Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (554)

Search Parameters:
Keywords = eco-innovative product

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
35 pages, 1831 KiB  
Review
Pesticide Degradation: Impacts on Soil Fertility and Nutrient Cycling
by Muhammad Yasir, Abul Hossain and Anubhav Pratap-Singh
Environments 2025, 12(8), 272; https://doi.org/10.3390/environments12080272 - 7 Aug 2025
Abstract
The widespread use of pesticides in modern agriculture has significantly enhanced food production by managing pests and diseases; however, their degradation in soil can lead to unintended consequences for soil fertility and nutrient cycling. This review explores the mechanisms of pesticide degradation, both [...] Read more.
The widespread use of pesticides in modern agriculture has significantly enhanced food production by managing pests and diseases; however, their degradation in soil can lead to unintended consequences for soil fertility and nutrient cycling. This review explores the mechanisms of pesticide degradation, both abiotic and biotic, and the soil factors influencing these processes. It critically examines how degradation products impact soil microbial communities, organic matter decomposition, and key nutrient cycles, including nitrogen, phosphorus, potassium, and micronutrients. This review highlights emerging evidence linking pesticide residues with altered enzymatic activity, disrupted microbial populations, and reduced nutrient bioavailability, potentially compromising soil structure, water retention, and long-term productivity. Additionally, it discusses the broader environmental and agricultural implications, including decreased crop yields, biodiversity loss, and groundwater contamination. Sustainable management strategies such as bioremediation, the use of biochar, eco-friendly pesticides, and integrated pest management (IPM) are evaluated for mitigating these adverse effects. Finally, this review outlines future research directions emphasizing long-term studies, biotechnology innovations, and predictive modeling to support resilient agroecosystems. Understanding the intricate relationship between pesticide degradation and soil health is crucial to ensuring sustainable agriculture and food security. Full article
(This article belongs to the Special Issue Coping with Climate Change: Fate of Nutrients and Pollutants in Soil)
Show Figures

Figure 1

20 pages, 1014 KiB  
Review
State of the Art on the Interaction of Entomopathogenic Nematodes and Plant Growth-Promoting Rhizobacteria to Innovate a Sustainable Plant Health Product
by Islam Ahmed Abdelalim Darwish, Daniel P. Martins, David Ryan and Thomais Kakouli-Duarte
Crops 2025, 5(4), 52; https://doi.org/10.3390/crops5040052 - 6 Aug 2025
Abstract
Insect pests cause severe damage and yield losses to many agricultural crops globally. The use of chemical pesticides on agricultural crops is not recommended because of their toxic effects on the environment and consumers. In addition, pesticide toxicity reduces soil fertility, poisons ground [...] Read more.
Insect pests cause severe damage and yield losses to many agricultural crops globally. The use of chemical pesticides on agricultural crops is not recommended because of their toxic effects on the environment and consumers. In addition, pesticide toxicity reduces soil fertility, poisons ground waters, and is hazardous to soil biota. Therefore, applications of entomopathogenic nematodes (EPNs) and plant growth-promoting rhizobacteria (PGPR) are an alternative, eco-friendly solution to chemical pesticides and mineral-based fertilizers to enhance plant health and promote sustainable food security. This review focuses on the biological and ecological aspects of these organisms while also highlighting the practical application of molecular communication approaches in developing a novel plant health product. This insight will support this innovative approach that combines PGPR and EPNs for sustainable crop production. Several studies have reported positive interactions between nematodes and bacteria. Although the combined presence of both organisms has been shown to promote plant growth, the molecular interactions between them are still under investigation. Integrating molecular communication studies in the development of a new product could help in understanding their relationships and, in turn, support the combination of these organisms into a single plant health product. Full article
Show Figures

