Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (3,823)

Search Parameters:
Keywords = eco-environment

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 1458 KiB  
Article
Production of a Biosurfactant for Application in the Cosmetics Industry
by Ana Paula Barbosa Cavalcanti, Gleice Paula de Araújo, Káren Gercyane de Oliveira Bezerra, Fabíola Carolina Gomes de Almeida, Maria da Glória Conceição da Silva, Alessandra Sarubbo, Cláudio José Galdino da Silva Júnior, Rita de Cássia Freire Soares da Silva and Leonie Asfora Sarubbo
Fermentation 2025, 11(8), 451; https://doi.org/10.3390/fermentation11080451 (registering DOI) - 2 Aug 2025
Abstract
The cosmetics industry has been seeking to develop products with renewable natural ingredients to reduce the use of or even replace synthetic substances. Biosurfactants can help meet this demand. These natural compounds are renewable, biodegradable, and non-toxic or have low toxicity, offering minimal [...] Read more.
The cosmetics industry has been seeking to develop products with renewable natural ingredients to reduce the use of or even replace synthetic substances. Biosurfactants can help meet this demand. These natural compounds are renewable, biodegradable, and non-toxic or have low toxicity, offering minimal risk to humans and the environment, which has attracted the interest of an emerging consumer market and, consequently, the cosmetics industry. The aim of the present study was to produce a biosurfactant from the yeast Starmerella bombicola ATCC 22214 cultivated in a mineral medium containing 10% soybean oil and 5% glucose. The biosurfactant reduced the surface tension of water from 72.0 ± 0.1 mN/m to 33.0 ± 0.3 mN/m after eight days of fermentation. The yield was 53.35 ± 0.39 g/L and the critical micelle concentration was 1000 mg/L. The biosurfactant proved to be a good emulsifier of oils used in cosmetic formulations, with emulsification indices ranging from 45.90 ± 1.69% to 68.50 ± 1.10%. The hydrophilic–lipophilic balance index demonstrated the wetting capacity of the biosurfactant and its tendency to form oil-in-water (O/W) emulsions, with 50.0 ± 0.20% foaming capacity. The biosurfactant did not exhibit cytotoxicity in the MTT assay or irritant potential. Additionally, an antioxidant activity of 58.25 ± 0.32% was observed at a concentration of 40 mg/mL. The compound also exhibited antimicrobial activity against various pathogenic microorganisms. The characterisation of the biosurfactant using magnetic nuclear resonance and Fourier transform infrared spectroscopy revealed that the biomolecule is a glycolipid with an anionic nature. The results demonstrate that biosurfactant produced in this work has potential as an active biotechnological ingredient for innovative, eco-friendly cosmetic formulations. Full article
(This article belongs to the Special Issue The Industrial Feasibility of Biosurfactants)
Show Figures

