Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (2,654)

Search Parameters:
Keywords = ecological protection effectiveness

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 4059 KiB  
Article
Vulnerability Assessment of Six Endemic Tibetan-Himalayan Plants Under Climate Change and Human Activities
by Jin-Dong Wei and Wen-Ting Wang
Plants 2025, 14(15), 2424; https://doi.org/10.3390/plants14152424 - 5 Aug 2025
Abstract
The Tibetan-Himalayan region, recognized as a global biodiversity hotspot, is increasingly threatened by the dual pressures of climate change and human activities. Understanding the vulnerability of plant species to these forces is crucial for effective ecological conservation in this region. This study employed [...] Read more.
The Tibetan-Himalayan region, recognized as a global biodiversity hotspot, is increasingly threatened by the dual pressures of climate change and human activities. Understanding the vulnerability of plant species to these forces is crucial for effective ecological conservation in this region. This study employed an improved Climate Niche Factor Analysis (CNFA) framework to assess the vulnerability of six representative alpine endemic herbaceous plants in this ecologically sensitive region under future climate changes. Our results show distinct spatial vulnerability patterns for the six species, with higher vulnerability in the western regions of the Tibetan-Himalayan region and lower vulnerability in the eastern areas. Particularly under high-emission scenarios (SSP5-8.5), climate change is projected to substantially intensify threats to these plant species, reinforcing the imperative for targeted conservation strategies. Additionally, we found that the current coverage of protected areas (PAs) within the species’ habitats was severely insufficient, with less than 25% coverage overall, and it was even lower (<7%) in highly vulnerable regions. Human activity hotspots, such as the regions around Lhasa and Chengdu, further exacerbate species vulnerability. Notably, some species currently classified as least concern (e.g., Stipa purpurea (S. purpurea)) according to the IUCN Red List exhibit higher vulnerability than species listed as near threatened (e.g., Cyananthus microphyllus (C. microphylla)) under future climate change. These findings suggest that existing biodiversity assessments, such as the IUCN Red List, may not adequately account for future climate risks, highlighting the importance of incorporating climate change projections into conservation planning. Our study calls for expanding and optimizing PAs, improving management, and enhancing climate resilience to mitigate biodiversity loss in the face of climate change and human pressures. Full article
(This article belongs to the Section Plant Ecology)
Show Figures

Figure 1

27 pages, 3283 KiB  
Article
Can the Digital Economy Improve the Quality of the Marine Environment? Empirical Evidence from Coastal Provinces and Cities in China
by Yiying Jiang, Jiaqi Zhang, Jia Kang, Wenjia Zhang, Zhaobin Pei and Yang Liu
Sustainability 2025, 17(15), 7075; https://doi.org/10.3390/su17157075 - 4 Aug 2025
Abstract
Studying the impact of digital economy development on marine environmental quality has important theoretical and practical significance for achieving a win–win situation between high-quality economic development and high-level ecological environment protection. This article selects the marine environment of coastal provinces and cities in [...] Read more.
Studying the impact of digital economy development on marine environmental quality has important theoretical and practical significance for achieving a win–win situation between high-quality economic development and high-level ecological environment protection. This article selects the marine environment of coastal provinces and cities in China from 2011 to 2022 as the research object and uses the entropy method to comprehensively evaluate the quality of marine environment and the level of digital economy. Also, we construct intermediary and threshold effect models to deeply explore the impact mechanism of digital economy development on marine environmental quality. We find that digital economy and marine environmental quality both show a wave-like rising trend, but the comprehensive level is relatively low. The development of the digital economy can effectively improve the level of marine environmental quality, and the digital economy promotes the improvement of marine environmental quality by improving the level of marine economy. The level of economic development and industrial scale has created a threshold effect in the process of promoting the development of marine environmental quality through the digital economy. Therefore, strengthening the digital governance of the marine environment and promoting the industrialization of marine ecology and the ecologicalization of marine industries will help promote the integrated development of the digital economy and marine environment. Full article
(This article belongs to the Section Economic and Business Aspects of Sustainability)
Show Figures