Figure 1

22 pages, 1887 KiB  
Article
Knowledge Sharing: Key to Sustainable Building Construction Implementation
by Chijioke Emmanuel Emere, Clinton Ohis Aigbavboa and Olusegun Aanuoluwapo Oguntona
Eng 2025, 6(8), 190; https://doi.org/10.3390/eng6080190 - 6 Aug 2025
Abstract
The successful deployment of sustainable building construction (SBC) is connected to sound knowledge sharing. Concerning SBC, knowledge sharing has been identified to directly and indirectly increase innovation, environmental performance, cost saving, regulatory compliance awareness and so on. The necessity of enhancing SBC practice [...] Read more.
The successful deployment of sustainable building construction (SBC) is connected to sound knowledge sharing. Concerning SBC, knowledge sharing has been identified to directly and indirectly increase innovation, environmental performance, cost saving, regulatory compliance awareness and so on. The necessity of enhancing SBC practice globally has been emphasised by earlier research. Consequently, this study aims to investigate knowledge-sharing elements to enhance SBC in South Africa (SA). Utilising a questionnaire survey, this study elicited data from 281 professionals in the built environment. Data analysis was performed with “descriptive statistics”, the “Kruskal–Wallis H-test”, and “principal component analysis” to determine the principal knowledge-sharing features (KSFs). This study found that “creating public awareness of sustainable practices”, the “content of SBC training, raising awareness of green building products”, “SBC integration in professional certifications”, an “information hub or repository for sustainable construction”, and “mentoring younger professionals in sustainable practices” are the most critical KSFs for SBC deployment. These formed a central cluster, the Green Education Initiative and Eco-Awareness Alliance. The results achieved a reliability test value of 0.956. It was concluded that to embrace the full adoption of SBC, corporate involvement is critical, and all stakeholders must embrace the sustainability paradigm. It is recommended that the principal knowledge-sharing features revealed in this study should be carefully considered to help construction stakeholders in fostering knowledge sharing for a sustainable built environment. Full article
(This article belongs to the Section Chemical, Civil and Environmental Engineering)
Show Figures

Figure 1

23 pages, 800 KiB  
Article
“Innovatives” or “Sceptics”: Views on Sustainable Food Packaging in the New Global Context by Generation Z Members of an Academic Community
by Gerasimos Barbarousis, Fotios Chatzitheodoridis, Achilleas Kontogeorgos and Dimitris Skalkos
Sustainability 2025, 17(15), 7116; https://doi.org/10.3390/su17157116 - 6 Aug 2025
Abstract
The growing concern over environmental sustainability has intensified the focus on consumers’ perceptions of eco-friendly food packaging, especially among younger generations. This study aims to investigate the attitudes, preferences, and barriers faced by Greek university students regarding sustainable food packaging, a demographic considered [...] Read more.
The growing concern over environmental sustainability has intensified the focus on consumers’ perceptions of eco-friendly food packaging, especially among younger generations. This study aims to investigate the attitudes, preferences, and barriers faced by Greek university students regarding sustainable food packaging, a demographic considered pivotal for driving future consumption trends. An online questionnaire assessing perceptions, preferences, and behaviours related to sustainable packaging was administered to students, with responses measured on a five-point Likert scale. Three hundred and sixty-four students took part in this survey, with the majority (60%) of them being female. Principal component analysis was employed to identify underlying factors influencing perceptions, and k-means cluster analysis revealed two consumer segments: “Innovatives”, including one hundred and ninety-eight participants (54%), who demonstrate strong environmental awareness and willingness to adopt sustainable behaviours, and “Sceptics”, including one hundred sixty-six participants (46%), who show moderate engagement and remain cautious in their choices. Convenience, affordability, and clear product communication emerged as significant factors shaping student preferences. The findings suggest that targeted educational campaigns and transparent information are essential to converting positive attitudes into consistent purchasing behaviours. This research provides valuable insights for policymakers and marketers looking to design effective sustainability strategies tailored to the student population. Full article
(This article belongs to the Section Sustainable Food)
Show Figures

