Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (782)

Search Parameters:
Keywords = economic spillover effects

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
31 pages, 891 KiB  
Article
Corporate Digital Transformation and Capacity Utilization Rate: The Functionary Path via Technological Innovation
by Yang Liu, Hongyan Zhang, Xiang Gao and Yanxiang Xie
Int. J. Financial Stud. 2025, 13(3), 144; https://doi.org/10.3390/ijfs13030144 (registering DOI) - 7 Aug 2025
Abstract
The rapid development of digital technology is reshaping the global economic landscape. However, its impact on firms’ capacity utilization rate (CUR), particularly through technological innovation, remains unclear. This study investigates this issue by developing an endogenous growth model that connects digital technology to [...] Read more.
The rapid development of digital technology is reshaping the global economic landscape. However, its impact on firms’ capacity utilization rate (CUR), particularly through technological innovation, remains unclear. This study investigates this issue by developing an endogenous growth model that connects digital technology to CUR. The empirical analysis is based on data from Chinese A-share manufacturing firms. The methods employed include quantile regression, instrumental variable techniques, and various tests to explore underlying mechanisms. CUR is calculated using a special model that looks at random variations, and digital transformation is assessed using text analysis powered by machine learning. The findings indicate that digital transformation significantly enhances CUR, especially for firms with average capacity utilization levels, but has a limited effect on low- and high-end firms. Moreover, technological innovation mediates this relationship; however, factors like “double arbitrage” (involving policy and capital markets) and “herd effects” tend to prioritize quantity over quality, which constrains innovation potential. Improvements in CUR lead to enhanced firm performance and productivity, generating industry spillovers and demonstrating the broader economic externalities of digitalization. This study uniquely applies endogenous growth theory to examine the role of digital transformation in optimizing CUR. It introduces the “quantity-quality” technology innovation paradox as a crucial mechanism and highlights industry spillovers to address overcapacity while offering insights for fostering sustainable economic and social development in emerging markets. Full article
Show Figures

Figure 1

35 pages, 3601 KiB  
Article
Carbon Emissions and Influencing Factors in the Areas Along the Belt and Road Initiative in Africa: A Spatial Spillover Perspective
by Suxin Yang and Miguel Ángel Benedicto Solsona
Sustainability 2025, 17(15), 7098; https://doi.org/10.3390/su17157098 - 5 Aug 2025
Abstract
The carbon dioxide spillover effects and influencing factors of the “Belt and Road Initiative” (BRI) in African countries must be assessed to evaluate the effectiveness, promote low-carbon transmissions in African countries, and provide recommendations for achieving the 2030 Sustainable Development Goals. This novel [...] Read more.
The carbon dioxide spillover effects and influencing factors of the “Belt and Road Initiative” (BRI) in African countries must be assessed to evaluate the effectiveness, promote low-carbon transmissions in African countries, and provide recommendations for achieving the 2030 Sustainable Development Goals. This novel study employs carbon dioxide emission intensity (CEI) and per capita carbon dioxide emissions (PCE) as dual indicators to evaluate the spatial spillover effects of 54 BRI African countries on their neighboring countries’ carbon emissions from 2007 to 2023. It identifies the key factors and mechanisms affecting these spillover effects using the spatial differences-in-differences (SDID) model. Results indicate that since the launch of the BRI, the CEI and PCE of BRI African countries have significantly increased, largely due to trade patterns and industrialization structures. Greater trade openness has further boosted local economic development, thereby increasing carbon dioxide’s spatial spillover. Government management and corruption control levels show some heterogeneity in the spillover effects, which may be attributed to long-standing issues of weak institutional enforcement in Africa. Overall, this study reveals the complex relationship between BRI African economic development and environmental outcomes, highlighting the importance of developing sustainable development strategies and establishing strong differentiated regulatory regimes to effectively address environmental challenges. Full article
Show Figures