Figure 1

9 pages, 220 KiB  
Communication
Characterisation of the Ovine KRTAP36-1 Gene in Chinese Tan Lambs and Its Impact on Selected Wool Traits
by Lingrong Bai, Huitong Zhou, Jinzhong Tao, Guo Yang and Jon G. H. Hickford
Animals 2025, 15(15), 2265; https://doi.org/10.3390/ani15152265 (registering DOI) - 1 Aug 2025
Abstract
Wool has distinctive biological, physical, and chemical properties that contribute to its value both for the sheep and in global fibre and textile markets. Its fibres are primarily composed of proteins, principally keratin and keratin-associated proteins (KAPs). To better comprehend the genes that [...] Read more.
Wool has distinctive biological, physical, and chemical properties that contribute to its value both for the sheep and in global fibre and textile markets. Its fibres are primarily composed of proteins, principally keratin and keratin-associated proteins (KAPs). To better comprehend the genes that underpin key wool traits, this study examined the keratin-associated protein 36-1 gene (KRTAP36-1) in Chinese Tan lambs. We identified three previously reported alleles of the gene (named A, B and C) that were present in the lambs studied, with genotype frequencies as follows: 2.0% (n = 5; AA), 6.9% (n = 17; AB), 13.8% (n = 34; AC), 8.9% (n = 22; BB), 33.4% (n = 82; BC) and 35.0% (n = 86; CC). The frequencies of the individual alleles in the Chinese Tan lambs were 12.4%, 29.1% and 58.5% for alleles A, B and C, respectively. The three alleles were in Hardy–Weinberg Equilibrium. In an association analysis, it was revealed that allele C was associated with variation in the mean fibre curvature of the fine wool of the Chinese Tan lambs, but this association was not observed in their heterotypic hair fibres. This finding suggests that KRTAP36-1 might be differentially expressed in the wool follicles that produce the two fibre types, and that along with other KRTAP genes, it may be involved in determining fibre curvature and the distinctive curly coat of the lambs. Full article
(This article belongs to the Special Issue Genetic Analysis of Important Traits in Domestic Animals)
33 pages, 1527 KiB  
Review
Biochar-Derived Electrochemical Sensors: A Green Route for Trace Heavy Metal Detection
by Sairaman Saikrithika and Young-Joon Kim
Chemosensors 2025, 13(8), 278; https://doi.org/10.3390/chemosensors13080278 (registering DOI) - 1 Aug 2025
Abstract
The increasing demand for rapid, sensitive, and eco-friendly methods for the detection of trace heavy metals in environmental samples, attributed to their serious threats to health and the environment, has spurred considerable interest in the development of sustainable sensor materials. Toxic metal ions, [...] Read more.
The increasing demand for rapid, sensitive, and eco-friendly methods for the detection of trace heavy metals in environmental samples, attributed to their serious threats to health and the environment, has spurred considerable interest in the development of sustainable sensor materials. Toxic metal ions, namely, lead (Pb2+), cadmium (Cd2+), mercury (Hg2+), arsenic (As3+), and chromium, are potential hazards due to their non-biodegradable nature with high toxicity, even at trace levels. Acute health complications, including neurological, renal, and developmental disorders, arise upon exposure to such metal ions. To monitor and mitigate these toxic exposures, sensitive detection techniques are essential. Pre-existing conventional detection methods, such as atomic absorption spectroscopy (AAS) and inductively coupled plasma-mass spectrometry (ICP-MS), involve expensive instrumentation, skilled operators, and complex sample preparation. Electrochemical sensing, which is simple, portable, and eco-friendly, is foreseen as a potential alternative to the above conventional methods. Carbon-based nanomaterials play a crucial role in electrochemical sensors due to their high conductivity, stability, and the presence of surface functional groups. Biochar (BC), a carbon-rich product, has emerged as a promising electrode material for electrochemical sensing due to its high surface area, sustainability, tunable porosity, surface rich in functional groups, eco-friendliness, and negligible environmental footprint. Nevertheless, broad-spectrum studies on the use of biochar in electrochemical sensors remain narrow. This review focuses on the recent advancements in the development of biochar-based electrochemical sensors for the detection of toxic heavy metals such as Pb2+, Cd2+, and Hg2+ and the simultaneous detection of multiple ions, with special emphasis on BC synthesis routes, surface modification methodologies, electrode fabrication techniques, and electroanalytical performance. Finally, current challenges and future perspectives for integrating BC into next-generation sensor platforms are outlined. Full article