Figure 1

22 pages, 1247 KiB  
Article
Evaluating and Predicting Urban Greenness for Sustainable Environmental Development
by Chun-Che Huang, Wen-Yau Liang, Tzu-Liang (Bill) Tseng and Chia-Ying Chan
Processes 2025, 13(8), 2465; https://doi.org/10.3390/pr13082465 - 4 Aug 2025
Abstract
With the rapid pace of urbanization, cities are increasingly facing severe challenges related to environmental pollution, ecological degradation, and climate change. Extreme climate events—such as heatwaves, droughts, heavy rainfall, and wildfires—have intensified public concern about sustainability, environmental protection, and low-carbon development. Ensuring environmental [...] Read more.
With the rapid pace of urbanization, cities are increasingly facing severe challenges related to environmental pollution, ecological degradation, and climate change. Extreme climate events—such as heatwaves, droughts, heavy rainfall, and wildfires—have intensified public concern about sustainability, environmental protection, and low-carbon development. Ensuring environmental preservation while maintaining residents’ quality of life has become a central focus of urban governance. In this context, evaluating green indicators and predicting urban greenness is both necessary and urgent. This study incorporates international frameworks such as the EU Green City Index, the European Green Capital Award, and the United Nations Sustainable Development Goals to assess urban sustainability. The Extreme Gradient Boosting (XGBoost) algorithm is employed to predict the green level of cities and to develop multiple optimized models. Comparative analysis with traditional models demonstrates that XGBoost achieves superior performance, with an accuracy of 0.84 and an F1-score of 0.81. Case study findings identify “Greenhouse Gas Emissions per Person” and “Per Capita Emissions from Transport” as the most critical indicators. These results provide practical guidance for policymakers, suggesting that targeted regulations based on these key factors can effectively support emission reduction and urban sustainability goals. Full article
(This article belongs to the Section Environmental and Green Processes)
Show Figures

Figure 1

35 pages, 698 KiB  
Review
Mechanistic Role of Heavy Metals in Driving Antimicrobial Resistance: From Rhizosphere to Phyllosphere
by Rahul Kumar, Tanja P. Vasić, Sanja P. Živković, Periyasamy Panneerselvam, Gustavo Santoyo, Sergio de los Santos Villalobos, Adeyemi Nurudeen Olatunbosun, Aditi Pandit, Leonard Koolman, Debasis Mitra and Pankaj Gautam
Appl. Microbiol. 2025, 5(3), 79; https://doi.org/10.3390/applmicrobiol5030079 (registering DOI) - 4 Aug 2025
Abstract
Heavy metal pollution represents a pervasive environmental challenge that significantly exacerbates the ever-increasing crisis of antimicrobial resistance and the capacity of microorganisms to endure and proliferate despite antibiotic interventions. This review examines the intricate relationship between heavy metals and AMR, with an emphasis [...] Read more.
Heavy metal pollution represents a pervasive environmental challenge that significantly exacerbates the ever-increasing crisis of antimicrobial resistance and the capacity of microorganisms to endure and proliferate despite antibiotic interventions. This review examines the intricate relationship between heavy metals and AMR, with an emphasis on the underlying molecular mechanisms and ecological ramifications. Common environmental metals, including arsenic, mercury, cadmium, and lead, exert substantial selective pressures on microbial communities. These induce oxidative stress and DNA damage, potentially leading to mutations that enhance antibiotic resistance. Key microbial responses include the overexpression of efflux pumps that expel both metals and antibiotics, production of detoxifying enzymes, and formation of protective biofilms, all of which contribute to the emergence of multidrug-resistant strains. In the soil environment, particularly the rhizosphere, heavy metals disrupt plant–microbe interactions by inhibiting beneficial organisms, such as rhizobacteria, mycorrhizal fungi, and actinomycetes, thereby impairing nutrient cycling and plant health. Nonetheless, certain microbial consortia can tolerate and detoxify heavy metals through sequestration and biotransformation, rendering them valuable for bioremediation. Advances in biotechnology, including gene editing and the development of engineered metal-resistant microbes, offer promising solutions for mitigating the spread of metal-driven AMR and restoring ecological balance. By understanding the interplay between metal pollution and microbial resistance, we can more effectively devise strategies for environmental protection and public health. Full article
Show Figures

