Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline

Search Results (135)

Search Parameters:
Keywords = ecological wastewater treatment methods

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 18876 KiB  
Article
Deciphering Soil Keystone Microbial Taxa: Structural Diversity and Co-Occurrence Patterns from Peri-Urban to Urban Landscapes
by Naz Iram, Yulian Ren, Run Zhao, Shui Zhao, Chunbo Dong, Yanfeng Han and Yanwei Zhang
Microorganisms 2025, 13(8), 1726; https://doi.org/10.3390/microorganisms13081726 - 24 Jul 2025
Viewed by 297
Abstract
Assessing microbial community stability and soil quality requires understanding the role of keystone microbial taxa in maintaining diversity and functionality. This study collected soil samples from four major habitats in the urban and peri-urban areas of 20 highly urbanized provinces in China using [...] Read more.
Assessing microbial community stability and soil quality requires understanding the role of keystone microbial taxa in maintaining diversity and functionality. This study collected soil samples from four major habitats in the urban and peri-urban areas of 20 highly urbanized provinces in China using both the five-point method and the S-shape method and explored their microbiota through high-throughput sequencing techniques. The data was used to investigate changes in the structural diversity and co-occurrence patterns of keystone microbial communities from peri-urban (agricultural land) to urban environments (hospitals, wastewater treatment plants, and zoos) across different regions. Using network analysis, we examined the structure and symbiosis of soil keystone taxa and their association with environmental factors during urbanization. Results revealed that some urban soils exhibited higher microbial diversity, network complexity, and community stability compared to peri-urban soil. Significant differences were observed in the composition, structure, and potential function of keystone microbial taxa between these environments. Correlation analysis showed a significant negative relationship between keystone taxa and mean annual precipitation (p < 0.05), and a strong positive correlation with soil nutrients, microbial diversity, and community stability (p < 0.05). These findings suggest that diverse keystone taxa are vital for sustaining microbial community stability and that urbanization-induced environmental changes modulate their composition. Shifts in keystone taxa composition reflect alterations in soil health and ecosystem functioning, emphasizing their role as indicators of soil quality during urban development. This study highlights the ecological importance of keystone taxa in shaping microbial resilience under urbanization pressure. Full article
(This article belongs to the Special Issue The Urban Microbiome)
Show Figures

Figure 1

16 pages, 3177 KiB  
Article
Cadmium as the Critical Limiting Factor in the Co-Disposal of Municipal Solid Waste Incineration Fly Ash in Cement Kilns: Implications for Three-Stage Water Washing Efficiency and Safe Dosage Control
by Zhonggen Li, Qingfeng Wang, Li Tang, Liangliang Yang and Guangyi Sun
Toxics 2025, 13(7), 593; https://doi.org/10.3390/toxics13070593 - 15 Jul 2025
Viewed by 368
Abstract
The co-disposal of municipal solid waste incineration fly ash (MSWI-FA) in cement kilns is an effective method for managing incineration by-products in China. However, the presence of heavy metals in MSWI-FA raises environmental concerns. This study analyzed the Cu, Zn, Cd, Pb, Cr, [...] Read more.
The co-disposal of municipal solid waste incineration fly ash (MSWI-FA) in cement kilns is an effective method for managing incineration by-products in China. However, the presence of heavy metals in MSWI-FA raises environmental concerns. This study analyzed the Cu, Zn, Cd, Pb, Cr, and Ni concentrations in MSWI-FA from 11 representative facilities across China and assessed the efficacy of a three-stage water washing process for Cl and heavy metal removal. The results revealed significant regional variations in heavy metal content that were strongly correlated with surface soil levels, with Zn, Pb, and Cu exhibiting the highest concentrations. Elemental correlations, such as Cu-Pb and Zn-Cd synergies and Cd-Ni antagonism, suggest common waste sources and temperature-dependent volatilization during incineration. The washing process (solid–liquid ratio = 1:10) achieved 97.1 ± 2.0% Cl removal, reducing residual Cl to 0.45 ± 0.32%, but demonstrated limited heavy metal elimination (10.28–19.38% efficiency), resulting in elevated concentrations (32.5–60.8% increase) due to 43.4 ± 9.2% mass loss. Notably, the washing effluents exceeded municipal wastewater discharge limits by up to 52-fold for Pb and 38-fold for Cd, underscoring the need for advanced effluent treatment. To mitigate environmental risks, the addition of washed MSWI-FA in cement kilns should be restricted to ≤0.5%, with Cd content prioritized in pre-disposal assessments. This study provides actionable insights for optimizing MSWI-FA co-processing while ensuring compliance with ecological safety standards. Full article
(This article belongs to the Special Issue Distribution and Behavior of Trace Metals in the Environment)
Show Figures

