approach. The method leverages an optimized bidirectional Long Short-Term Memory (Bi-LSTM) network, trained with enhanced datasets filtered [...] Read more.
This paper presents a novel data-driven framework for real-time State of Charge (SOC) estimation in lithium-ion battery systems using a data-driven Prognostics and Health Management (PHM) approach. The method leverages an optimized bidirectional Long Short-Term Memory (Bi-LSTM) network, trained with enhanced datasets filtered via exponentially weighted moving averages (EWMAs) and refined through SHAP-based feature attribution. Compared against a Extended Kalman Filter (EKF) and Unscented Kalman Filter (UKF) across ten diverse drive cycles, the proposed model consistently achieved superior performance, with mean absolute errors (MAEs) as low as 0.40%, outperforming EKF (0.66%) and UKF (1.36%). The Bi-LSTM model also demonstrated higher R2 values (up to 0.9999) and narrower 95% confidence intervals, confirming its precision and robustness. Real-time implementation on embedded platforms yielded inference times of 1.3–2.2 s, validating its deployability for edge applications. The framework’s model-free nature makes it adaptable to other nonlinear, time-dependent systems beyond battery SOC estimation. Full article
(This article belongs to the Special Issue Design and Applications of Real-Time Embedded Systems)
Show Figures

Figure 1

20 pages, 2649 KiB  
Article
GreenRP: Task-Aware Discharge-Resilient Routing for Sustainable Edge AI in Satellite Optical Networks
by Huibin Zhang, Dandan Du, Kunpeng Zheng, Yuan Cao, Lihan Zhao, Yongli Zhao and Jie Zhang
Electronics 2025, 14(15), 3075; https://doi.org/10.3390/electronics14153075 (registering DOI) - 31 Jul 2025
Abstract
Research in on-orbit processing enables edge AI deployment over satellite optical networks. However, these operations induce frequent battery discharge cycles, particularly depth-of-discharge (DoD) events, which accelerate degradation and curtail satellite longevity. To address this, we propose green task-aware routing planning (GreenRP), a task-aware [...] Read more.
Research in on-orbit processing enables edge AI deployment over satellite optical networks. However, these operations induce frequent battery discharge cycles, particularly depth-of-discharge (DoD) events, which accelerate degradation and curtail satellite longevity. To address this, we propose green task-aware routing planning (GreenRP), a task-aware routing framework that achieves sustainable edge AI through dynamic task offloading and discharge-resilient path orchestration. GreenRP employs a novel battery aging model explicitly coupling DoD effects with laser inter-satellite link dynamics under AI workloads, enhancing system sustainability. Comprehensive evaluation on a 1152-satellite constellation demonstrates that GreenRP extends network lifetime by 176% over shortest-path routing while meeting latency and completion rate targets. This work enables reliable edge AI via sustainable satellite resource utilization. Full article
(This article belongs to the Special Issue Security and Privacy in Emerging Edge AI Systems and Applications)
Show Figures