(This article belongs to the Special Issue Green Electrochemical Sensors for Trace Heavy Metal Detection)
19 pages, 9733 KiB  
Article
Complementary Relationship-Based Validation and Analysis of Evapotranspiration in the Permafrost Region of the Qinghai–Tibetan Plateau
by Wenjun Yu, Yining Xie, Yanzhong Li, Amit Kumar, Wei Shao and Yonghua Zhao
Atmosphere 2025, 16(8), 932; https://doi.org/10.3390/atmos16080932 (registering DOI) - 1 Aug 2025
Abstract
The Complementary Relationship (CR) principle of evapotranspiration provides an efficient approach for estimating actual evapotranspiration (ETa), owing to its simplified computation and effectiveness in utilizing meteorological factors. Accurate estimation of actual evapotranspiration (ETa) is crucial for understanding surface energy [...] Read more.
The Complementary Relationship (CR) principle of evapotranspiration provides an efficient approach for estimating actual evapotranspiration (ETa), owing to its simplified computation and effectiveness in utilizing meteorological factors. Accurate estimation of actual evapotranspiration (ETa) is crucial for understanding surface energy and water cycles, especially in permafrost regions. This study aims to evaluate the applicability of two Complementary Relationship (CR)-based methods—Bouchet’s in 1963 and Brutsaert’s in 2015—for estimating ETa on the Qinghai–Tibetan Plateau (QTP), using observations from Eddy Covariance (EC) systems. The potential evapotranspiration (ETp) was calculated using the Penman equation with two wind functions: the Rome wind function and the Monin–Obukhov Similarity Theory (MOST). The comparison revealed that Bouchet’s method underestimated ETa during frozen soil periods and overestimated it during thawed periods. In contrast, Brutsaert’s method combined with the MOST yielded the lowest RMSE values (0.67–0.70 mm/day) and the highest correlation coefficients (r > 0.85), indicating superior performance. Sensitivity analysis showed that net radiation (Rn) had the strongest influence on ETa, with a daily sensitivity coefficient of up to 1.35. This study highlights the improved accuracy and reliability of Brutsaert’s CR method in cold alpine environments, underscoring the importance of considering freeze–thaw dynamics in ET modeling. Future research should incorporate seasonal calibration of key parameters (e.g., ε) to further reduce uncertainty. Full article
(This article belongs to the Section Meteorology)
46 pages, 1120 KiB  
Review
From Morphology to Multi-Omics: A New Age of Fusarium Research
by Collins Bugingo, Alessandro Infantino, Paul Okello, Oscar Perez-Hernandez, Kristina Petrović, Andéole Niyongabo Turatsinze and Swarnalatha Moparthi
Pathogens 2025, 14(8), 762; https://doi.org/10.3390/pathogens14080762 (registering DOI) - 1 Aug 2025
Abstract
The Fusarium genus includes some of the most economically and ecologically impactful fungal pathogens affecting global agriculture and human health. Over the past 15 years, rapid advances in molecular biology, genomics, and diagnostic technologies have reshaped our understanding of Fusarium taxonomy, host–pathogen dynamics, [...] Read more.
The Fusarium genus includes some of the most economically and ecologically impactful fungal pathogens affecting global agriculture and human health. Over the past 15 years, rapid advances in molecular biology, genomics, and diagnostic technologies have reshaped our understanding of Fusarium taxonomy, host–pathogen dynamics, mycotoxin biosynthesis, and disease management. This review synthesizes key developments in these areas, focusing on agriculturally important Fusarium species complexes such as the Fusarium oxysporum species complex (FOSC), Fusarium graminearum species complex (FGSC), and a discussion on emerging lineages such as Neocosmospora. We explore recent shifts in species delimitation, functional genomics, and the molecular architecture of pathogenicity. In addition, we examine the global burden of Fusarium-induced mycotoxins by examining their prevalence in three of the world’s most widely consumed staple crops: maize, wheat, and rice. Last, we also evaluate contemporary management strategies, including molecular diagnostics, host resistance, and integrated disease control, positioning this review as a roadmap for future research and practical solutions in Fusarium-related disease and mycotoxin management. By weaving together morphological insights and cutting-edge multi-omics tools, this review captures the transition into a new era of Fusarium research where integrated, high-resolution approaches are transforming diagnosis, classification, and management. Full article
(This article belongs to the Special Issue Current Research on Fusarium: 2nd Edition)
Show Figures