Graphical abstract

22 pages, 5141 KiB  
Article
Maifanstone Powder-Modified PE Filler for Enhanced MBBR Start-Up in Treating Marine RAS Wastewater
by Rubina Altaf, Tianyu Xiao, Kai Wang, Jianlin Guo, Qian Li, Jing Zou, Neemat Jaafarzadeh, Daoji Wu and Dezhao Liu
Water 2025, 17(13), 1888; https://doi.org/10.3390/w17131888 - 25 Jun 2025
Viewed by 451
Abstract
The recirculating aquaculture system (RAS) has been rapidly adopted worldwide in recent years due to its high productivity, good stability, and good environmental controllability (and therefore friendliness to environment and ecology). Nevertheless, the effluent from seawater RAS contains a high level of ammonia [...] Read more.
The recirculating aquaculture system (RAS) has been rapidly adopted worldwide in recent years due to its high productivity, good stability, and good environmental controllability (and therefore friendliness to environment and ecology). Nevertheless, the effluent from seawater RAS contains a high level of ammonia nitrogen which is toxic to fish, so it is necessary to overcome the salinity conditions to achieve rapid and efficient nitrification for recycling. The moving bed biofilm reactor (MBBR) has been widely applied often by using PE fillers for efficient wastewater treatment. However, the start-up of MBBR in seawater environments has remained a challenge due to salinity stress and harsh inoculation conditions. This study investigated a new PE-filler surface modification method towards the enhanced start-up of mariculture MBBR by combining liquid-phase oxidation and maifanstone powder. The aim was to obtain a higher porous surface and roughness and a strong adsorption and alkalinity adjustment for the MBBR PE filler. The hydrophilic properties, surface morphology, and chemical structure of a raw polyethylene filler (an unmodified PE filler), liquid-phase oxidation modified filler (LO-PE), and liquid-phase oxidation combined with a coating of a maifanstone-powder-surface-modified filler (LO-SCPE) were first investigated and compared. The results showed that the contact angle was reduced to 45.5° after the optimal liquid-phase oxidation modification for LO-PE, 49.8% lower than that before modification, while SEM showed increased roughness and surface area by modification. Moreover, EDS presented the relative content of carbon (22.75%) and oxygen (42.36%) on the LO-SCPE surface with an O/C ratio of 186.10%, which is 177.7% higher than that of the unmodified filler. The start-up experiment on MBBRs treating simulated marine RAS wastewater (HRT = 24 h) showed that the start-up period was shortened by 10 days for LO-SCPE compared to the PE reactor, with better ammonia nitrogen removal observed for LO-SCPE (95.8%) than the PE reactor (91.7%). Meanwhile, the bacterial community composition showed that the LO-SCPE reactor had a more diverse and abundant AOB and NOB. The Nitrospira has a more significant impact on nitrification because it would directly oxidize NH4⁺-N to NO3⁻-N (comammox pathway) as mediated by AOB and NOB. Further, the LO-SCPE reactor showed a higher NH4+-N removal rate (>99%), less NO2-N accumulation, and a shorter adaption period than the PE reactor. Eventually, the NH4+-N concentrations of the three reactors (R1, R2, and R3) reached <0.1 mg/L within 3 days, and their NH4+-N removal efficiencies achieved 99.53%, 99.61%, and 99.69%, respectively, under ammonia shock load. Hence, the LO-SCPE media have a higher marine wastewater treatment efficiency. Full article
Show Figures