Figure 1

20 pages, 2299 KiB  
Article
Valorization of Waste Mineral Wool and Low-Rank Peat in the Fertilizer Industry in the Context of a Resource-Efficient Circular Economy
by Marta Huculak-Mączka, Dominik Nieweś, Kinga Marecka and Magdalena Braun-Giwerska
Sustainability 2025, 17(15), 7083; https://doi.org/10.3390/su17157083 - 5 Aug 2025
Viewed by 40
Abstract
This study aims to evaluate eco-innovative solutions in the fertilizer industry that allow for waste valorization in the context of a resource-efficient circular economy. A comprehensive reuse strategy was developed for low-rank peat and post-cultivation horticultural mineral wool, involving the extraction of valuable [...] Read more.
This study aims to evaluate eco-innovative solutions in the fertilizer industry that allow for waste valorization in the context of a resource-efficient circular economy. A comprehensive reuse strategy was developed for low-rank peat and post-cultivation horticultural mineral wool, involving the extraction of valuable humic substances from peat and residual nutrients from used mineral wool, followed by the use of both post-extraction residues to produce organic–mineral substrates. The resulting products/semifinished products were characterized in terms of their composition and properties, which met the requirements necessary to obtain the admission of this type of product to the market in accordance with the Regulation of the Minister for Agriculture and Rural Development of 18 June 2008 on the implementation of certain provisions of the Act on fertilizers and fertilization (Journal of Laws No 119, item 765). Elemental analysis, FTIR spectroscopy, and solid-state CP-MAS 13C NMR spectroscopy suggest that post-extraction peat has a relatively condensed structure with a high C content (47.4%) and a reduced O/C atomic ratio and is rich in alkyl-like matter (63.2%) but devoid of some functional groups in favor of extracted fulvic acids. Therefore, it remains a valuable organic biowaste, which, in combination with post-extraction waste mineral wool in a ratio of 60:40 and possibly the addition of mineral nutrients, allows us to obtain a completely new substrate with a bulk density of 264 g/m3, a salinity of 7.8 g/dm3 and a pH of 5.3, with an appropriate content of heavy metals and with no impurities, meeting the requirements of this type of product. A liquid fertilizer based on an extract containing previously recovered nutrients also meets the criteria in terms of quality and content of impurities and can potentially be used as a fertilizing product suitable for agricultural crops. This study demonstrates a feasible pathway for transforming specific waste streams into valuable agricultural inputs, contributing to environmental protection and sustainable production. The production of a new liquid fertilizer using nutrients recovered from post-cultivation mineral wool and the preparation of an organic–mineral substrate using post-extraction solid residue is a rational strategy for recycling hard-to-biodegrade end-of-life products. Full article
Show Figures

Figure 1

24 pages, 2655 KiB  
Article
Ribosomal RNA-Specific Antisense DNA and Double-Stranded DNA Trigger rRNA Biogenesis and Insecticidal Effects on the Insect Pest Coccus hesperidum
by Vol Oberemok, Nikita Gal’chinsky, Ilya Novikov, Alexander Sharmagiy, Ekaterina Yatskova, Ekaterina Laikova and Yuri Plugatar
Int. J. Mol. Sci. 2025, 26(15), 7530; https://doi.org/10.3390/ijms26157530 - 4 Aug 2025
Viewed by 200
Abstract
Contact unmodified antisense DNA biotechnology (CUADb), developed in 2008, employs short antisense DNA oligonucleotides (oligos) as a novel approach to insect pest control. These oligonucleotide-based insecticides target pest mature rRNAs and/or pre-rRNAs and have demonstrated high insecticidal efficacy, particularly against sap-feeding insect pests, [...] Read more.
Contact unmodified antisense DNA biotechnology (CUADb), developed in 2008, employs short antisense DNA oligonucleotides (oligos) as a novel approach to insect pest control. These oligonucleotide-based insecticides target pest mature rRNAs and/or pre-rRNAs and have demonstrated high insecticidal efficacy, particularly against sap-feeding insect pests, which are key vectors of plant DNA viruses and among the most economically damaging herbivorous insects. To further explore the potential of CUADb, this study evaluated the insecticidal efficacy of short 11-mer antisense DNA oligos against Coccus hesperidum, in comparison with long 56-mer single-stranded and double-stranded DNA sequences. The short oligos exhibited higher insecticidal activity. By day 9, the highest mortality rate (97.66 ± 4.04%) was recorded in the Coccus-11 group, while the most effective long sequence was the double-stranded DNA in the dsCoccus-56 group (77.09 ± 6.24%). This study also describes the architecture of the DNA containment (DNAc) mechanism, highlighting the intricate interactions between rRNAs and various types of DNA oligos. During DNAc, the Coccus-11 treatment induced enhanced ribosome biogenesis and ATP production through a metabolic shift from carbohydrates to lipid-based energy synthesis. However, this ultimately led to a ‘kinase disaster’ due to widespread kinase downregulation resulting from insufficient ATP levels. All DNA oligos with high or moderate complementarity to target rRNA initiated hypercompensation, but subsequent substantial rRNA degradation and insect mortality occurred only when the oligo sequence perfectly matched the rRNA. Both short and long oligonucleotide insecticide treatments led to a 3.75–4.25-fold decrease in rRNA levels following hypercompensation, which was likely mediated by a DNA-guided rRNase, such as RNase H1, while crucial enzymes of RNAi (DICER1, Argonaute 2, and DROSHA) were downregulated, indicating fundamental difference in molecular mechanisms of DNAc and RNAi. Consistently, significant upregulation of RNase H1 was detected in the Coccus-11 treatment group. In contrast, treatment with random DNA oligos resulted in only a 2–3-fold rRNA decrease, consistent with the normal rRNA half-life maintained by general ribonucleases. These findings reveal a fundamental new mechanism of rRNA regulation via complementary binding between exogenous unmodified antisense DNA and cellular rRNA. From a practical perspective, this minimalist approach, applying short antisense DNA dissolved in water, offers an effective, eco-friendly and innovative solution for managing sternorrhynchans and other insect pests. The results introduce a promising new concept in crop protection: DNA-programmable insect pest control. Full article
(This article belongs to the Special Issue New Insights into Plant and Insect Interactions (Second Edition))
Show Figures