Figure 1

25 pages, 5156 KiB  
Article
Enhancing the Mechanical Properties of Sulfur-Modified Fly Ash/Metakaolin Geopolymers with Polypropylene Fibers
by Sergey A. Stel’makh, Evgenii M. Shcherban’, Alexey N. Beskopylny, Levon R. Mailyan, Alexandr A. Shilov, Irina Razveeva, Samson Oganesyan, Anastasia Pogrebnyak, Andrei Chernil’nik and Diana Elshaeva
Polymers 2025, 17(15), 2119; https://doi.org/10.3390/polym17152119 - 31 Jul 2025
Abstract
High demand for sustainable solutions in the construction industry determines the significant relevance of developing new eco-friendly composites with a reduced carbon impact on the environment. The main aim of this study is to investigate the possibility and efficiency of using technical sulfur [...] Read more.
High demand for sustainable solutions in the construction industry determines the significant relevance of developing new eco-friendly composites with a reduced carbon impact on the environment. The main aim of this study is to investigate the possibility and efficiency of using technical sulfur (TS) as a modifying additive for geopolymer composites and to select the optimal content of polypropylene fiber (PF). To assess the potential of TS, experimental samples of geopolymer solutions based on metakaolin and fly ash were prepared. The TS content varied from 0% to 9% by weight of binder in 3% increments. In the first stage, the density, compressive and flexural strength, capillary water absorption and microstructure of hardened geopolymer composites were tested. The TS additive in an amount of 3% was the most effective and provided an increase in compressive strength by 12.6%, flexural strength by 12.8% and a decrease in capillary water absorption by 18.2%. At the second stage, the optimal PF content was selected, which was 0.75%. The maximum increases in strength properties were recorded for the composition with 3% TS and 0.75% PF: 8% for compression and 32.6% for bending. Capillary water absorption decreased by 12.9%. The geopolymer composition developed in this work, modified with TP and PF, has sufficient mechanical and physical properties and can be considered for further study in order to determine its competitiveness with cement composites in real construction practice. Full article
(This article belongs to the Special Issue Challenges and Trends in Polymer Composites—2nd Edition)
Show Figures

Figure 1

12 pages, 1641 KiB  
Article
Intraspecific Variations in Ecomorphological Functional Traits of Montane Stream-Dwelling Frogs Were Driven by Their Microhabitat Conditions
by Xiwen Peng, Da Kang, Guangfeng Chen, Suwen Hu, Zijian Sun and Tian Zhao
Animals 2025, 15(15), 2243; https://doi.org/10.3390/ani15152243 - 30 Jul 2025
Viewed by 186
Abstract
Understanding how habitat conditions drive morphological adaptations in animals is critical in ecology, yet amphibian studies remain limited. This study investigated intraspecific variation in ecomorphological traits of three montane stream-dwelling frogs (Quasipaa boulengeri, Amolops sinensis, and Odorrana margaratae) across [...] Read more.
Understanding how habitat conditions drive morphological adaptations in animals is critical in ecology, yet amphibian studies remain limited. This study investigated intraspecific variation in ecomorphological traits of three montane stream-dwelling frogs (Quasipaa boulengeri, Amolops sinensis, and Odorrana margaratae) across elevation gradients in Tianping Mountain, China. Using morphological measurements and environmental variables collected from ten transects, we analyzed functional traits related to feeding and locomotion and assessed their associations with microhabitat variables. Significant trait differences between low- and high-elevation groups were detected only in Q. boulengeri, with high-elevation individuals exhibiting greater body mass and shorter hindlimbs. Redundancy analysis demonstrated that microhabitat variables, particularly air humidity, flow rate, and rock coverage, were linked to trait variations. For example, air humidity and flow rate significantly influenced Q. boulengeri’s body and limb proportions, while flow rate affected A. sinensis’s snout and limb morphology. In addition, sex and seasonal effects were also associated with trait variations. These results underscore amphibians’ phenotypic plasticity in response to the environment and highlight the role of microhabitat complexity in shaping traits. By linking habitat heterogeneity to eco-morphology, this study advocates for conservation strategies that preserve varied stream environments to support amphibian resilience amid environmental changes. Full article
Show Figures