Graphical abstract

16 pages, 1207 KiB  
Article
Study of Multi-Stakeholder Mechanism in Inter-Provincial River Basin Eco-Compensation: Case of the Inland Rivers of Eastern China
by Zhijie Cao and Xuelong Chen
Sustainability 2025, 17(15), 7057; https://doi.org/10.3390/su17157057 - 4 Aug 2025
Viewed by 37
Abstract
Based on a comprehensive review of the current research status of ecological compensation both domestically and internationally, combined with field survey data, this study delves into the issue of multi-stakeholder participation in the ecological compensation mechanisms of the Xin’an River Basin. This research [...] Read more.
Based on a comprehensive review of the current research status of ecological compensation both domestically and internationally, combined with field survey data, this study delves into the issue of multi-stakeholder participation in the ecological compensation mechanisms of the Xin’an River Basin. This research reveals that the joint participation of multiple stakeholders is crucial to achieving the goals of ecological compensation in river basins. The government plays a significant role in macro-guidance, financial support, policy guarantees, supervision, and management. It promotes the comprehensive implementation of ecological environmental protection by formulating relevant laws and regulations, guiding the public to participate in ecological conservation, and supervising and punishing pollution behaviors. The public, serving as the main force, forms strong awareness and behavioral habits of ecological protection through active participation in environmental protection, monitoring, and feedback. As participants, enterprises contribute to industrial transformation and green development by improving resource utilization efficiency, reducing pollution emissions, promoting green industries, and participating in ecological restoration projects. Scientific research institutions, as technology enablers, have effectively enhanced governance efficiency through technological research and innovation, ecosystem value accounting to provide decision-making support, and public education. Social organizations, as facilitators, have injected vitality and innovation into watershed governance by extensively mobilizing social forces and building multi-party collaboration platforms. Communities, as supporters, have transformed ecological value into economic benefits by developing characteristic industries such as eco-agriculture and eco-tourism. Based on the above findings, further recommendations are proposed to mobilize the enthusiasm of upstream communities and encourage their participation in ecological compensation, promote the market-oriented operation of ecological compensation mechanisms, strengthen cross-regional cooperation to establish joint mechanisms, enhance supervision and evaluation, and establish a sound benefit-sharing mechanism. These recommendations provide theoretical support and practical references for ecological compensation worldwide. Full article
Show Figures

Figure 1

18 pages, 2003 KiB  
Article
Spatial Gradient Effects of Metal Pollution: Assessing Ecological Risks Through the Lens of Fish Gut Microbiota
by Jin Wei, Yake Li, Yuanyuan Chen, Qian Lin and Lin Zhang
J. Xenobiot. 2025, 15(4), 124; https://doi.org/10.3390/jox15040124 - 3 Aug 2025
Viewed by 212
Abstract
This comprehensive study investigates the spatial distribution of metals in surface water, their accumulation in fish tissues, and their impact on the gut microbiome dynamics of fish in the Qi River, Huanggang City, Hubei Province. Three distinct sampling regions were established: the mining [...] Read more.
This comprehensive study investigates the spatial distribution of metals in surface water, their accumulation in fish tissues, and their impact on the gut microbiome dynamics of fish in the Qi River, Huanggang City, Hubei Province. Three distinct sampling regions were established: the mining area (A), the transition area (B), and the distant area (C). Our results revealed that metal concentrations were highest in the mining area and decreased with increasing distance from it. The bioaccumulation of metals in fish tissues followed the order of gut > brain > muscle, with some concentrations exceeding food safety standards. Analysis of the gut microbiota showed that Firmicutes and Proteobacteria dominated in the mining area, while Fusobacteriota were more prevalent in the distant area. Heavy metal pollution significantly altered the composition and network structure of the gut microbiota, reducing microbial associations and increasing negative correlations. These findings highlight the profound impact of heavy metal pollution on both fish health and the stability of their gut microbiota, underscoring the urgent need for effective pollution control measures to mitigate ecological risks and protect aquatic biodiversity. Future research should focus on long-term monitoring and exploring potential remediation strategies to restore the health of affected ecosystems. Full article
Show Figures