Figure 1

37 pages, 3005 KiB  
Review
Printed Sensors for Environmental Monitoring: Advancements, Challenges, and Future Directions
by Amal M. Al-Amri
Chemosensors 2025, 13(8), 285; https://doi.org/10.3390/chemosensors13080285 - 4 Aug 2025
Viewed by 227
Abstract
Environmental monitoring plays a key role in understanding and mitigating the effects of climate change, pollution, and resource mismanagement. The growth of printed sensor technologies offers an innovative approach to addressing these challenges due to their low cost, flexibility, and scalability. Printed sensors [...] Read more.
Environmental monitoring plays a key role in understanding and mitigating the effects of climate change, pollution, and resource mismanagement. The growth of printed sensor technologies offers an innovative approach to addressing these challenges due to their low cost, flexibility, and scalability. Printed sensors enable the real-time monitoring of air, water, soil, and climate, providing significant data for data-driven decision-making technologies and policy development to improve the quality of the environment. The development of new materials, such as graphene, conductive polymers, and biodegradable substrates, has significantly enhanced the environmental applications of printed sensors by improving sensitivity, enabling flexible designs, and supporting eco-friendly and disposable solutions. The development of inkjet, screen, and roll-to-roll printing technologies has also contributed to the achievement of mass production without sacrificing quality or performance. This review presents the current progress in printed sensors for environmental applications, with a focus on technological advances, challenges, applications, and future directions. Moreover, the paper also discusses the challenges that still exist due to several issues, e.g., sensitivity, stability, power supply, and environmental sustainability. Printed sensors have the potential to revolutionize ecological monitoring, as evidenced by recent innovations such as Internet of Things (IoT) integration, self-powered designs, and AI-enhanced data analytics. By addressing these issues, printed sensors can develop a better understanding of environmental systems and help promote the UN sustainable development goals. Full article
(This article belongs to the Section Electrochemical Devices and Sensors)
Show Figures

Figure 1

27 pages, 4880 KiB  
Article
Multi-Objective Optimization of Steel Slag–Ceramsite Foam Concrete via Integrated Orthogonal Experimentation and Multivariate Analytics: A Synergistic Approach Combining Range–Variance Analyses with Partial Least Squares Regression
by Alipujiang Jierula, Haodong Li, Tae-Min Oh, Xiaolong Li, Jin Wu, Shiyi Zhao and Yang Chen
Appl. Sci. 2025, 15(15), 8591; https://doi.org/10.3390/app15158591 - 2 Aug 2025
Viewed by 195
Abstract
This study aims to enhance the performance of an innovative steel slag–ceramsite foam concrete (SSCFC) to advance sustainable green building materials. An eco-friendly composite construction material was developed by integrating industrial by-product steel slag (SS) with lightweight ceramsite. Employing a three-factor, three-level orthogonal [...] Read more.
This study aims to enhance the performance of an innovative steel slag–ceramsite foam concrete (SSCFC) to advance sustainable green building materials. An eco-friendly composite construction material was developed by integrating industrial by-product steel slag (SS) with lightweight ceramsite. Employing a three-factor, three-level orthogonal experimental design at a fixed density of 800 kg/m3, 12 mix proportions (including a control group) were investigated with the variables of water-to-cement (W/C) ratio, steel slag replacement ratio, and ceramsite replacement ratio. The governing mechanisms of the W/C ratio, steel slag replacement level, and ceramsite replacement proportion on the SSCFC’s fluidity and compressive strength (CS) were elucidated. The synergistic application of range analysis and analysis of variance (ANOVA) quantified the significance of factors on target properties, and partial least squares regression (PLSR)-based prediction models were established. The test results indicated the following significance hierarchy: steel slag replacement > W/C ratio > ceramsite replacement for fluidity. In contrast, W/C ratio > ceramsite replacement > steel slag replacement governed the compressive strength. Verification showed R2 values exceeding 65% for both fluidity and CS predictions versus experimental data, confirming model reliability. Multi-criteria optimization yielded optimal compressive performance and suitable fluidity at a W/C ratio of 0.4, 10% steel slag replacement, and 25% ceramsite replacement. Full article
(This article belongs to the Section Civil Engineering)
Show Figures