Figure 1

21 pages, 3168 KiB  
Article
Detection and Driving Factor Analysis of Hypoxia in River Estuarine Zones by Entropy Methods
by Tianrui Pang, Xiaoyu Zhang, Ye Xiong, Hongjie Wang, Sheng Chang, Tong Zheng and Jiping Jiang
Water 2025, 17(13), 1862; https://doi.org/10.3390/w17131862 - 23 Jun 2025
Viewed by 252
Abstract
Hypoxia in river estuaries poses significant ecological and water safety risks, yet long-term high-frequency monitoring data for comprehensive analysis remain scarce. This study investigates hypoxia dynamics in the Shenzhen River Estuary (southern China) using two-year high-frequency monitoring data. A hybrid anomaly detection method [...] Read more.
Hypoxia in river estuaries poses significant ecological and water safety risks, yet long-term high-frequency monitoring data for comprehensive analysis remain scarce. This study investigates hypoxia dynamics in the Shenzhen River Estuary (southern China) using two-year high-frequency monitoring data. A hybrid anomaly detection method integrating wavelet analysis and temporal information entropy was developed to identify hypoxia events. The drivers of hypoxia were also identified with correlation coefficients and transfer entropy (TE). The results reveal frequent spring–summer hypoxia. Turbidity and total nitrogen (TN) exhibited significant negative correlations and time-lagged effects on dissolved oxygen (DO), where TE reaches a peak of 0.05 with lags of 36 and 72 h, respectively. Wastewater treatment plant (WWTP) loads, particularly suspended solids (SSs), showed a linear negative correlation with estuarine DO. Notably, the 2022 data showed minimal correlations (except SSs) due to high baseline pollution, whereas the post-remediation 2023 data revealed stronger linear linkages (especially r = −0.81 for SSs). The proposed “high-frequency localization–low-frequency assessment” detection method demonstrated robust accuracy in identifying hypoxia events, and mechanistic analysis corroborated the time-lagged pollutant impacts. These findings advance hypoxia identification frameworks and highlight the critical role of Turbidity and SSs in driving estuarine oxygen depletion, offering actionable insights for adaptive water quality management. Full article
Show Figures

Figure 1

25 pages, 1610 KiB  
Article
Study on the Seismic Stability of Urban Sewage Treatment and Underground Reservoir of an Abandoned Mine Pumped Storage Power Station
by Baoyu Wei, Lu Gao and Hongbao Zhao
Sustainability 2025, 17(12), 5620; https://doi.org/10.3390/su17125620 - 18 Jun 2025
Viewed by 479
Abstract
As coal’s share in primary energy consumption wanes, the annual increase in abandoned coal mines presents escalating safety and environmental concerns. This paper delves into cutting-edge models and attributes of integrating pumped storage hydropower systems with subterranean reservoirs and advanced wastewater treatment facilities [...] Read more.
As coal’s share in primary energy consumption wanes, the annual increase in abandoned coal mines presents escalating safety and environmental concerns. This paper delves into cutting-edge models and attributes of integrating pumped storage hydropower systems with subterranean reservoirs and advanced wastewater treatment facilities within these decommissioned mines. By utilizing the expansive underground voids left by coal extraction, this method aims to achieve multifaceted objectives: efficient energy storage and generation, reclamation of mine water, and treatment of urban sewage. This research enhances the development and deployment of pumped storage technology in the context of abandoned mines, demonstrating its potential for fostering sustainable energy solutions and optimizing urban infrastructure. This study not only facilitates the progressive transformation and modernization of energy cities but also provides crucial insights for future advances in ecological mining practices, energy efficiency, emission mitigation, and green development strategies in the mining industry. Full article
Show Figures

Figure 1

15 pages, 1891 KiB  
Article
Effects of Cumulative Municipal Wastewater Exposure on Benthic Macroinvertebrate Assemblages: An Experimental Stream Approach
by Aphra M. Sutherland, Frederick J. Wrona and David C. Barrett
Hydrobiology 2025, 4(2), 17; https://doi.org/10.3390/hydrobiology4020017 - 13 Jun 2025
Viewed by 459
Abstract
Municipal wastewater effluent (MWWE) is a common source of nutrient enrichment and provides a route for emerging substances of concern (ESOCs) to enter aquatic systems. Community composition and abundance metrics of benthic macroinvertebrates are commonly utilized to assess ecological impacts associated with nutrient [...] Read more.
Municipal wastewater effluent (MWWE) is a common source of nutrient enrichment and provides a route for emerging substances of concern (ESOCs) to enter aquatic systems. Community composition and abundance metrics of benthic macroinvertebrates are commonly utilized to assess ecological impacts associated with nutrient enrichment; however, the responses of these metrics in systems with diverse chemical mixtures from MWWE, are not well understood. This study specifically addresses the effects of cumulative loading of tertiary-treated MWWE through responses in benthic macroinvertebrate communities in experimental control and treatment streams. Treatment streams used source river water previously exposed to upstream wastewater treatment plants but with an additional 5% by volume tertiarily treated MWWE, while control streams used only source river water. Surbers and artificial substrate rock baskets were used to examine impacts on both established and colonizing benthic communities, respectively. No significant differences were observed between the control and treatment streams in any of the community metrics of well-established benthic communities. In contrast, significant decreases in colonizing taxon diversity and evenness were found between treatment and control streams. The dominant taxa (most abundant family, by percentage of sample) in the community, often filter feeders, significantly increased in percentage of the total community in treatment streams. This response was consistent with a nutrient enrichment effect, with no evidence of ESOC related toxicity. This study highlights the need for bioassessment programs to utilize approaches involving varied in-situ sampling methods and controlled exposure systems to gain a better understanding of how various stages of community-level development are impacted by urban pollutants such as MWWE. Full article
Show Figures