Figure 1

37 pages, 6916 KiB  
Review
The Role of IoT in Enhancing Sports Analytics: A Bibliometric Perspective
by Yuvanshankar Azhagumurugan, Jawahar Sundaram, Zenith Dewamuni, Pritika, Yakub Sebastian and Bharanidharan Shanmugam
IoT 2025, 6(3), 43; https://doi.org/10.3390/iot6030043 (registering DOI) - 31 Jul 2025
Abstract
The use of Internet of Things (IoT) for sports innovation has transformed the way athletes train, compete, and recover in any sports activity. This study performs a bibliometric analysis to examine research trends, collaborations, and publications in the realm of IoT and Sports. [...] Read more.
The use of Internet of Things (IoT) for sports innovation has transformed the way athletes train, compete, and recover in any sports activity. This study performs a bibliometric analysis to examine research trends, collaborations, and publications in the realm of IoT and Sports. Our analysis included 780 Scopus articles and 150 WoS articles published during 2012–2025, and duplicates were removed. We analyzed and visualized the bibliometric data using R version 3.6.1, VOSviewer version 1.6.20, and the bibliometrix library. The study provides insights from a bibliometric analysis, showcasing the allocation of topics, scientific contributions, patterns of co-authorship, prominent authors and their productivity over time, notable terms, key sources, publications with citations, analysis of citations, source-specific citation analysis, yearly publication patterns, and the distribution of research papers. The results indicate that China and India have the leading scientific production in the development of IoT and Sports research, with prominent authors like Anton Umek, Anton Kos, and Emiliano Schena making significant contributions. Wearable technology and wearable sensors are the most trending topics in IoT and Sports, followed by medical sciences and artificial intelligence paradigms. The analysis also emphasizes the importance of open-access journals like ‘Journal of Physics: Conference Series’ and ‘IEEE Access’ for their contributions to IoT and Sports research. Future research directions focus on enhancing effective, lightweight, and efficient wearable devices while implementing technologies like edge computing and lightweight AI in wearable technologies. Full article
Show Figures

Figure 1

26 pages, 1751 KiB  
Review
Personalization of AI-Based Digital Twins to Optimize Adaptation in Industrial Design and Manufacturing—Review
by Izabela Rojek, Dariusz Mikołajewski, Ewa Dostatni, Jan Cybulski and Mirosław Kozielski
Appl. Sci. 2025, 15(15), 8525; https://doi.org/10.3390/app15158525 (registering DOI) - 31 Jul 2025
Abstract
The growing scale of big data and artificial intelligence (AI)-based models has heightened the urgency of developing real-time digital twins (DTs), particularly those capable of simulating personalized behavior in dynamic environments. In this study, we examine the personalization of AI-based digital twins (DTs), [...] Read more.
The growing scale of big data and artificial intelligence (AI)-based models has heightened the urgency of developing real-time digital twins (DTs), particularly those capable of simulating personalized behavior in dynamic environments. In this study, we examine the personalization of AI-based digital twins (DTs), with a focus on overcoming computational latencies that hinder real-time responses—especially in complex, large-scale systems and networks. We use bibliometric analysis to map current trends, prevailing themes, and technical challenges in this field. The key findings highlight the growing emphasis on scalable model architectures, multimodal data integration, and the use of high-performance computing platforms. While existing research has focused on model decomposition, structural optimization, and algorithmic integration, there remains a need for fast DT platforms that support diverse user requirements. This review synthesizes these insights to outline new directions for accelerating adaptation and enhancing personalization. By providing a structured overview of the current research landscape, this study contributes to a better understanding of how AI and edge computing can drive the development of the next generation of real-time personalized DTs. Full article
(This article belongs to the Section Computing and Artificial Intelligence)
20 pages, 10604 KiB  
Article
A Safety-Based Approach for the Design of an Innovative Microvehicle
by Michelangelo-Santo Gulino, Susanna Papini, Giovanni Zonfrillo, Thomas Unger, Peter Miklis and Dario Vangi
Designs 2025, 9(4), 90; https://doi.org/10.3390/designs9040090 (registering DOI) - 31 Jul 2025
Abstract
The growing popularity of Personal Light Electric Vehicles (PLEVs), such as e-scooters, has revolutionized urban mobility by offering compact, cost-effective, and environmentally friendly transportation solutions. However, safety concerns, including inadequate infrastructure, poor protective measures, and high accident rates, remain critical challenges. This paper [...] Read more.
The growing popularity of Personal Light Electric Vehicles (PLEVs), such as e-scooters, has revolutionized urban mobility by offering compact, cost-effective, and environmentally friendly transportation solutions. However, safety concerns, including inadequate infrastructure, poor protective measures, and high accident rates, remain critical challenges. This paper presents the design and development of an innovative self-balancing microvehicle under the H2020 LEONARDO project, which aims to address these challenges through advanced engineering and user-centric design. The vehicle combines features of monowheels and e-scooters, integrating cutting-edge technologies to enhance safety, stability, and usability. The design adheres to European regulations, including Germany’s eKFV standards, and incorporates user preferences identified through representative online surveys of 1500 PLEV users. These preferences include improved handling on uneven surfaces, enhanced signaling capabilities, and reduced instability during maneuvers. The prototype features a lightweight composite structure reinforced with carbon fibers, a high-torque motorized front wheel, and multiple speed modes tailored to different conditions, such as travel in pedestrian areas, use by novice riders, and advanced users. Braking tests demonstrate deceleration values of up to 3.5 m/s2, comparable to PLEV market standards and exceeding regulatory minimums, while smooth acceleration ramps ensure rider stability and safety. Additional features, such as identification plates and weight-dependent motor control, enhance compliance with local traffic rules and prevent misuse. The vehicle’s design also addresses common safety concerns, such as curb navigation and signaling, by incorporating large-diameter wheels, increased ground clearance, and electrically operated direction indicators. Future upgrades include the addition of a second rear wheel for enhanced stability, skateboard-like rear axle modifications for improved maneuverability, and hybrid supercapacitors to minimize fire risks and extend battery life. With its focus on safety, regulatory compliance, and rider-friendly innovations, this microvehicle represents a significant advancement in promoting safe and sustainable urban mobility. Full article
(This article belongs to the Section Vehicle Engineering Design)
Show Figures