Figure 1

21 pages, 1458 KiB  
Article
Production of a Biosurfactant for Application in the Cosmetics Industry
by Ana Paula Barbosa Cavalcanti, Gleice Paula de Araújo, Káren Gercyane de Oliveira Bezerra, Fabíola Carolina Gomes de Almeida, Maria da Glória Conceição da Silva, Alessandra Sarubbo, Cláudio José Galdino da Silva Júnior, Rita de Cássia Freire Soares da Silva and Leonie Asfora Sarubbo
Fermentation 2025, 11(8), 451; https://doi.org/10.3390/fermentation11080451 - 2 Aug 2025
Viewed by 329
Abstract
The cosmetics industry has been seeking to develop products with renewable natural ingredients to reduce the use of or even replace synthetic substances. Biosurfactants can help meet this demand. These natural compounds are renewable, biodegradable, and non-toxic or have low toxicity, offering minimal [...] Read more.
The cosmetics industry has been seeking to develop products with renewable natural ingredients to reduce the use of or even replace synthetic substances. Biosurfactants can help meet this demand. These natural compounds are renewable, biodegradable, and non-toxic or have low toxicity, offering minimal risk to humans and the environment, which has attracted the interest of an emerging consumer market and, consequently, the cosmetics industry. The aim of the present study was to produce a biosurfactant from the yeast Starmerella bombicola ATCC 22214 cultivated in a mineral medium containing 10% soybean oil and 5% glucose. The biosurfactant reduced the surface tension of water from 72.0 ± 0.1 mN/m to 33.0 ± 0.3 mN/m after eight days of fermentation. The yield was 53.35 ± 0.39 g/L and the critical micelle concentration was 1000 mg/L. The biosurfactant proved to be a good emulsifier of oils used in cosmetic formulations, with emulsification indices ranging from 45.90 ± 1.69% to 68.50 ± 1.10%. The hydrophilic–lipophilic balance index demonstrated the wetting capacity of the biosurfactant and its tendency to form oil-in-water (O/W) emulsions, with 50.0 ± 0.20% foaming capacity. The biosurfactant did not exhibit cytotoxicity in the MTT assay or irritant potential. Additionally, an antioxidant activity of 58.25 ± 0.32% was observed at a concentration of 40 mg/mL. The compound also exhibited antimicrobial activity against various pathogenic microorganisms. The characterisation of the biosurfactant using magnetic nuclear resonance and Fourier transform infrared spectroscopy revealed that the biomolecule is a glycolipid with an anionic nature. The results demonstrate that biosurfactant produced in this work has potential as an active biotechnological ingredient for innovative, eco-friendly cosmetic formulations. Full article
(This article belongs to the Special Issue The Industrial Feasibility of Biosurfactants)
Show Figures