Figure 1

8 pages, 1387 KiB  
Proceeding Paper
Polymeric Membranes in Water Treatment: Insights into Contaminant Removal Mechanisms and Advanced Processes
by Bishnu Kant Shukla, Bhupender Parashar, Tanu Patel, Yashasvi Gupta, Shreshth Verma and Shrishti Singh
Eng. Proc. 2025, 87(1), 69; https://doi.org/10.3390/engproc2025087069 - 29 May 2025
Viewed by 403
Abstract
Accelerated urbanization and industrialization have significantly heightened water contamination risks, posing severe threats to public health and ecological balance. Polymeric membranes stand at the forefront of addressing this challenge, revolutionizing water and wastewater treatment. These membranes adeptly remove a broad spectrum of contaminants, [...] Read more.
Accelerated urbanization and industrialization have significantly heightened water contamination risks, posing severe threats to public health and ecological balance. Polymeric membranes stand at the forefront of addressing this challenge, revolutionizing water and wastewater treatment. These membranes adeptly remove a broad spectrum of contaminants, including organic compounds and heavy metals, thereby playing a crucial role in mitigating environmental pollution. This research delves into the sophisticated mechanisms of polymeric membranes in filtering out pollutants, with a spotlight on the enhancements brought about by nanotechnology. This includes a detailed examination of their inherent antibacterial properties, showcasing their innovative design and potential for extensive application. The study further investigates advanced techniques like electrochemical processes and membrane distillation, particularly focusing on desalination. These methods are central to the advancement of water purification, emphasizing efficiency and environmental sustainability. However, challenges such as membrane fouling pose significant hurdles, necessitating ongoing research into surface modifications and antifouling strategies. This paper offers a comparative analysis of various membrane technologies, highlighting their manufacturing complexities and efficiency benchmarks. In summation, the paper underscores the importance of continuous innovation in membrane technology, aiming to develop sustainable and effective water treatment solutions. By bridging the gap between basic science and technological advancements, this review aims to guide practitioners and researchers towards a future where clean water is universally accessible, ensuring the preservation of our ecosystems. Full article
(This article belongs to the Proceedings of The 5th International Electronic Conference on Applied Sciences)
Show Figures

Figure 1

26 pages, 3667 KiB  
Article
Occurrence of 97 Pharmaceuticals in Wastewater and Receiving Waters: Analytical Validation and Treatment Influence
by Paula Paíga, Sónia Figueiredo, Manuela Correia, Magda André, Roberto Barbosa, Sandra Jorge and Cristina Delerue-Matos
J. Xenobiot. 2025, 15(3), 78; https://doi.org/10.3390/jox15030078 - 23 May 2025
Viewed by 1610
Abstract
This study analyzed 97 pharmaceuticals in samples of surface water, as well as influent and effluent from various wastewater treatment plants (WWTPs), during winter 2022 and spring 2023. Approximately 40% of the tested compounds were detected, at amounts ranging from below the methods’ [...] Read more.
This study analyzed 97 pharmaceuticals in samples of surface water, as well as influent and effluent from various wastewater treatment plants (WWTPs), during winter 2022 and spring 2023. Approximately 40% of the tested compounds were detected, at amounts ranging from below the methods’ detection limits to 5623 ng/L (2-hydroxyibuprofen in surface water) and 12,664 ng/L (caffeine in wastewater). Twelve compounds (acetaminophen, ampicillin, azithromycin, caffeine, fluoxetine, gemfibrozil, 2-hydroxyibuprofen, ibuprofen, ketoprofen, mazindol, naproxen, and salicylic acid) were detected with a 100% frequency in both surface water and wastewater samples. The observed high detection frequency of pharmaceuticals within the nonsteroidal anti-inflammatory drugs/analgesics, antibiotics, and psychiatric drug classes aligns with their high consumption. Caffeine was both the compound with the highest concentration and the most prevalent compound detected. Seasonal differences were observed, with higher concentrations detected during winter. Six of the eleven targeted metabolites and degradation products were detected in at least one sample. Risk quotient assessment revealed potential ecological risks, particularly for atorvastatin, caffeine, carbamazepine, and venlafaxine, exceeding risk thresholds for various trophic levels. The studied WWTPs showed limited removal efficiencies, with some compounds presenting higher concentrations in effluent than in influent, emphasizing the need for enhanced treatment to mitigate micropollutant risks. Full article
Show Figures