Figure 1

25 pages, 21958 KiB  
Article
ESL-YOLO: Edge-Aware Side-Scan Sonar Object Detection with Adaptive Quality Assessment
by Zhanshuo Zhang, Changgeng Shuai, Chengren Yuan, Buyun Li, Jianguo Ma and Xiaodong Shang
J. Mar. Sci. Eng. 2025, 13(8), 1477; https://doi.org/10.3390/jmse13081477 - 31 Jul 2025
Abstract
Focusing on the problem of insufficient detection accuracy caused by blurred target boundaries, variable scales, and severe noise interference in side-scan sonar images, this paper proposes a high-precision detection network named ESL-YOLO, which integrates edge perception and adaptive quality assessment. Firstly, an Edge [...] Read more.
Focusing on the problem of insufficient detection accuracy caused by blurred target boundaries, variable scales, and severe noise interference in side-scan sonar images, this paper proposes a high-precision detection network named ESL-YOLO, which integrates edge perception and adaptive quality assessment. Firstly, an Edge Fusion Module (EFM) is designed, which integrates the Sobel operator into depthwise separable convolution. Through a dual-branch structure, it realizes effective fusion of edge features and spatial features, significantly enhancing the ability to recognize targets with blurred boundaries. Secondly, a Self-Calibrated Dual Attention (SCDA) Module is constructed. By means of feature cross-calibration and multi-scale channel attention fusion mechanisms, it achieves adaptive fusion of shallow details and deep-rooted semantic content, improving the detection accuracy for small-sized targets and targets with elaborate shapes. Finally, a Location Quality Estimator (LQE) is introduced, which quantifies localization quality using the statistical characteristics of bounding box distribution, effectively reducing false detections and missed detections. Experiments on the SIMD dataset show that the mAP@0.5 of ESL-YOLO reaches 84.65%. The precision and recall rate reach 87.67% and 75.63%, respectively. Generalization experiments on additional sonar datasets further validate the effectiveness of the proposed method across different data distributions and target types, providing an effective technical solution for side-scan sonar image target detection. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