Figure 1

32 pages, 1747 KiB  
Article
Can Regional Infrastructure Predict Its Economic Resilience? Limited Evidence from Spatial Modelling
by Mantas Rimidis and Mindaugas Butkus
Sustainability 2025, 17(15), 7046; https://doi.org/10.3390/su17157046 - 3 Aug 2025
Viewed by 180
Abstract
This study examines whether regional infrastructure can predict economic resilience in European regions, focusing on resistance, recovery, and reorientation during the COVID-19 crisis. While infrastructure is widely recognized as a key factor influencing regional resilience, its explicit role has been underexplored in the [...] Read more.
This study examines whether regional infrastructure can predict economic resilience in European regions, focusing on resistance, recovery, and reorientation during the COVID-19 crisis. While infrastructure is widely recognized as a key factor influencing regional resilience, its explicit role has been underexplored in the European context. Using a comprehensive literature review and spatial econometric models applied to NUTS-2 level data from 2017 to 2024, we investigate the direct and spatial spillover effects of various infrastructure types—transportation, healthcare, tourism, education, and digital access—on regional resilience outcomes. We apply OLS and four spatial models (SEM, SLX, SDEM, SDM) under 29 spatial weighting matrices to account for spatial autocorrelation. Results show that motorway density, early school leaving, and healthcare infrastructure in neighbouring regions significantly affect resistance. For recovery, railway density and GDP per capita emerge as key predictors, with notable spatial spillovers. Reorientation is shaped by population structure, railway density, and tourism infrastructure, with both positive and negative spatial dynamics observed. The findings underscore the importance of infrastructure not only in isolation but also within regional systems, revealing complex interdependencies. We conclude that policymakers must consider spatial externalities and coordinate infrastructure investments to enhance regional economic resilience across interconnected Europe. Full article
Show Figures

Figure 1

21 pages, 1646 KiB  
Article
How Does New Quality Productive Forces Affect Green Total Factor Energy Efficiency in China? Consider the Threshold Effect of Artificial Intelligence
by Boyu Yuan, Runde Gu, Peng Wang and Yuwei Hu
Sustainability 2025, 17(15), 7012; https://doi.org/10.3390/su17157012 - 1 Aug 2025
Viewed by 277
Abstract
China’s economy is shifting from an era of rapid expansion to one focused on high-quality development, making it imperative to tackle environmental degradation linked to energy use. Understanding how New Quality Productive Forces (NQPF) interact with energy efficiency, along with the mechanisms driving [...] Read more.
China’s economy is shifting from an era of rapid expansion to one focused on high-quality development, making it imperative to tackle environmental degradation linked to energy use. Understanding how New Quality Productive Forces (NQPF) interact with energy efficiency, along with the mechanisms driving this relationship, is essential for economic transformation and long-term sustainability. This study establishes an evaluation framework for NQPF, integrating technological, green, and digital dimensions. We apply fixed-effects models, the spatial Durbin model (SDM), a moderation model, and a threshold model to analyze the influence of NQPF on Green Total Factor Energy Efficiency (GTFEE) and its spatial implications. This underscores the necessity of distinguishing it from traditional productivity frameworks and adopting a new analytical perspective. Furthermore, by considering dimensions such as input, application, innovation capability, and market efficiency, we reveal the moderating role and heterogeneous effects of artificial intelligence (AI). The findings are as follows: The development of NQPF significantly enhances GTFEE, and the conclusion remains robust after tail reduction and endogeneity tests. NQPF has a positive spatial spillover effect on GTFEE; that is, while improving the local GTFEE, it also improves neighboring regions GTFEE. The advancement of AI significantly strengthens the positive impact of NQPF on GTFEE. AI exhibits a significant U-shaped threshold effect: as AI levels increase, its moderating effect transitions from suppression to facilitation, with marginal benefits gradually increasing over time. Full article
(This article belongs to the Section Energy Sustainability)
Show Figures