Graphical abstract

19 pages, 2682 KiB  
Article
Life Cycle Assessment of Recycling Polyethylene Terephthalate (PET): A Comparative Case Study in Taiwan
by Allen H. Hu, Chih-Yu Ting, Ali Ouattara, Wei-Tse Chen and Chien-Hung Kuo
Recycling 2025, 10(3), 98; https://doi.org/10.3390/recycling10030098 - 16 May 2025
Viewed by 3346
Abstract
Polyethylene terephthalate (PET) is commonly used in beverage container manufacturing; however, its classification as a single-use plastic significantly contributes to environmental pollution. Improper disposal results in enduring contamination of both terrestrial and marine ecosystems, which poses ecological and health risks. Among the disposal [...] Read more.
Polyethylene terephthalate (PET) is commonly used in beverage container manufacturing; however, its classification as a single-use plastic significantly contributes to environmental pollution. Improper disposal results in enduring contamination of both terrestrial and marine ecosystems, which poses ecological and health risks. Among the disposal methods, recycling, incineration, and landfilling, only recycling promotes a circular economy by reducing reliance on landfills, alleviating emissions, and conserving fossil resources. This study employs the life cycle assessment (LCA) method to evaluate the environmental impacts of three PET bottle recycling facilities in Taiwan, considering collection, transportation, and processing in the system boundary. It also assesses the effects of raw material composition, comparing transparent, colored, and mixed PET bottles. The results indicate that facilities processing colorless PET have lower environmental damage values (16.6–18.1 mPt·kg−1 of recycled flakes) than those handling colored and oil-trapped PET (25 mPt·kg−1) due to higher energy demands and poly aluminum chloride usage in wastewater treatment. Granulation was identified as a significant environmental hotspot for recycled PET pellets, with a damage value of 35 mPt·kg−1. Integrating renewable energy and recycled PET into PET bottle manufacturing could significantly reduce their environmental impacts. Policy recommendations include adopting renewable energies as the source energy, calibrating the use of chemicals in recycling facilities, and mandating minimum recycled content in PET products to enhance circularity. Full article
(This article belongs to the Special Issue Challenges and Opportunities in Plastic Waste Management)
Show Figures