21 pages, 2909 KiB  
Article
Novel Federated Graph Contrastive Learning for IoMT Security: Protecting Data Poisoning and Inference Attacks
by Amarudin Daulay, Kalamullah Ramli, Ruki Harwahyu, Taufik Hidayat and Bernardi Pranggono
Mathematics 2025, 13(15), 2471; https://doi.org/10.3390/math13152471 (registering DOI) - 31 Jul 2025
Abstract
Malware evolution presents growing security threats for resource-constrained Internet of Medical Things (IoMT) devices. Conventional federated learning (FL) often suffers from slow convergence, high communication overhead, and fairness issues in dynamic IoMT environments. In this paper, we propose FedGCL, a secure and efficient [...] Read more.
Malware evolution presents growing security threats for resource-constrained Internet of Medical Things (IoMT) devices. Conventional federated learning (FL) often suffers from slow convergence, high communication overhead, and fairness issues in dynamic IoMT environments. In this paper, we propose FedGCL, a secure and efficient FL framework integrating contrastive graph representation learning for enhanced feature discrimination, a Jain-index-based fairness-aware aggregation mechanism, an adaptive synchronization scheduler to optimize communication rounds, and secure aggregation via homomorphic encryption within a Trusted Execution Environment. We evaluate FedGCL on four benchmark malware datasets (Drebin, Malgenome, Kronodroid, and TUANDROMD) using 5 to 15 graph neural network clients over 20 communication rounds. Our experiments demonstrate that FedGCL achieves 96.3% global accuracy within three rounds and converges to 98.9% by round twenty—reducing required training rounds by 45% compared to FedAvg—while incurring only approximately 10% additional computational overhead. By preserving patient data privacy at the edge, FedGCL enhances system resilience without sacrificing model performance. These results indicate FedGCL’s promise as a secure, efficient, and fair federated malware detection solution for IoMT ecosystems. Full article
Show Figures

Figure 1

36 pages, 2671 KiB  
Article
DIKWP-Driven Artificial Consciousness for IoT-Enabled Smart Healthcare Systems
by Yucong Duan and Zhendong Guo
Appl. Sci. 2025, 15(15), 8508; https://doi.org/10.3390/app15158508 (registering DOI) - 31 Jul 2025
Abstract
This study presents a DIKWP-driven artificial consciousness framework for IoT-enabled smart healthcare, integrating a Data–Information–Knowledge–Wisdom–Purpose (DIKWP) cognitive architecture with a software-defined IoT infrastructure. The proposed system deploys DIKWP agents at edge and cloud nodes to transform raw sensor data into high-level knowledge and [...] Read more.
This study presents a DIKWP-driven artificial consciousness framework for IoT-enabled smart healthcare, integrating a Data–Information–Knowledge–Wisdom–Purpose (DIKWP) cognitive architecture with a software-defined IoT infrastructure. The proposed system deploys DIKWP agents at edge and cloud nodes to transform raw sensor data into high-level knowledge and purpose-driven actions. This is achieved through a structured DIKWP pipeline—from data acquisition and information processing to knowledge extraction, wisdom inference, and purpose-driven decision-making—that enables semantic reasoning, adaptive goal-driven responses, and privacy-preserving decision-making in healthcare environments. The architecture integrates wearable sensors, edge computing nodes, and cloud services to enable dynamic task orchestration and secure data fusion. For evaluation, a smart healthcare scenario for early anomaly detection (e.g., arrhythmia and fever) was implemented using wearable devices with coordinated edge–cloud analytics. Simulated experiments on synthetic vital sign datasets achieved approximately 98% anomaly detection accuracy and up to 90% reduction in communication overhead compared to cloud-centric solutions. Results also demonstrate enhanced explainability via traceable decisions across DIKWP layers and robust performance under intermittent connectivity. These findings indicate that the DIKWP-driven approach can significantly advance IoT-based healthcare by providing secure, explainable, and adaptive services aligned with clinical objectives and patient-centric care. Full article
(This article belongs to the Special Issue IoT in Smart Cities and Homes, 2nd Edition)
Show Figures