Graphical abstract

15 pages, 428 KiB  
Article
Biodiversity Patterns and Community Construction in Subtropical Forests Driven by Species Phylogenetic Environments
by Pengcheng Liu, Jiejie Jiao, Chuping Wu, Weizhong Shao, Xuesong Liu and Liangjin Yao
Plants 2025, 14(15), 2397; https://doi.org/10.3390/plants14152397 - 2 Aug 2025
Viewed by 439
Abstract
To explore the characteristics of species diversity and phylogenetic diversity, as well as the dominant processes of community construction, in different forest types (deciduous broad-leaved forest, mixed coniferous and broad-leaved forest, and Chinese fir plantation) in subtropical regions, analyze the specific driving patterns [...] Read more.
To explore the characteristics of species diversity and phylogenetic diversity, as well as the dominant processes of community construction, in different forest types (deciduous broad-leaved forest, mixed coniferous and broad-leaved forest, and Chinese fir plantation) in subtropical regions, analyze the specific driving patterns of soil nutrients and other environmental factors on the formation of forest diversity in different forest types, and clarify the differences in response to environmental heterogeneity between natural forests and plantation forests. Based on 48 fixed monitoring plots of 50 m × 50 m in Shouchang Forest Farm, Jiande City, Zhejiang Province, woody plants with a diameter at breast height ≥5 cm were investigated. Species diversity indices (Margalef index, Shannon–Wiener index, Simpson index, and Pielou index), phylogenetic structure index (PD), and environmental factors were used to analyze the relationship between diversity characteristics and environmental factors through variance analysis, correlation analysis, and generalized linear models. Phylogenetic structural indices (NRI and NTI) were used, combined with a random zero model, to explore the mechanisms of community construction in different forest types. Research has found that (1) the deciduous broad-leaved forest had the highest species diversity (Margalef index of 4.121 ± 1.425) and phylogenetic diversity (PD index of 21.265 ± 7.796), significantly higher than the mixed coniferous and broad-leaved forest and the Chinese fir plantation (p < 0.05); (2) there is a significant positive correlation between species richness and phylogenetic diversity, with the best fit being AIC = 70.5636 and R2 = 0.9419 in broad-leaved forests; however, the contribution of evenness is limited; (3) the specific effects of soil factors on different forest types: available phosphorus (AP) is negatively correlated with the diversity of deciduous broad-leaved forests (p < 0.05), total phosphorus (TP) promotes the diversity of coniferous and broad-leaved mixed forests, while the diversity of Chinese fir plantations is significantly negatively correlated with total nitrogen (TN); (4) the phylogenetic structure of three different forest types shows a divergent pattern in deciduous broad-leaved forests, indicating that competition and exclusion dominate the construction of deciduous broad-leaved forests; the aggregation mode of Chinese fir plantation indicates that environmental filtering dominates the construction of Chinese fir plantation; the mixed coniferous and broad-leaved forest is a transitional model, indicating that the mixed coniferous and broad-leaved forest is influenced by both stochastic processes and ecological niche processes. In different forest types in subtropical regions, the species and phylogenetic diversity of broad-leaved forests is significantly higher than in other forest types. The impact of soil nutrients on the diversity of different forest types varies, and the characteristics of community construction in different forest types are also different. This indicates the importance of protecting the original vegetation and provides a scientific basis for improving the ecological function of artificial forest ecosystems through structural adjustment. The research results have important practical guidance value for sustainable forest management and biodiversity conservation in the region. Full article
Show Figures

Figure 1

17 pages, 4929 KiB  
Article
Assessment of Grassland Carrying Capacity and Grass–Livestock Balance in the Three River Headwaters Region Under Different Scenarios
by Wenjing Li, Qiong Luo, Zhe Chen, Yanlin Liu, Zhouyuan Li and Wenying Wang
Biology 2025, 14(8), 978; https://doi.org/10.3390/biology14080978 (registering DOI) - 1 Aug 2025
Viewed by 170
Abstract
It is crucial to clarify the grassland carrying capacity (CC) and the balance between grass and livestock under different scenarios for ecological protection and sustainable development in the Three River Headwaters Region (TRHR). This study focused on the TRHR and used livestock data, [...] Read more.
It is crucial to clarify the grassland carrying capacity (CC) and the balance between grass and livestock under different scenarios for ecological protection and sustainable development in the Three River Headwaters Region (TRHR). This study focused on the TRHR and used livestock data, MODIS Net Primary Productivity (NPP) data, and artificial supplementary feeding data to analyze grassland CC and explore changes in the grass–livestock balance across various scenarios. The results showed that the theoretical CC of edible forage under complete grazing conditions was much lower than that of crude protein under nutritional carrying conditions. Furthermore, without increasing the grazing intensity of natural grasslands, artificial supplementary feeding reduced overstocking areas by 21%. These results suggest that supplementary feeding effectively addresses the imbalance between forage supply and demand, serving as a key measure for achieving sustainable grassland livestock husbandry. Despite the effective mitigation of grassland degradation in the TRHR due to strict grass–livestock balance policies and ecological restoration projects, the actual livestock CC exceeded the theoretical capacity, leading to overgrazing in some areas. To achieve desired objectives, more effective grassland management strategies must be implemented in the future to minimize spatiotemporal conflicts between grasses and livestock and ensure the health and stability of grassland ecosystems. Full article
(This article belongs to the Section Conservation Biology and Biodiversity)
Show Figures