Figure 1

50 pages, 2093 KiB  
Review
Enhancing Human Health Through Nutrient and Bioactive Compound Recovery from Agri-Food By-Products: A Decade of Progress
by Cinzia Ingallina, Mattia Spano, Sabrina Antonia Prencipe, Giuliana Vinci, Antonella Di Sotto, Donatella Ambroselli, Valeria Vergine, Maria Elisa Crestoni, Chiara Di Meo, Nicole Zoratto, Luana Izzo, Abel Navarré, Giuseppina Adiletta, Paola Russo, Giacomo Di Matteo, Luisa Mannina and Anna Maria Giusti
Nutrients 2025, 17(15), 2528; https://doi.org/10.3390/nu17152528 - 31 Jul 2025
Viewed by 222
Abstract
In light of pressing global nutritional needs, the valorization of agri-food waste constitutes a vital strategy for enhancing human health and nutrition, while simultaneously supporting planetary health. This integrated approach is increasingly indispensable within sustainable and equitable food systems. Recently, a sustainability-driven focus [...] Read more.
In light of pressing global nutritional needs, the valorization of agri-food waste constitutes a vital strategy for enhancing human health and nutrition, while simultaneously supporting planetary health. This integrated approach is increasingly indispensable within sustainable and equitable food systems. Recently, a sustainability-driven focus has shifted attention toward the valorization of the agri-food by-products as rich sources of bioactive compounds useful in preventing or treating chronic diseases. Agri-food by-products, often regarded as waste, actually hold great potential as they are rich in bioactive components, dietary fiber, and other beneficial nutrients from which innovative food ingredients, functional foods, and even therapeutic products are developed. This review aims to provide a comprehensive analysis of the current advances in recovering and applying such compounds from agri-food waste, with a particular focus on their roles in human health, sustainable packaging, and circular economy strategies. Methods: This review critically synthesizes recent scientific literature on the extraction, characterization, and utilization of bioactive molecules from agri-food by-products. After careful analysis of the PubMed and Scopus databases, only English-language articles from the last 10 years were included in the final narrative review. The analysis also encompasses applications in the nutraceutical, pharmaceutical, and food packaging sectors. Results: Emerging technologies have enabled the efficient and eco-friendly recovery of compounds such as polyphenols, carotenoids, and dietary fibers that demonstrate antioxidant, antimicrobial, and anti-inflammatory properties. These bioactive compounds support the development of functional foods and biodegradable packaging materials. Furthermore, these valorization strategies align with global health trends by promoting dietary supplements that counteract the effects of the Western diet and chronic diseases. Conclusions: Valorization of agri-food by-products offers a promising path toward sustainable development by reducing waste, enhancing public health, and driving innovation. This strategy not only minimizes waste and supports sustainability, but also promotes a more nutritious and resilient food system. Full article
(This article belongs to the Special Issue Nutrition 3.0: Between Tradition and Innovation)
Show Figures

Figure 1

14 pages, 1882 KiB  
Article
Carbon-Negative Construction Material Based on Rice Production Residues
by Jüri Liiv, Catherine Rwamba Githuku, Marclus Mwai, Hugo Mändar, Peeter Ritslaid, Merrit Shanskiy and Ergo Rikmann
Materials 2025, 18(15), 3534; https://doi.org/10.3390/ma18153534 - 28 Jul 2025
Viewed by 284
Abstract
This study presents a cost-effective, carbon-negative construction material for affordable housing, developed entirely from locally available agricultural wastes: rice husk ash, wood ash, and rice straw—materials often problematic to dispose of in many African regions. Rice husk ash provides high amorphous silica, acting [...] Read more.
This study presents a cost-effective, carbon-negative construction material for affordable housing, developed entirely from locally available agricultural wastes: rice husk ash, wood ash, and rice straw—materials often problematic to dispose of in many African regions. Rice husk ash provides high amorphous silica, acting as a strong pozzolanic agent. Wood ash contributes calcium oxide and alkalis to serve as a reactive binder, while rice straw functions as a lightweight organic filler, enhancing thermal insulation and indoor climate comfort. These materials undergo natural pozzolanic reactions with water, eliminating the need for Portland cement—a major global source of anthropogenic CO2 emissions (~900 kg CO2/ton cement). This process is inherently carbon-negative, not only avoiding emissions from cement production but also capturing atmospheric CO2 during lime carbonation in the hardening phase. Field trials in Kenya confirmed the composite’s sufficient structural strength for low-cost housing, with added benefits including termite resistance and suitability for unskilled laborers. In a collaboration between the University of Tartu and Kenyatta University, a semi-automatic mixing and casting system was developed, enabling fast, low-labor construction of full-scale houses. This innovation aligns with Kenya’s Big Four development agenda and supports sustainable rural development, post-disaster reconstruction, and climate mitigation through scalable, eco-friendly building solutions. Full article
Show Figures