Figure 1

23 pages, 658 KiB  
Article
Green Innovation Quality in Center Cities and Economic Growth in Peripheral Cities: Evidence from the Yangtze River Delta Urban Agglomeration
by Sijie Duan, Hao Chen and Jie Han
Systems 2025, 13(8), 642; https://doi.org/10.3390/systems13080642 - 1 Aug 2025
Viewed by 261
Abstract
Improving the green innovation quality (GIQ) of center cities is crucial to achieve sustainable urban agglomeration development. Utilizing data on green patent citations and economic indicators across cities in the Yangtze River Delta urban agglomeration (YRD) from 2003 to 2022, this research examines [...] Read more.
Improving the green innovation quality (GIQ) of center cities is crucial to achieve sustainable urban agglomeration development. Utilizing data on green patent citations and economic indicators across cities in the Yangtze River Delta urban agglomeration (YRD) from 2003 to 2022, this research examines the influence of center cities’ GIQ on the economic performance of peripheral municipalities. The results show the following: (1) Center cities’ GIQ exerts a significant suppressive effect on peripheral cities’ economic growth overall. Heterogeneity analysis uncovers a distance-dependent duality. GIQ stimulates growth in proximate cities (within 300 km) but suppresses it beyond this threshold. This spatial siphoning effect is notably amplified in national-level center cities. (2) Mechanisms suggest that GIQ accelerates the outflow of skilled labor in peripheral cities through factor agglomeration and industry transfer mechanisms. Concurrently, it impedes the gradient diffusion of urban services, collectively hindering peripheral development. (3) Increased government green attention (GGA) and industry–university–research cooperation (IURC) in centers can mitigate these negative impacts. This paper contributes to the theoretical discourse on center cities’ spatial externalities within agglomerations and offers empirical support and policy insights for the exertion of spillover effects of high-quality green innovation from center cities and the sustainable development of urban agglomeration. Full article
(This article belongs to the Section Systems Practice in Social Science)
Show Figures

Figure 1

36 pages, 2981 KiB  
Article
Research on the Characteristics and Influencing Factors of Virtual Water Trade Networks in Chinese Provinces
by Guangyao Deng, Siqian Hou and Keyu Di
Sustainability 2025, 17(15), 6972; https://doi.org/10.3390/su17156972 - 31 Jul 2025
Viewed by 168
Abstract
Promoting the sustainable development of virtual water trade is of great significance to safeguarding China’s water resource security and balanced regional economic growth. This study analyzes the virtual water trade network among 31 Chinese provinces based on multi-regional input–output tables from 2012, 2015, [...] Read more.
Promoting the sustainable development of virtual water trade is of great significance to safeguarding China’s water resource security and balanced regional economic growth. This study analyzes the virtual water trade network among 31 Chinese provinces based on multi-regional input–output tables from 2012, 2015, and 2017, using total trade decomposition, social network analysis, and exponential random graph models. The key findings are as follows: (1) The total virtual water trade volume remains stable, with Xinjiang, Jiangsu, and Guangdong as the core regions, while remote areas such as Shaanxi and Gansu have lower trade volumes. The primary industry dominates, and it is driven by simple value chains. (2) Provinces such as Xinjiang, Heilongjiang, and Jiangsu form the network’s core. Network density and symmetry increased from 2012 to 2015 but declined slightly in 2017, with efficiency peaking and then dropping, and the clustering coefficient decreased annually. Four economic sectors exhibit distinct interactions: frequent two-way flows in Sector 1, significant inflows in Sector 2, prominent net spillovers in Sector 3, and key brokers in Sector 4. (3) The network evolved from a core-periphery structure with weak ties to a stable, heterogeneous, and resilient system. (4) Influencing factors, such asper capita water resources, economic development, and population, significantly impact trade. Similarities in economic levels, population, and water endowments promote trade, while spatial distance has a limited effect, with geographic proximity showing a significant negative impact on long-distance trade. Full article
Show Figures