Graphical abstract

19 pages, 3112 KiB  
Article
Study on the Distribution and Quantification Characteristics of Soil Nutrients in the Dryland Albic Soils of the Sanjiang Plain, China
by Jingyang Li, Huanhuan Li, Qiuju Wang, Yiang Wang, Xu Hong and Chunwei Zhou
Agronomy 2025, 15(8), 1857; https://doi.org/10.3390/agronomy15081857 - 31 Jul 2025
Viewed by 206
Abstract
The main soil type in the Sanjiang Plain of Northeast China, dryland albic soil is of great significance for studying nutrient distribution characteristics. This study focuses on 852 Farm in the typical dryland albic soil area of the Sanjiang Plain, using a combination [...] Read more.
The main soil type in the Sanjiang Plain of Northeast China, dryland albic soil is of great significance for studying nutrient distribution characteristics. This study focuses on 852 Farm in the typical dryland albic soil area of the Sanjiang Plain, using a combination of paired t-test, geostatistics, correlation analysis, and principal component analysis to systematically reveal the spatial differentiation of soil nutrients in the black soil layer and white clay layer of dryland albic soil, and to clarify the impact mechanism of plow layer nutrient characteristics on crop productivity. The results show that the nutrient content order in both the black and white clay layers is consistent: total potassium (TK) > organic matter (OM) > total nitrogen (TN) > total phosphorus (TP) > alkali-hydrolyzable nitrogen (HN) > available potassium (AK) > available phosphorus (AP). Both layers exhibit a spatial pattern of overall consistency and local differentiation, with spatial heterogeneity dominated by altitude gradients—nutrient content increases with decreasing altitude. Significant differences exist in nutrient content and distribution between the black and white clay layers, with the comprehensive fertility of the black layer being significantly higher than that of the white clay layer, particularly for TN, TP, TK, HN, and OM contents (effect size > 8). NDVI during the full maize growth period is significantly positively correlated with TP, TN, AK, AP, and HN, and the NDVI dynamics (first increasing. then decreasing) closely align with the peak periods of available nitrogen/phosphorus and crop growth cycles, indicating a strong coupling relationship between vegetation biomass accumulation and nutrient availability. These findings provide important references for guiding rational fertilization, agricultural production layout, and ecological environmental protection, contributing to the sustainable utilization of dryland albic soil resources and sustainable agricultural development. Full article
(This article belongs to the Section Soil and Plant Nutrition)
Show Figures