Figure 1

16 pages, 2174 KiB  
Article
TwinFedPot: Honeypot Intelligence Distillation into Digital Twin for Persistent Smart Traffic Security
by Yesin Sahraoui, Abdessalam Mohammed Hadjkouider, Chaker Abdelaziz Kerrache and Carlos T. Calafate
Sensors 2025, 25(15), 4725; https://doi.org/10.3390/s25154725 (registering DOI) - 31 Jul 2025
Abstract
The integration of digital twins (DTs) with intelligent traffic systems (ITSs) holds strong potential for improving real-time management in smart cities. However, securing digital twins remains a significant challenge due to the dynamic and adversarial nature of cyber–physical environments. In this work, we [...] Read more.
The integration of digital twins (DTs) with intelligent traffic systems (ITSs) holds strong potential for improving real-time management in smart cities. However, securing digital twins remains a significant challenge due to the dynamic and adversarial nature of cyber–physical environments. In this work, we propose TwinFedPot, an innovative digital twin-based security architecture that combines honeypot-driven data collection with Zero-Shot Learning (ZSL) for robust and adaptive cyber threat detection without requiring prior sampling. The framework leverages Inverse Federated Distillation (IFD) to train the DT server, where edge-deployed honeypots generate semantic predictions of anomalous behavior and upload soft logits instead of raw data. Unlike conventional federated approaches, TwinFedPot reverses the typical knowledge flow by distilling collective intelligence from the honeypots into a central teacher model hosted on the DT. This inversion allows the system to learn generalized attack patterns using only limited data, while preserving privacy and enhancing robustness. Experimental results demonstrate significant improvements in accuracy and F1-score, establishing TwinFedPot as a scalable and effective defense solution for smart traffic infrastructures. Full article
Show Figures

Figure 1

34 pages, 2642 KiB  
Article
Strengths and Weaknesses of LLM-Based and Rule-Based NLP Technologies and Their Potential Synergies
by Nikitas Ν. Karanikolas, Eirini Manga, Nikoletta Samaridi, Vaios Stergiopoulos, Eleni Tousidou and Michael Vassilakopoulos
Electronics 2025, 14(15), 3064; https://doi.org/10.3390/electronics14153064 (registering DOI) - 31 Jul 2025
Abstract
Large Language Models (LLMs) have been the cutting-edge technology in natural language processing (NLP) in recent years, making machine-generated text indistinguishable from human-generated text. On the other hand, “rule-based” Natural Language Generation (NLG) and Natural Language Understanding (NLU) algorithms were developed in earlier [...] Read more.
Large Language Models (LLMs) have been the cutting-edge technology in natural language processing (NLP) in recent years, making machine-generated text indistinguishable from human-generated text. On the other hand, “rule-based” Natural Language Generation (NLG) and Natural Language Understanding (NLU) algorithms were developed in earlier years, and they have performed well in certain areas of Natural Language Processing (NLP). Today, an arduous task that arises is how to estimate the quality of the produced text. This process depends on the aspects of text that you need to assess, varying from correct grammar and syntax to more intriguing aspects such as coherence and semantical fluency. Although the performance of LLMs is high, the challenge is whether LLMs can cooperate with rule-based NLG/NLU technology by leveraging their assets to overcome LLMs’ weak points. This paper presents the basics of these two families of technologies and the applications, strengths, and weaknesses of each approach, analyzes the different ways of evaluating a machine-generated text, and, lastly, focuses on a first-level approach of possible combinations of these two approaches to enhance performance in specific tasks. Full article
Show Figures