Figure 1

27 pages, 1637 KiB  
Article
Collaborative Industrial Agglomeration and a Green Low-Carbon Circular Development Economy: A Study Based on Provincial Panel Data in China
by Mengqi Gong, Gege He, Yizi Wang, Yiyue Yang and Xinru Li
Sustainability 2025, 17(15), 6950; https://doi.org/10.3390/su17156950 - 31 Jul 2025
Viewed by 330
Abstract
As an important direction in industrial evolution, the synergistic agglomeration of manufacturing and productive service industries has become a key path to promote the green transformation of the economy. Based on China’s provincial panel data, this study utilizes a variety of econometric methods [...] Read more.
As an important direction in industrial evolution, the synergistic agglomeration of manufacturing and productive service industries has become a key path to promote the green transformation of the economy. Based on China’s provincial panel data, this study utilizes a variety of econometric methods to explore in depth the mechanisms, spatial effects and regional differences in the impact of the synergistic agglomeration of manufacturing and productive service industries on the green, low-carbon and recycling development of the economy. The empirical results show that the synergistic agglomeration of manufacturing and productive services not only directly promotes the green, low-carbon and recycling development of the economy, but also generates an indirect impact through the intermediary channel and exhibits significant spillover characteristics in the spatial dimension. This conclusion holds firm after a series of robustness tests. In addition, environmental regulations and the level of regional industrialization play a moderating role on the impact of industrial synergistic agglomeration and green, low-carbon and recycling development of the economy, and the effect of the role varies across regions and levels of economic development. This paper provides a decision-making reference for further optimizing the regional layout of China’s industries and enhancing the green, low-carbon and recycling development of the economy in each province. Full article
Show Figures

Figure 1

25 pages, 2277 KiB  
Article
The Influence Mechanism of the Digital Economy on Carbon Intensity Across Chinese Provinces
by Jiazhen Duan, Zhuowen Zhang, Haoran Zhao, Chunhua Jin and Sen Guo
Sustainability 2025, 17(15), 6877; https://doi.org/10.3390/su17156877 - 29 Jul 2025
Viewed by 214
Abstract
The accelerating growth of the digital economy (DE) offers fresh momentum towards reaching carbon emissions’ peak and neutrality. Nevertheless, the impact mechanism of the DE on carbon emissions intensity (CEI) is insufficiently characterized. Our study first constructs an expanded comprehensive indicator system to [...] Read more.
The accelerating growth of the digital economy (DE) offers fresh momentum towards reaching carbon emissions’ peak and neutrality. Nevertheless, the impact mechanism of the DE on carbon emissions intensity (CEI) is insufficiently characterized. Our study first constructs an expanded comprehensive indicator system to evaluate DE development level from five dimensions containing 17 indicators. Panel data from 30 Chinese provincial regions (2013–2023) were analyzed using fixed effects, mediating effects, and spatial Durbin models to empirically examine the relationship and mechanisms between DE and CEI. Considering the existence of indirect effects of DE on CEs, the mechanism associated with the effect of the DE on CEs from the perspectives of economic growth, industrial structure upgrading, and scientific and technology innovation has been explored. The findings indicate notable regional disparities in the DE level across various provincial regions of China. China’s DE development significantly inhibits CEI. Furthermore, the DE’s development has successfully curtailed CE growth via three mediating mechanisms. And the DE exhibits a critical spatial spillover effect on CEI, and that effect also exhibits regional heterogeneity. Our findings can aid in regional DE development and the creation of policies to reduce CEs. Full article
Show Figures

Figure 1

18 pages, 7058 KiB  
Article
Does Urban Economic Development Increase Sewage Discharge Intensity? A Case Study of 288 Cities in China
by Xiaoli Yue, Yingmei Wu, Yang Wang, Wenlu Li, Yufei Wang, Guiquan Sun and Hong’ou Zhang
Water 2025, 17(15), 2251; https://doi.org/10.3390/w17152251 - 28 Jul 2025
Viewed by 240
Abstract
Accelerated urbanization and intensified urban development globally lead to increased sewage discharge, challenging environmental protection. Therefore, exploring the correlation mechanism between the economic development level (EDL) and sewage discharge intensity (SDI) is crucial for sustainable development. This study uses panel data from 288 [...] Read more.
Accelerated urbanization and intensified urban development globally lead to increased sewage discharge, challenging environmental protection. Therefore, exploring the correlation mechanism between the economic development level (EDL) and sewage discharge intensity (SDI) is crucial for sustainable development. This study uses panel data from 288 Chinese cities between 2003 and 2021, employs spatial analysis techniques to uncover the spatiotemporal evolution characteristics of SDI, and investigates the influence of economic development on this intensity using spatial panel models. The results reveal that (1) while the spatial distribution of SDI in China generally exhibits a downward trend, changes in the Northeast region are relatively modest, with SDI remaining higher than in other regions. Global autocorrelation analysis further indicates significant spatial agglomeration and positive correlation effects in urban SDI. (2) Economic development exerts a notable inhibitory effect on SDI, with a 0.570% decrease for every 1% rise in GDP per capita, thus demonstrating a significant spatial spillover effect. (3) For megacities, large cities, and small and medium-sized cities, EDLs have significant negative spatial spillover effects on SDI, with a more pronounced impact on large cities. This study provides a theoretical foundation for sewage management and empirical support for environmental policies, crucial for sustainable urban development. Full article
(This article belongs to the Section Urban Water Management)
Show Figures