Figure 1

23 pages, 4161 KiB  
Article
Scenario-Based Assessment of Urbanization-Induced Land-Use Changes and Regional Habitat Quality Dynamics in Chengdu (1990–2030): Insights from FLUS-InVEST Modeling
by Zhenyu Li, Yuanting Luo, Yuqi Yang, Yuxuan Qing, Yuxin Sun and Cunjian Yang
Land 2025, 14(8), 1568; https://doi.org/10.3390/land14081568 - 31 Jul 2025
Viewed by 289
Abstract
Against the backdrop of rapid urbanization in western China, which has triggered remarkable land-use changes and habitat degradation, Chengdu, as a developed city in China, plays a demonstrative and leading role in the economic and social development of China during the transition period. [...] Read more.
Against the backdrop of rapid urbanization in western China, which has triggered remarkable land-use changes and habitat degradation, Chengdu, as a developed city in China, plays a demonstrative and leading role in the economic and social development of China during the transition period. Therefore, integrated modeling approaches are required to balance development and conservation. This study responds to this need by conducting a scenario-based assessment of urbanization-induced land-use changes and regional habitat quality dynamics in Chengdu (1990–2030), using the FLUS-InVEST model. By integrating remote sensing-derived land-use data from 1990, 1995, 2000, 2005, 2010, 2015, and 2020, we simulate future regional habitat quality under three policy scenarios: natural development, ecological priority, and cropland protection. Key findings include the following: (1) From 1990 to 2020, cropland decreased by 1917.78 km2, while forestland and built-up areas increased by 509.91 km2 and 1436.52 km2, respectively. Under the 2030 natural development scenario, built-up expansion and cropland reduction are projected. Ecological priority policies would enhance forestland (+4.2%) but slightly reduce cropland. (2) Regional habitat quality declined overall (1990–2020), with the sharpest drop (ΔHQ = −0.063) occurring between 2000 and 2010 due to accelerated urbanization. (3) Scenario analysis reveals that the ecological priority strategy yields the highest regional habitat quality (HQmean = 0.499), while natural development results in the lowest (HQmean = 0.444). This study demonstrates how the FLUS-InVEST model can quantify the trade-offs between urbanization and regional habitat quality, offering a scientific framework for balancing development and ecological conservation in rapidly urbanizing regions. The findings highlight the effectiveness of ecological priority policies in mitigating habitat degradation, with implications for similar cities seeking sustainable land-use strategies that integrate farmland protection and forest restoration. Full article
Show Figures

Figure 1

14 pages, 2524 KiB  
Article
Habitat Suitability Evaluation of Chinese Red Panda in Daxiangling and Xiaoxiangling Mountains
by Jianwei Li, Wei Luo, Haipeng Zheng, Wenjing Li, Xi Yang, Ke He and Hong Zhou
Biology 2025, 14(8), 961; https://doi.org/10.3390/biology14080961 (registering DOI) - 31 Jul 2025
Viewed by 201
Abstract
The Chinese red panda (Ailurus styani) is a rare and endangered animal in China; the increase in global temperature and the interference of human activities have caused irreversible effects on the suitable habitat of wild red pandas and threatened their survival. [...] Read more.
The Chinese red panda (Ailurus styani) is a rare and endangered animal in China; the increase in global temperature and the interference of human activities have caused irreversible effects on the suitable habitat of wild red pandas and threatened their survival. Therefore, it is necessary to carry out scientific research and protection for Chinese red pandas. In this study, the MaxEnt model was used to predict and analyze the suitable habitats of Chinese red pandas in the large and small Xiangling Mountains. The results showed that the main ecological factors affecting the suitable habitat distribution of Chinese red pandas in the Daxiangling Mountains are the average slope (45.6%, slope), the distance from the main road (24.2%, road), and the average temperature in the coldest quarter (11%, bio11). The main ecological factors affecting the suitable habitat distribution of Chinese red pandas in the Xiaoxiangling Mountains are bamboo distribution (67.4%, bamboo), annual temperature range (20.7%, bio7), and the average intensity of human activities (8.7%, Human Footprint). The predicted suitable habitat area of the Daxiangling Mountains is 123.835 km2, and the predicted suitable habitat area of the Xiaoxiangling Mountains is 341.873 km2. The predicted suitable habitat area of the Daxiangling Mountains accounts for 43.45% of the total mountain area, and the predicted suitable habitat area of the Xiaoxiangling Mountains accounts for 71.38%. The suitable habitat area of the Xiaoxiangling Mountains is nearly three times that of the Daxiangling Mountains, and the proportion of suitable habitat area of the Xiaoxiangling Mountains is much higher than that of the Daxiangling Mountains. The suitable habitat of Chinese red pandas in the Daxiangling Mountains is mainly distributed in the southeast, and the habitat is coherent but fragmented. The suitable habitat of Chinese red panda in Xiaoxiangling Mountains is mainly distributed in the east, and the habitat is more coherent. The results of this study can provide a scientific basis for the protection of the population and habitat of Chinese red pandas in Sichuan. Full article
(This article belongs to the Section Zoology)
Show Figures