Figure 1

16 pages, 4066 KiB  
Article
Synthesis and Characterization of MAPTAC-Modified Cationic Corn Starch: An Integrated DFT-Based Experimental and Theoretical Approach for Wastewater Treatment Applications
by Joaquín Alejandro Hernández Fernández and Jose Alfonso Prieto Palomo
J. Compos. Sci. 2025, 9(5), 240; https://doi.org/10.3390/jcs9050240 - 14 May 2025
Viewed by 503
Abstract
Phosphorus contamination in water bodies is a major contributor to eutrophication, leading to algal overgrowth, oxygen depletion, and ecological imbalance. Conventional treatment methods, including chemical precipitation and synthetic adsorbents, are often limited by high operational costs, low biodegradability, and secondary pollutant generation. In [...] Read more.
Phosphorus contamination in water bodies is a major contributor to eutrophication, leading to algal overgrowth, oxygen depletion, and ecological imbalance. Conventional treatment methods, including chemical precipitation and synthetic adsorbents, are often limited by high operational costs, low biodegradability, and secondary pollutant generation. In this study, a cationic starch was synthesized through free radical graft polymerization of 3-methacrylamoylaminopropyl trimethyl ammonium chloride (MAPTAC) onto corn starch. The modified polymer exhibited a high degree of substitution (DS = 1.24), indicating successful functionalization with quaternary ammonium groups. Theoretical calculations using zDensity Functional Theory (DFT) at the B3LYP/6-311+G(d,p) level revealed a decrease in chemical hardness (from 0.10442 eV to 0.04386 eV) and a lower ionization potential (from 0.24911 eV to 0.15611 eV) in the modified starch, indicating enhanced electronic reactivity. HOMO-LUMO analysis and molecular electrostatic potential (MEP) maps confirmed increased electron-accepting capacity and the formation of new electrophilic sites. Experimentally, the cationic starch showed stable zeta potential values averaging +15.3 mV across pH 5.0–10.0, outperforming aluminum sulfate (Alum), which reversed its charge above pH 7.5. In coagulation-flocculation trials, the modified starch achieved 87% total suspended solids (TSS) removal at a low coagulant-to-biomass ratio of 0.0601 (w/w) using Scenedesmus obliquus, and 78% TSS removal in real wastewater at a 1.5:1 ratio. Additionally, it removed 30% of total phosphorus (TP) under environmentally benign conditions, comparable to Alum but with lower chemical input. The integration of computational and experimental approaches demonstrates that MAPTAC-modified starch is an efficient, eco-friendly, and low-cost alternative for nutrient and solids removal in wastewater treatment. Full article
Show Figures

Figure 1

16 pages, 2825 KiB  
Article
Bioremediation Potential of a Non-Axenic Cyanobacterium Synechococcus sp. for Municipal Wastewater Treatment in the Peruvian Amazon: Growth Kinetics, Ammonium Removal, and Biochemical Characterization Within a Circular Bioeconomy Framework
by Remy G. Cabezudo, Juan C. Castro, Carlos G. Castro, Hicler N. Rodriguez, Gabriela L. García, Paul M. Vizcarra, Carmen Ruiz-Huamán and Marianela Cobos
BioTech 2025, 14(2), 36; https://doi.org/10.3390/biotech14020036 - 13 May 2025
Viewed by 1548
Abstract
Effective wastewater management is critical for mitigating environmental and health impacts in ecologically sensitive regions like the Peruvian Amazon, where rapid urbanization has led to increased discharge of nutrient-rich effluents into freshwater systems. Conventional treatment methods often fail to address nutrient imbalances while [...] Read more.
Effective wastewater management is critical for mitigating environmental and health impacts in ecologically sensitive regions like the Peruvian Amazon, where rapid urbanization has led to increased discharge of nutrient-rich effluents into freshwater systems. Conventional treatment methods often fail to address nutrient imbalances while generating secondary pollutants. This study aims to evaluate the bioremediation potential of a non-axenic cyanobacterium, Synechococcus sp., isolated from the Amazon Basin, for municipal wastewater treatment within a circular bioeconomy framework. The strain was cultivated in different concentrations of municipal wastewater (25%, 50%, 75%, 100%) from Moronacocha Lake in the Peruvian Amazon to assess growth kinetics, ammonium removal efficiency, and biochemical composition. The cyanobacterium exhibited optimal performance in 25% wastewater, achieving the highest specific growth rate (22.8 × 10−2 μ·day−1) and biomass increase (393.2%), exceeding even the standard BG-11 medium. This treatment also demonstrated exceptional ammonium removal efficiency (95.4%) and enhanced phycocyanin production (33.6 μg/mg, 56% higher than the control). As wastewater concentration increased, both growth parameters and removal efficiency progressively declined. Biochemical analysis revealed that higher wastewater concentrations resulted in decreased protein content and increased lipid accumulation in the biomass. These findings demonstrate the dual potential of Synechococcus sp. for effective wastewater remediation and production of valuable biomass with modifiable biochemical characteristics, offering a sustainable approach for wastewater management in the Peruvian Amazon region. Full article
Show Figures