Figure 1

26 pages, 1881 KiB  
Article
How Does the Construction of New Generation of National AI Innovative Development Pilot Zones Affect Carbon Emissions Intensity? Empirical Evidence from China
by Lu Wang, Ziying Zhao, Xiaojun Xu, Xiaoli Wang and Yuting Wang
Sustainability 2025, 17(15), 6858; https://doi.org/10.3390/su17156858 - 28 Jul 2025
Viewed by 426
Abstract
At a critical juncture in the global low-carbon transition, the role of artificial intelligence (AI) in facilitating low-carbon growth has become increasingly significant. To accelerate the integration of AI with socio-economic development, China has established National New Generation Artificial Intelligence Innovation and Development [...] Read more.
At a critical juncture in the global low-carbon transition, the role of artificial intelligence (AI) in facilitating low-carbon growth has become increasingly significant. To accelerate the integration of AI with socio-economic development, China has established National New Generation Artificial Intelligence Innovation and Development Pilot Zones (AIPZ). However, the specific impact of these zones on low-carbon development remains unclear. This study utilized panel data from 30 provinces in China from 2013 to 2022 and employed the multi-period difference-in-differences (DID) model and the spatial autoregressive difference-in-differences (SARDID) model to examine the carbon emissions reduction effects of the AIPZ policy and its spatial spillover effects. The findings revealed that the policy significantly reduced carbon emissions intensity (CEI) across provinces, with an average reduction effect of 6.9%. The analysis of the impact mechanism confirmed the key role of human, technological, and financial resources. Heterogeneity analysis indicated varying effects across regions, with more significant reductions in eastern and energy-rich areas. Further analysis using the SARDID model confirmed spatial spillover effects on CEI. This paper aims to enhance understanding of the relationship between AIPZ and CEI and provide empirical evidence for policymakers during the low-carbon transition. By exploring the potential of the AIPZ policy in emissions reduction, it proposes targeted strategies and implementation pathways for policymakers and industry participants to promote the sustainable development of China’s low-carbon economy. Full article
(This article belongs to the Special Issue Artificial Intelligence and Sustainable Development)
Show Figures

Figure 1

17 pages, 2269 KiB  
Article
Will Road Infrastructure Become the New Engine of Urban Growth? A Consideration of the Economic Externalities
by Cheng Xue, Yiying Chao, Shangwei Xie and Kebiao Yuan
Sustainability 2025, 17(15), 6813; https://doi.org/10.3390/su17156813 - 27 Jul 2025
Viewed by 237
Abstract
Highway accessibility plays a vital role in supporting local economic development, particularly in regions lacking access to sea or river ports. Recognizing the functional transformation of road infrastructure, the Chinese government has made substantial investments in its expansion. Nevertheless, a theoretical gap remains [...] Read more.
Highway accessibility plays a vital role in supporting local economic development, particularly in regions lacking access to sea or river ports. Recognizing the functional transformation of road infrastructure, the Chinese government has made substantial investments in its expansion. Nevertheless, a theoretical gap remains in justifying whether such investments yield significant economic returns. Drawing on the theory of economic externalities, this study investigates the causal relationship between highway development and regional economic growth, and assesses whether highway construction leads to an acceleration in growth rates. Utilizing panel data from 14 Chinese cities spanning 2000 to 2014, the synthetic control method (SCM) is employed to evaluate the economic externalities of highway investment. The results indicate a positive impact on surrounding industries. Furthermore, a growth rate forecasting analysis based on Back-Propagation Neural Networks (BPNNs) is conducted using industrial enterprise data from 2005 to 2014. The growth rate in the treated city is 1.144%, which is close to the real number 1.117%, higher than the number for the weighted control group, which is 1.000%. The findings suggest that the growth rate of total industrial output improved significantly, confirming the existence of positive spillover effects. This not only enriches the empirical literature on transport infrastructure but also provides targeted enlightenment for the sustainable development of urban economy in terms of policy guidance. Full article
Show Figures