Figure 1

25 pages, 573 KiB  
Review
Challenges and Opportunities in Using Fish Metrics for Reservoir Water Quality Evaluation
by Alexandre Moreira, Sara Rodrigues, Lucas Ferreira, Nuno E. Formigo and Sara C. Antunes
Water 2025, 17(15), 2274; https://doi.org/10.3390/w17152274 - 30 Jul 2025
Viewed by 303
Abstract
The Water Framework Directive (WFD) was designed to protect the quality of all water resources. For reservoirs, the ecological potential classification assesses biological parameters, evaluating only the phytoplankton community. Thus, this study aimed to evaluate the effectiveness of using fish communities to determine [...] Read more.
The Water Framework Directive (WFD) was designed to protect the quality of all water resources. For reservoirs, the ecological potential classification assesses biological parameters, evaluating only the phytoplankton community. Thus, this study aimed to evaluate the effectiveness of using fish communities to determine water quality in reservoirs. A literature review was conducted to gather information on how fish community data were integrated into reservoir water quality assessment under the WFD. This work includes an exploratory case study of the Aguieira Reservoir (Portugal), evaluating the ichthyofauna community, along with physical, chemical, and biological assessment of the water. The results of the review show that fish abundance and composition (sensitive metrics) should be used to develop ecological indices for assessing water quality in reservoirs. However, the effects of anthropogenic pressures and invasive species are not included in the calculation of most proposed indices. The case study serves as an illustrative example and demonstrates low abundance and composition of the fish community with a high percentage of invasive species, revealing a poor water quality, regarding ichthyofauna biotic index results (F-IBIP). Nevertheless, including these metrics in the classification of ecological potential can help guide restoration strategies to mitigate the effects of anthropogenic pressures. Full article
(This article belongs to the Section Water Quality and Contamination)
Show Figures

Figure 1

23 pages, 7739 KiB  
Article
AGS-YOLO: An Efficient Underwater Small-Object Detection Network for Low-Resource Environments
by Weikai Sun, Xiaoqun Liu, Juan Hao, Qiyou Yao, Hailin Xi, Yuwen Wu and Zhaoye Xing
J. Mar. Sci. Eng. 2025, 13(8), 1465; https://doi.org/10.3390/jmse13081465 - 30 Jul 2025
Viewed by 239
Abstract
Detecting underwater targets is crucial for ecological evaluation and the sustainable use of marine resources. To enhance environmental protection and optimize underwater resource utilization, this study proposes AGS-YOLO, an innovative underwater small-target detection model based on YOLO11. Firstly, this study proposes AMSA, a [...] Read more.
Detecting underwater targets is crucial for ecological evaluation and the sustainable use of marine resources. To enhance environmental protection and optimize underwater resource utilization, this study proposes AGS-YOLO, an innovative underwater small-target detection model based on YOLO11. Firstly, this study proposes AMSA, a multi-scale attention module, and optimizes the C3k2 structure to improve the detection and precise localization of small targets. Secondly, a streamlined GSConv convolutional module is incorporated to minimize the parameter count and computational load while effectively retaining inter-channel dependencies. Finally, a novel and efficient cross-scale connected neck network is designed to achieve information complementarity and feature fusion among different scales, efficiently capturing multi-scale semantics while decreasing the complexity of the model. In contrast with the baseline model, the method proposed in this paper demonstrates notable benefits for use in underwater devices constrained by limited computational capabilities. The results demonstrate that AGS-YOLO significantly outperforms previous methods in terms of accuracy on the DUO underwater dataset, with mAP@0.5 improving by 1.3% and mAP@0.5:0.95 improving by 2.6% relative to those of the baseline YOLO11n model. In addition, the proposed model also shows excellent performance on the RUOD dataset, demonstrating its competent detection accuracy and reliable generalization. This study proposes innovative approaches and methodologies for underwater small-target detection, which have significant practical relevance. Full article
Show Figures