Figure 1

16 pages, 1870 KiB  
Review
Recent Advances in the Development and Industrial Applications of Wax Inhibitors: A Comprehensive Review of Nano, Green, and Classic Materials Approaches
by Parham Joolaei Ahranjani, Hamed Sadatfaraji, Kamine Dehghan, Vaibhav A. Edlabadkar, Prasant Khadka, Ifeanyi Nwobodo, VN Ramachander Turaga, Justin Disney and Hamid Rashidi Nodeh
J. Compos. Sci. 2025, 9(8), 395; https://doi.org/10.3390/jcs9080395 - 26 Jul 2025
Viewed by 364
Abstract
Wax deposition, driven by the crystallization of long-chain n-alkanes, poses severe challenges across industries such as petroleum, oil and natural gas, food processing, and chemical manufacturing. This phenomenon compromises flow efficiency, increases energy demands, and necessitates costly maintenance interventions. Wax inhibitors, designed to [...] Read more.
Wax deposition, driven by the crystallization of long-chain n-alkanes, poses severe challenges across industries such as petroleum, oil and natural gas, food processing, and chemical manufacturing. This phenomenon compromises flow efficiency, increases energy demands, and necessitates costly maintenance interventions. Wax inhibitors, designed to mitigate these issues, operate by altering wax crystallization, aggregation, and adhesion over the pipelines. Classic wax inhibitors, comprising synthetic polymers and natural compounds, have been widely utilized due to their established efficiency and scalability. However, synthetic inhibitors face environmental concerns, while natural inhibitors exhibit reduced performance under extreme conditions. The advent of nano-based wax inhibitors has revolutionized wax management strategies. These advanced materials, including nanoparticles, nanoemulsions, and nanocomposites, leverage their high surface area and tunable interfacial properties to enhance efficiency, particularly in harsh environments. While offering superior performance, nano-based inhibitors are constrained by high production costs, scalability challenges, and potential environmental risks. In parallel, the development of “green” wax inhibitors derived from renewable resources such as vegetable oils addresses sustainability demands. These eco-friendly formulations introduce functionalities that reinforce inhibitory interactions with wax crystals, enabling effective deposition control while reducing reliance on synthetic components. This review provides a comprehensive analysis of the mechanisms, applications, and comparative performance of classic and nano-based wax inhibitors. It highlights the growing integration of sustainable and hybrid approaches that combine the reliability of classic inhibitors with the advanced capabilities of nano-based systems. Future directions emphasize the need for cost-effective, eco-friendly solutions through innovations in material science, computational modeling, and biotechnology. Full article
(This article belongs to the Section Composites Manufacturing and Processing)
Show Figures

Figure 1

17 pages, 6527 KiB  
Article
Mechanical Properties of Bio-Printed Mortars with Bio-Additives for Green and Sustainable Construction
by Sotirios Pemas, Dimitrios Baliakas, Eleftheria Maria Pechlivani and Maria Stefanidou
Materials 2025, 18(14), 3375; https://doi.org/10.3390/ma18143375 - 18 Jul 2025
Viewed by 440
Abstract
Additive manufacturing (AM) has brought significant breakthroughs to the construction sector, such as the ability to fabricate complex geometries, enhance efficiency, and reduce both material usage and construction waste. However, several challenges must still be addressed to fully transition from conventional construction practices [...] Read more.
Additive manufacturing (AM) has brought significant breakthroughs to the construction sector, such as the ability to fabricate complex geometries, enhance efficiency, and reduce both material usage and construction waste. However, several challenges must still be addressed to fully transition from conventional construction practices to innovative and sustainable green alternatives. This study investigates the use of non-cementitious traditional mixtures for green construction applications through 3D printing using Liquid Deposition Modeling (LDM) technology. To explore the development of mixtures with enhanced physical and mechanical properties, natural pine and cypress wood shavings were added in varying proportions (1%, 3%, and 5%) as sustainable additives. The aim of this study is twofold: first, to demonstrate the printability of these eco-friendly mortars that can be used for conservation purposes and overcome the challenges of incorporating bio-products in 3D printing; and second, to develop sustainable composites that align with the objectives of the European Green Deal, offering low-emission construction solutions. The proposed mortars use hydrated lime and natural pozzolan as binders, river sand as an aggregate, and a polycarboxylate superplasticizer. While most studies with bio-products focus on traditional methods, this research provides proof of concept for their use in 3D printing. The study results indicate that, at low percentages, both additives had minimal effect on the physical and mechanical properties of the tested mortars, whereas higher percentages led to progressively more significant deterioration. Additionally, compared to molded specimens, the 3D-printed mortars exhibited slightly reduced mechanical strength and increased porosity, attributable to insufficient compaction during the printing process. Full article
(This article belongs to the Special Issue Eco-Friendly Materials for Sustainable Buildings)
Show Figures