Figure 1

24 pages, 4039 KiB  
Review
A Mathematical Survey of Image Deep Edge Detection Algorithms: From Convolution to Attention
by Gang Hu
Mathematics 2025, 13(15), 2464; https://doi.org/10.3390/math13152464 (registering DOI) - 31 Jul 2025
Abstract
Edge detection, a cornerstone of computer vision, identifies intensity discontinuities in images, enabling applications from object recognition to autonomous navigation. This survey presents a mathematically grounded analysis of edge detection’s evolution, spanning traditional gradient-based methods, convolutional neural networks (CNNs), attention-driven architectures, transformer-backbone models, [...] Read more.
Edge detection, a cornerstone of computer vision, identifies intensity discontinuities in images, enabling applications from object recognition to autonomous navigation. This survey presents a mathematically grounded analysis of edge detection’s evolution, spanning traditional gradient-based methods, convolutional neural networks (CNNs), attention-driven architectures, transformer-backbone models, and generative paradigms. Beginning with Sobel and Canny’s kernel-based approaches, we trace the shift to data-driven CNNs like Holistically Nested Edge Detection (HED) and Bidirectional Cascade Network (BDCN), which leverage multi-scale supervision and achieve ODS (Optimal Dataset Scale) scores 0.788 and 0.806, respectively. Attention mechanisms, as in EdgeNAT (ODS 0.860) and RankED (ODS 0.824), enhance global context, while generative models like GED (ODS 0.870) achieve state-of-the-art precision via diffusion and GAN frameworks. Evaluated on BSDS500 and NYUDv2, these methods highlight a trajectory toward accuracy and robustness, yet challenges in efficiency, generalization, and multi-modal integration persist. By synthesizing mathematical formulations, performance metrics, and future directions, this survey equips researchers with a comprehensive understanding of edge detection’s past, present, and potential, bridging theoretical insights with practical advancements. Full article
(This article belongs to the Special Issue Artificial Intelligence and Algorithms with Their Applications)
Show Figures

Figure 1

31 pages, 2007 KiB  
Review
Artificial Intelligence-Driven Strategies for Targeted Delivery and Enhanced Stability of RNA-Based Lipid Nanoparticle Cancer Vaccines
by Ripesh Bhujel, Viktoria Enkmann, Hannes Burgstaller and Ravi Maharjan
Pharmaceutics 2025, 17(8), 992; https://doi.org/10.3390/pharmaceutics17080992 - 30 Jul 2025
Abstract
The convergence of artificial intelligence (AI) and nanomedicine has transformed cancer vaccine development, particularly in optimizing RNA-loaded lipid nanoparticles (LNPs). Stability and targeted delivery are major obstacles to the clinical translation of promising RNA-LNP vaccines for cancer immunotherapy. This systematic review analyzes the [...] Read more.
The convergence of artificial intelligence (AI) and nanomedicine has transformed cancer vaccine development, particularly in optimizing RNA-loaded lipid nanoparticles (LNPs). Stability and targeted delivery are major obstacles to the clinical translation of promising RNA-LNP vaccines for cancer immunotherapy. This systematic review analyzes the AI’s impact on LNP engineering through machine learning-driven predictive models, generative adversarial networks (GANs) for novel lipid design, and neural network-enhanced biodistribution prediction. AI reduces the therapeutic development timeline through accelerated virtual screening of millions of lipid combinations, compared to conventional high-throughput screening. Furthermore, AI-optimized LNPs demonstrate improved tumor targeting. GAN-generated lipids show structural novelty while maintaining higher encapsulation efficiency; graph neural networks predict RNA-LNP binding affinity with high accuracy vs. experimental data; digital twins reduce lyophilization optimization from years to months; and federated learning models enable multi-institutional data sharing. We propose a framework to address key technical challenges: training data quality (min. 15,000 lipid structures), model interpretability (SHAP > 0.65), and regulatory compliance (21CFR Part 11). AI integration reduces manufacturing costs and makes personalized cancer vaccine affordable. Future directions need to prioritize quantum machine learning for stability prediction and edge computing for real-time formulation modifications. Full article
Show Figures