Figure 1

20 pages, 11096 KiB  
Article
Microplastics in Surface Water in the Yangtze River, China: Basin-Wide Observation, Multiple Ecological Risk Assessment and Sustainability
by Qi Luo, Jijun Gao and Bo Gao
Sustainability 2025, 17(9), 4162; https://doi.org/10.3390/su17094162 - 5 May 2025
Viewed by 792
Abstract
The Yangtze River Basin (YRB) is an important source of marine microplastics (MPs). However, unscientific research methods in previous studies have led to inaccurate estimates of the occurrence and ecologic risk of MPs. This study aimed to comprehensively assess the distribution and ecological [...] Read more.
The Yangtze River Basin (YRB) is an important source of marine microplastics (MPs). However, unscientific research methods in previous studies have led to inaccurate estimates of the occurrence and ecologic risk of MPs. This study aimed to comprehensively assess the distribution and ecological risks of MPs in the YRB, through investigating the occurrence of full-size MPs in the surface waters of the YRB over 3 years. The Size Effect was developed based on the impact of size and MP-carried pollutants on human health, and combined with multiple methods to evaluate the potential risks of MPs. The average MP abundance in the YRB was 8797 ± 12,281 items/m3, dominated by polypropylene and fragments. The small MPs (<0.3 mm; 92.52%) were the driving factor of the MP spatial heterogeneity. Interestingly, the Three Gorges Dam significantly altered the MP distribution and weakened the MP transportation. Agricultural activities, wastewater treatment plants, and atmospheric deposition were the main sources of MPs in the YRB. Multiple ecological risk assessment indicated that the MP risk in the YRB was at the middle–low level. This study addresses the occurrence of <0.05 mm MPs in the YRB, provides insights for MP risk assessment, and serves as a reference for sustainable management. Full article
Show Figures

Graphical abstract

21 pages, 1743 KiB  
Article
Bacterivorous Ciliate Tetrahymena pyriformis Facilitates vanA Antibiotic Resistance Gene Transfer in Enterococcus faecalis
by Temilola O. Olanrewaju, James S. G. Dooley, Heather M. Coleman, Chris McGonigle and Joerg Arnscheidt
Antibiotics 2025, 14(5), 448; https://doi.org/10.3390/antibiotics14050448 - 28 Apr 2025
Viewed by 593
Abstract
Background: Wastewater treatment plants (WWTPs) are hotspots for the emergence and spread of antibiotic resistance genes (ARGs). In activated sludge treatment systems, bacterivorous protozoa play a crucial role in biological processes, yet their impact on the horizontal gene transfer in Gram-positive enteric bacteria [...] Read more.
Background: Wastewater treatment plants (WWTPs) are hotspots for the emergence and spread of antibiotic resistance genes (ARGs). In activated sludge treatment systems, bacterivorous protozoa play a crucial role in biological processes, yet their impact on the horizontal gene transfer in Gram-positive enteric bacteria remains largely unexplored. This study investigated whether the ciliate Tetrahymena pyriformis facilitates the transfer of antibiotic resistance genes between Enterococcus faecalis strains. Methods: Conjugation assays were conducted under laboratory conditions using a vanA-carrying donor and a rifampicin-resistant recipient at an initial bacterial concentration of 109 CFU/mL and ciliate density of 105 N/mL. Results: Transconjugant numbers peaked at 2 h when experiments started with recipient bacteria harvested in the exponential growth phase, and at 24 h when bacteria were in the stationary phase. In both cases, vanA gene transfer frequency was highest at 24 h (10−4–10−5 CFU/mL), and the presence of energy sources increased gene transfer frequency by one order of magnitude. Conclusions: These findings suggest that ciliate grazing may contribute to vanA gene transfer in WWTP effluents, potentially facilitating its dissemination among permissive bacteria. Given the ecological and public health risks associated with vanA gene persistence in wastewater systems, understanding protozoan-mediated gene transfer is crucial for mitigating the spread of antibiotic resistance in aquatic environments. Full article
(This article belongs to the Special Issue Tracking Reservoirs of Antimicrobial Resistance Genes in Environment)
Show Figures