Figure 1

19 pages, 4718 KiB  
Article
Assessment of Winery By-Products as Ingredients as a Base of “3S” (Safe, Salubrious, and Sustainable) Fermented Beverages Rich in Bioactive Anthocyanins
by Berta María Cánovas, Irene Pérez-Novas, Cristina García-Viguera, Raúl Domínguez-Perles and Sonia Medina
Foods 2025, 14(14), 2514; https://doi.org/10.3390/foods14142514 - 17 Jul 2025
Viewed by 519
Abstract
Oenological residues may cause environmental pollution when processing does not significantly reduce volume and/or harmful conditions. The lack of proper valorisation alternatives entails high disposal costs and resource inefficiency that jeopardise the sustainability and competitiveness of the industry. Interestingly, wine by-products are underappreciated [...] Read more.
Oenological residues may cause environmental pollution when processing does not significantly reduce volume and/or harmful conditions. The lack of proper valorisation alternatives entails high disposal costs and resource inefficiency that jeopardise the sustainability and competitiveness of the industry. Interestingly, wine by-products are underappreciated sources of multipurpose bioactive compounds, such as anthocyanins, associated with health benefits. Alternatively, transforming oenological by-products into valuable co-products will promote sustainability and thus, create new business opportunities. In this context, the present study has assessed the applicability of winery by-products (grape pomace and wine lees) as ingredients to develop new functional kombucha-analogous beverages “3S” (safe, salubrious, and sustainable) by the Symbiotic Culture of Bacteria and Yeast (SCOBY). Concerning the main results, during the kombucha’s development, the fermentation reactions modified the physicochemical parameters of the beverages, namely pH, total soluble solids, acetic acid, ethanol, and sugars, which remained stable throughout the monitored shelf-life period considered (21 days). The fermented beverages obtained exhibited high anthocyanin concentration, especially when using wine lees as an ingredient (up to 5.60 mg/L at the end of the aerobic fermentation period (10 days)) compared with the alternative beverages produced using grape pomace (1.69 mg/L). These findings demonstrated that using winery by-products for the development of new “3S” fermented beverages would provide a dietary source of bioactive compounds (mainly anthocyanins), further supporting new valorisation chances and thus contributing to the competitiveness and sustainability of the winery industries. This study opens a new avenue for cross-industry innovation, merging fermentation traditions with a new eco-friendly production of functional beverages that contribute to transforming oenological residues into valuable co-products. Full article
Show Figures

Figure 1

30 pages, 9042 KiB  
Article
Innovative Geoproduct Development for Sustainable Tourism: The Case of the Safi Geopark Project (Marrakesh–Safi Region, Morocco)
by Mustapha El Hamidy, Ezzoura Errami, Carlos Neto de Carvalho and Joana Rodrigues
Sustainability 2025, 17(14), 6478; https://doi.org/10.3390/su17146478 - 15 Jul 2025
Viewed by 713
Abstract
With the growing impact of environmental challenges, the need for well-planned and effectively executed actions to support progress and sustainable social development has become increasingly evident. Geoparks play a vital role in this endeavor by fostering the development of products that celebrate local [...] Read more.
With the growing impact of environmental challenges, the need for well-planned and effectively executed actions to support progress and sustainable social development has become increasingly evident. Geoparks play a vital role in this endeavor by fostering the development of products that celebrate local heritage and promote its conservation, utilizing the natural and cultural resources unique to each region in sustainable ways. Geoproducts, in particular, aim to enrich cultural identity and elevate the value of the landscape and geodiversity by integrating communities into innovative approaches and technologies, engaging them in commercialization, and ensuring sustainability alongside social inclusion. Within the framework of the Safi Geopark Project, this article delves into the concept of geoproducts, their definitions, and their potential to bolster local identity and social and economic development. Leveraging the abundant geological and cultural resources of Safi province, the study presents both tangible and intangible geoproducts that merge traditional craftsmanship with modern sustainability practices. Notable examples include ammonite-inspired ceramics, educational materials, and eco-friendly cosmetics, each carefully designed to reflect and celebrate the region’s geoheritage. This article underscores the crucial role of community involvement in the creation of geoproducts, highlighting their impact on conservation, education, and the promotion of sustainable tourism. By proposing actionable strategies, this study not only broadens the understanding of geoproducts within geoparks but also reinforces their importance as instruments for regional development, heritage conservation, and sustainable economic growth. Full article
Show Figures

Figure 1

Back to TopTop