Figure 1

20 pages, 3130 KiB  
Article
Deep Learning-Based Instance Segmentation of Galloping High-Speed Railway Overhead Contact System Conductors in Video Images
by Xiaotong Yao, Huayu Yuan, Shanpeng Zhao, Wei Tian, Dongzhao Han, Xiaoping Li, Feng Wang and Sihua Wang
Sensors 2025, 25(15), 4714; https://doi.org/10.3390/s25154714 (registering DOI) - 30 Jul 2025
Abstract
The conductors of high-speed railway OCSs (Overhead Contact Systems) are susceptible to conductor galloping due to the impact of natural elements such as strong winds, rain, and snow, resulting in conductor fatigue damage and significantly compromising train operational safety. Consequently, monitoring the galloping [...] Read more.
The conductors of high-speed railway OCSs (Overhead Contact Systems) are susceptible to conductor galloping due to the impact of natural elements such as strong winds, rain, and snow, resulting in conductor fatigue damage and significantly compromising train operational safety. Consequently, monitoring the galloping status of conductors is crucial, and instance segmentation techniques, by delineating the pixel-level contours of each conductor, can significantly aid in the identification and study of galloping phenomena. This work expands upon the YOLO11-seg model and introduces an instance segmentation approach for galloping video and image sensor data of OCS conductors. The algorithm, designed for the stripe-like distribution of OCS conductors in the data, employs four-direction Sobel filters to extract edge features in horizontal, vertical, and diagonal orientations. These features are subsequently integrated with the original convolutional branch to form the FDSE (Four Direction Sobel Enhancement) module. It integrates the ECA (Efficient Channel Attention) mechanism for the adaptive augmentation of conductor characteristics and utilizes the FL (Focal Loss) function to mitigate the class-imbalance issue between positive and negative samples, hence enhancing the model’s sensitivity to conductors. Consequently, segmentation outcomes from neighboring frames are utilized, and mask-difference analysis is performed to autonomously detect conductor galloping locations, emphasizing their contours for the clear depiction of galloping characteristics. Experimental results demonstrate that the enhanced YOLO11-seg model achieves 85.38% precision, 77.30% recall, 84.25% AP@0.5, 81.14% F1-score, and a real-time processing speed of 44.78 FPS. When combined with the galloping visualization module, it can issue real-time alerts of conductor galloping anomalies, providing robust technical support for railway OCS safety monitoring. Full article
(This article belongs to the Section Industrial Sensors)
Show Figures

Figure 1

13 pages, 11739 KiB  
Article
DeepVinci: Organ and Tool Segmentation with Edge Supervision and a Densely Multi-Scale Pyramid Module for Robot-Assisted Surgery
by Li-An Tseng, Yuan-Chih Tsai, Meng-Yi Bai, Mei-Fang Li, Yi-Liang Lee, Kai-Jo Chiang, Yu-Chi Wang and Jing-Ming Guo
Diagnostics 2025, 15(15), 1917; https://doi.org/10.3390/diagnostics15151917 - 30 Jul 2025
Abstract
Background: Automated surgical navigation can be separated into three stages: (1) organ identification and localization, (2) identification of the organs requiring further surgery, and (3) automated planning of the operation path and steps. With its ideal visual and operating system, the da [...] Read more.
Background: Automated surgical navigation can be separated into three stages: (1) organ identification and localization, (2) identification of the organs requiring further surgery, and (3) automated planning of the operation path and steps. With its ideal visual and operating system, the da Vinci surgical system provides a promising platform for automated surgical navigation. This study focuses on the first step in automated surgical navigation by identifying organs in gynecological surgery. Methods: Due to the difficulty of collecting da Vinci gynecological endoscopy data, we propose DeepVinci, a novel end-to-end high-performance encoder–decoder network based on convolutional neural networks (CNNs) for pixel-level organ semantic segmentation. Specifically, to overcome the drawback of a limited field of view, we incorporate a densely multi-scale pyramid module and feature fusion module, which can also enhance the global context information. In addition, the system integrates an edge supervision network to refine the segmented results on the decoding side. Results: Experimental results show that DeepVinci can achieve state-of-the-art accuracy, obtaining dice similarity coefficient and mean pixel accuracy values of 0.684 and 0.700, respectively. Conclusions: The proposed DeepVinci network presents a practical and competitive semantic segmentation solution for da Vinci gynecological surgery. Full article
(This article belongs to the Section Machine Learning and Artificial Intelligence in Diagnostics)
Show Figures

Figure 1

Back to TopTop