Graphical abstract

23 pages, 17721 KiB  
Article
The Sustainable Development Path of Ecological Treatment Technology for Rural Sewage: A Bibliometric Perspective
by Yingying Kou, Fan Liu, Tianyi Li, Chenling Yan, Jinggang Wang, Chen Wang and Donghai Yuan
Water 2025, 17(9), 1299; https://doi.org/10.3390/w17091299 - 27 Apr 2025
Viewed by 429
Abstract
Due to the promotion of sustainable development goals and rapid economic development, the problem of rural sewage treatment is becoming increasingly severe. In order to understand the research hotspots, progress, and trends of ecological treatment technology for rural sewage at home and abroad, [...] Read more.
Due to the promotion of sustainable development goals and rapid economic development, the problem of rural sewage treatment is becoming increasingly severe. In order to understand the research hotspots, progress, and trends of ecological treatment technology for rural sewage at home and abroad, this article analyzes relevant literature published between 2000 and 2023 based on the core collection databases of China National Knowledge Infrastructure (CNKI) and Web of Science (WOS) using VOSviewer and CiteSpace visualization software. The research results indicate a continuous increase in attention to ecological treatment technologies for rural sewage, both domestically and internationally. Although China started relatively late in this field, it has developed rapidly. “China Water & Wastewater” has had a significant impact in related fields domestically, and a top-tier journal has not yet been founded by China internationally. The collaboration between research authors and institutions is evident, with CNKI focusing on exploring specific governance technologies, while WOS pays more attention to the overall governance framework and critical technologies. The research hotspots of ecological treatment technology for future village and town sewage include specific treatment technologies, treatment efficiency, overall treatment strategies, and environmental impact assessments. At the same time, cross-regional and cross-border cooperation should be strengthened, interdisciplinary collaboration should be promoted, open cooperation platforms should be established, diversified publishing channels should be supported, and research on microbial communities and non-point source pollution should be deepened. Full article
(This article belongs to the Section Urban Water Management)
Show Figures

Graphical abstract

18 pages, 3211 KiB  
Article
Effect of Selenium–Arabinogalactan Nanocomposite on Environmental Bacteria
by Elena I. Strekalovskaya, Alla I. Perfileva, Olga F. Vyatchina, Devard I. Stom, Aleksander V. Romashchenko, Anna I. Kasatova, Tatyana V. Kon’kova, Boris G. Sukhov and Konstantin V. Krutovsky
J. Compos. Sci. 2025, 9(5), 210; https://doi.org/10.3390/jcs9050210 - 26 Apr 2025
Viewed by 938
Abstract
It has been previously shown that a selenium (Se) nanocomposite (NC) based on the natural polysaccharide arabinogalactan (AG) produced from Siberian larch wood (Larix sibirica Ledeb.), containing 0.000625% of Se, has antibacterial properties against phytopathogens, such as Clavibacter sepedonicus, Pectobacterium carotovorum [...] Read more.
It has been previously shown that a selenium (Se) nanocomposite (NC) based on the natural polysaccharide arabinogalactan (AG) produced from Siberian larch wood (Larix sibirica Ledeb.), containing 0.000625% of Se, has antibacterial properties against phytopathogens, such as Clavibacter sepedonicus, Pectobacterium carotovorum, and Phytophthora cactorum. The same concentration of Se/AG NC stimulated the growth and development of potato plants in vitro, as well as the formation of their roots, while Se did not accumulate in potato tissues after plant treatment. However, to realize the full potential of Se/AG NC in agriculture for fighting phytopathogens with the aim of developing commercial nanopreparations, additional toxicological studies are needed to fully address their effects. In this study, to assess the environmental risk of using Se/AG NCs, it was applied to a number of bacteria isolated from soil (Escherichia coli, Bacillus cereus, and B. megaterium), water (Micrococcus luteus, B. subtilis, and Sarcina flava), and activated sludge and wastewater of treatment facilities (Serratia marcescens, M. luteus, B. cereus, and Pseudomonas aeruginosa). When studying the antibacterial activity of Se/AG NC against 11 test cultures of bacteria using the agar diffusion method, it was shown that Se/AG NC had a toxic effect only at high concentrations in the range from 40 mg/mL Se/AG NC (1.68 mg/mL Se) to 0.625 mg/mL Se/AG NC (0.026 mg/mL Se) on two types of bacteria M. luteus isolated from the waters of Lake Baikal and B. cereus obtained from activated sludge of treatment facilities. The maximum diameter of the growth inhibition zone of the test cultures after exposure to different concentrations of Se/AG NC was noted for M. luteus (water) and E. coli (soil) at 40 mg/mL − 26.3 and 20.3 mm, respectively. Thus, the negative impact of Se/AG NC on bacteria from different ecological niches was registered only at high concentrations, similar to the predicted concentrations of Se/AG NC in wastewater, which demonstrates the environmental safety of Se/AG NC for use in agriculture. Full article
Show Figures

Figure 1

Back to TopTop