Figure 1

32 pages, 2036 KiB  
Article
Exploring the Impact of Digital Inclusive Finance and Industrial Structure Upgrading on High-Quality Economic Development: Evidence from a Spatial Durbin Model
by Liuwu Chen and Guimei Zhang
Economies 2025, 13(8), 212; https://doi.org/10.3390/economies13080212 - 24 Jul 2025
Viewed by 404
Abstract
This study investigates the impact and mechanisms of digital inclusive finance (DIF) on high-quality economic development in China. Drawing on panel data from 281 prefecture-level cities between 2011 and 2021, we employ a Spatial Durbin Model (SDM) to analyze both the direct effects [...] Read more.
This study investigates the impact and mechanisms of digital inclusive finance (DIF) on high-quality economic development in China. Drawing on panel data from 281 prefecture-level cities between 2011 and 2021, we employ a Spatial Durbin Model (SDM) to analyze both the direct effects and spatial spillovers of DIF. The results indicate that (1) DIF has a significantly positive effect on high-quality development, which remains robust after conducting various stability and endogeneity tests; (2) DIF strongly contributes to economic upgrading in eastern regions, while its impact is weaker or even negative in central and western regions, revealing notable regional disparities exist; (3) a key finding is the identification of a double-threshold effect, suggesting that the positive influence of DIF only emerges when financial and industrial development surpass certain thresholds; (4) results from the two-regime SDM further show that spillover effects are more prominent in non-central cities than in central ones; and (5) mechanism analysis reveals that DIF facilitates high-quality growth primarily by promoting industrial structure upgrading. These findings underscore the importance of region-specific policy strategies to enhance the role of DIF and reduce spatial disparities in development across China. Full article
Show Figures

Figure 1

28 pages, 1524 KiB  
Article
Digital Transformation and Competitive Advantage in Manufacturing: The Role of Business Model Innovation
by Shanqiang Zheng and Yaodong Zhou
Economies 2025, 13(7), 209; https://doi.org/10.3390/economies13070209 - 20 Jul 2025
Viewed by 407
Abstract
In the era of the digital economy, how digital transformation (DT) contributes to economic development has become a topic of growing interest. This study focuses on business model innovation (BMI) driven by DT in the manufacturing sector. From this perspective, we aim to [...] Read more.
In the era of the digital economy, how digital transformation (DT) contributes to economic development has become a topic of growing interest. This study focuses on business model innovation (BMI) driven by DT in the manufacturing sector. From this perspective, we aim to explore how DT can reshape the fundamental connotation of economic development. To this end, we construct a mathematical model grounded in a Multi-Structural Economic System framework and employ econometric models focusing on fixed effects, mediation effects, and moderation effects. We also compile a panel dataset using data from China spanning from 2008 to 2024. The empirical findings reveal that BMI serves as a mediation mechanism between the DT and competitive advantage (CA) of manufacturing enterprises. However, competitive imitation of BMI by peer enterprises partially offsets this effect, weakening the relationship between DT and enhanced CA. These findings offer evidence-based insights into the role of BMI in the digital era. For policymakers and industry regulators, this study provides practical implications for promoting knowledge spillovers from BMI, thereby fostering market dynamism and enabling structural transformation in the manufacturing industry. Full article
(This article belongs to the Special Issue Economic Development in the Digital Economy Era)
Show Figures