Figure 1

19 pages, 4896 KiB  
Article
Calculation of Connectivity Between Surface and Underground Three-Dimensional Water Systems in the Luan River Basin
by Jingyao Wang, Zhixiong Tang, Belay Z. Abate, Zhuoxun Wu and Li He
Sustainability 2025, 17(15), 6913; https://doi.org/10.3390/su17156913 - 30 Jul 2025
Viewed by 225
Abstract
While water conservancy projects continuously enhance flood control and resource allocation capabilities, the adverse impacts on basin systems, particularly the structural disruption of surface water–groundwater continuity, have become increasingly pronounced. Therefore, establishing quantitative assessment of water system connectivity as a critical foundation for [...] Read more.
While water conservancy projects continuously enhance flood control and resource allocation capabilities, the adverse impacts on basin systems, particularly the structural disruption of surface water–groundwater continuity, have become increasingly pronounced. Therefore, establishing quantitative assessment of water system connectivity as a critical foundation for optimizing spatial water distribution, maintaining ecohydrological equilibrium, and enhancing flood–drought regulation efficacy is important. Focusing on the regulated reaches of the Panjiakou, Daheiting, and Taolinkou reservoirs in the Luan River Basin, this study established and integrated a three-dimensional assessment framework that synthesizes hydrological processes, hydraulic structural effects, and human activities as three fundamental drivers, and employed the Analytic Hierarchy Process (AHP) to develop a quantitative connectivity evaluation system. Results indicate that water conservancy projects significantly altered basin connectivity: surface water connectivity decreased by 0.40, while groundwater connectivity experienced a minor reduction (0.25) primarily through reservoir seepage. Consequently, the integrated surface–groundwater system declined by 0.39. Critically, project scale governs surface connectivity attenuation intensity, which substantially exceeds impacts on groundwater systems. The comprehensive assessment system developed in this study provides theoretical and methodological support for diagnosing river connectivity, formulating ecological restoration strategies, and protecting basin ecosystems. Full article
Show Figures

Figure 1

21 pages, 2807 KiB  
Article
Phage Therapy Enhances Survival, Immune Response, and Metabolic Resilience in Pacific White Shrimp (Litopenaeus vannamei) Challenged with Vibrio parahaemolyticus
by Chao Zeng, Long Qi, Chao-Li Guan, Yu-Lin Chang, Yu-Yun He, Hong-Zheng Zhao, Chang Wang, Yi-Ran Zhao, Yi-Chen Dong and Guo-Fang Zhong
Fishes 2025, 10(8), 366; https://doi.org/10.3390/fishes10080366 - 30 Jul 2025
Viewed by 318
Abstract
Acute hepatopancreatic necrosis disease (AHPND), caused by the bacterium Vibrio parahaemolyticus, is a major threat to global shrimp aquaculture. In this study, we evaluated the therapeutic effects of phage therapy in Litopenaeus vannamei challenged with AHPND-causing Vibrio parahaemolyticus. Phage application at [...] Read more.
Acute hepatopancreatic necrosis disease (AHPND), caused by the bacterium Vibrio parahaemolyticus, is a major threat to global shrimp aquaculture. In this study, we evaluated the therapeutic effects of phage therapy in Litopenaeus vannamei challenged with AHPND-causing Vibrio parahaemolyticus. Phage application at various concentrations significantly improved shrimp survival, with the 1 ppm group demonstrating the highest survival rate. Enzymatic assays revealed that phage-treated shrimp exhibited enhanced immune enzyme activities, including acid phosphatase (ACP), alkaline phosphatase (AKP), and lysozyme (LZM). In addition, antioxidant defenses such as superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GSH-PX), and total antioxidant capacity (T-AOC) significantly improved, accompanied by reduced malondialdehyde (MDA) levels. Serum biochemical analyses demonstrated marked improvements in lipid metabolism, particularly reductions in triglyceride (TG), total cholesterol (TC), and low-density lipoprotein (LDL), alongside higher levels of beneficial high-density lipoprotein (HDL). Transcriptomic analysis identified 2274 differentially expressed genes (DEGs), notably enriched in pathways involving fatty acid metabolism, peroxisome functions, lysosomes, and Toll-like receptor (TLR) signaling. Specifically, phage treatment upregulated immune and metabolic regulatory genes, including Toll-like receptor 4 (TLR4), myeloid differentiation primary response protein 88 (MYD88), interleukin-1β (IL-1β), nuclear factor erythroid 2-related factor 2 (Nrf2), and peroxisome proliferator-activated receptor (PPAR), indicating activation of innate immunity and antioxidant defense pathways. These findings suggest that phage therapy induces protective immunometabolic adaptations beyond its direct antibacterial effects, thereby providing an ecologically sustainable alternative to antibiotics for managing bacterial diseases in shrimp aquaculture. Full article
(This article belongs to the Special Issue Healthy Aquaculture and Disease Control)
Show Figures

Figure 1

Back to TopTop