Figure 1

18 pages, 2680 KiB  
Article
Spatio-Temporal Evolution, Factors, and Enhancement Paths of Ecological Civilization Construction Effectiveness: Empirical Evidence Based on 48 Cities in the Yellow River Basin of China
by Haifa Jia, Pengyu Liang, Xiang Chen, Jianxun Zhang, Wanmei Zhao and Shaowen Ma
Land 2025, 14(7), 1499; https://doi.org/10.3390/land14071499 - 19 Jul 2025
Viewed by 323
Abstract
Climate change, resource scarcity, and ecological degradation have become critical bottlenecks constraining socio-economic development. Basin cities serve as key nodes in China’s ecological security pattern, playing indispensable roles in ecological civilization construction. This study established an evaluation index system spanning five dimensions to [...] Read more.
Climate change, resource scarcity, and ecological degradation have become critical bottlenecks constraining socio-economic development. Basin cities serve as key nodes in China’s ecological security pattern, playing indispensable roles in ecological civilization construction. This study established an evaluation index system spanning five dimensions to assess the effectiveness of ecological civilization construction. This study employs the entropy-weighted Technique for Order Preference by Similarity to an Ideal Solution (TOPSIS) and Back-Propagation (BP) neural network methods to evaluate the level of ecological civilization construction in the Yellow River Basin from 2010 to 2022, to analyze its indicator weights, and to explore the spatio-temporal evolution characteristics of each city. The results demonstrate the following: (1) Although the ecological civilization construction level of cities in the Yellow River Basin shows a steady improvement, significant regional development disparities persist. (2) The upper reaches are primarily constrained by ecological fragility and economic underdevelopment. The middle reaches exhibit significant internal divergence, with provincial capitals leading yet demonstrating limited spillover effects on neighboring areas. The lower reaches face intense anthropogenic pressures, necessitating greater economic–ecological coordination. (3) Among the dimensions considered, Territorial Space and Eco-environmental Protection emerged as the two most influential dimensions contributing to performance differences. According to the ecological civilization construction performance and changing characteristics of the 48 cities, this study proposes differentiated optimization measures and coordinated development pathways to advance the implementation of the national strategy for ecological protection and high-quality development in the Yellow River Basin. Full article
Show Figures

Figure 1

18 pages, 1349 KiB  
Article
Analysing Market Volatility and Economic Policy Uncertainty of South Africa with BRIC and the USA During COVID-19
by Thokozane Ramakau, Daniel Mokatsanyane, Sune Ferreira-Schenk and Kago Matlhaku
J. Risk Financial Manag. 2025, 18(7), 400; https://doi.org/10.3390/jrfm18070400 - 19 Jul 2025
Viewed by 456
Abstract
The contagious COVID-19 disease not only brought about a global health crisis but also a disruption in the global economy. The uncertainty levels regarding the impact of the disease increased volatility. This study analyses stock market volatility and Economic Policy Uncertainty (EPU) of [...] Read more.
The contagious COVID-19 disease not only brought about a global health crisis but also a disruption in the global economy. The uncertainty levels regarding the impact of the disease increased volatility. This study analyses stock market volatility and Economic Policy Uncertainty (EPU) of South Africa (SA) with that of the United States of America (USA) and Brazil, Russia, India, and China (BRIC) during the COVID-19 pandemic. The study aims to analyse volatility spillovers from a developed market (USA) to emerging markets (BRIC countries) and also to examine the causality between EPU and stock returns during the COVID-19 pandemic. By employing the GARCH-in-Mean model from a sample of daily returns of national equity market indices from 1 January 2020 to 31 March 2022, SA and China are shown to be the most volatile during the pandemic. By using the diagonal Baba, Engle, Kraft, and Kroner (BEKK) model to analyse spillover effects, evidence of spillover effects from the US to the emerging countries is small but statistically significant, with SA showing the strongest impact from US market shocks. From the Granger causality test, Brazil’s and India’s equity markets are shown to be highly sensitive to changes in EPU relative to the other countries. Full article
(This article belongs to the Section Economics and Finance)
Show Figures

Figure 1

Back to TopTop