Figure 1

18 pages, 14612 KiB  
Article
Integrated Proteomic and Transcriptomic Analysis Reveals the Mechanism of Selenium-Mediated Cell Wall Polysaccharide in Rice (Oryza sativa L.) Cadmium Detoxification
by Sixi Zhu, Xianwang Du, Wei Zhao, Xiuqin Yang, Luying Sheng, Huan Mao and Suxia Su
Toxics 2025, 13(8), 642; https://doi.org/10.3390/toxics13080642 - 30 Jul 2025
Viewed by 150
Abstract
Cadmium (Cd) toxicity destroys plant cells and affects plant growth and development. Due to its unique metallic properties, selenium (Se) has been shown to be effective in antioxidants, cellular immunity, and heavy metal detoxification. When Se and Cd are present together in plants, [...] Read more.
Cadmium (Cd) toxicity destroys plant cells and affects plant growth and development. Due to its unique metallic properties, selenium (Se) has been shown to be effective in antioxidants, cellular immunity, and heavy metal detoxification. When Se and Cd are present together in plants, they antagonize. However, the mechanism of action of the two in the rice cell wall remains to be clarified. In this study, we analyzed the mechanism of Cd detoxification by rice (Oryza sativa L.) cellular polysaccharides mediated by Se, using the cell wall as an entry point. Proteomic and transcriptomic analyses revealed that “Glycosyl hydrolases family 17”, “O-methyltransferase”, and “Polygalacturonase” protein pathways were significantly expressed in the cell wall. The most abundant enzymes involved in polysaccharide biosynthesis were found, including bglB, otsB, HK, PFP, ADH1, and ALDH, which resulted in the synthetic pathway of polysaccharide formation in the rice cell wall. Finally, the essential genes/proteins, such as protein Os03g0170500, were identified. The study showed that Se inhibits Cd uptake and transport when Se (1 mg/kg) is low relative to Cd (3 mg/kg), has little inhibitory effect, and even promotes Cd (3 mg/kg) uptake when Se (5 mg/kg) is relatively high. Full article
Show Figures

Graphical abstract

16 pages, 3308 KiB  
Article
Photocatalytic Degradation of Typical Fibrates by N and F Co-Doped TiO2 Nanotube Arrays Under Simulated Sunlight Irradiation
by Xiangyu Chen, Hao Zhong, Juanjuan Yao, Jingye Gan, Haibing Cong and Tengyi Zhu
Water 2025, 17(15), 2261; https://doi.org/10.3390/w17152261 - 29 Jul 2025
Viewed by 184
Abstract
Fibrate pharmaceuticals (fibrates), as a widespread class of emerging contaminants, pose potential risks to both ecological systems and human health. The photocatalytic system based on nitrogen (N) and fluorine (F) co-doped TiO2 nanotube arrays (NF-TNAs) provides a renewable solution for fibrate pharmaceutical [...] Read more.
Fibrate pharmaceuticals (fibrates), as a widespread class of emerging contaminants, pose potential risks to both ecological systems and human health. The photocatalytic system based on nitrogen (N) and fluorine (F) co-doped TiO2 nanotube arrays (NF-TNAs) provides a renewable solution for fibrate pharmaceutical removal from water, powered by inexhaustible sunlight. In this study, the degradation of two typical fibrates, i.e., bezafibrate (BZF) and ciprofibrate (CPF), under simulated sunlight irradiation through NF-TNAs were investigated. The photocatalytic degradation of BZF/CPF was achieved through combined radical and non-radical oxidation processes, while the generation and reaction mechanisms of associated reactive oxygen species (ROS) were examined. Electron paramagnetic resonance detection and quenching tests confirmed the existence of h+, •OH, O2•−, and 1O2, with O2•− playing the predominant role. The transformation products (TPs) of BZF/CPF were identified through high-resolution mass spectrometry analysis combined with quantum chemical calculations to elucidate the degradation pathways. The influence of co-existing ions and typical natural organic matters (NOM) on BZF/CPF degradation were also tested. Eventually, the ecological risk of BZF/CPF transformation products was assessed through quantitative structure–activity relationship (QSAR) modeling, and the results showed that the proposed photocatalytic system can largely alleviate fibrate toxicity. Full article
Show Figures

Graphical abstract

24 pages, 4858 KiB  
Article
Exploring the Spatial Coupling Characteristics and Influence Mechanisms of Built Environment and Green Space Pattern: The Case of Shanghai
by Rongxiang Chen, Zhiyuan Chen, Mingjing Xie, Rongrong Shi, Kaida Chen and Shunhe Chen
Sustainability 2025, 17(15), 6828; https://doi.org/10.3390/su17156828 (registering DOI) - 27 Jul 2025
Viewed by 534
Abstract
Urban expansion will squeeze the green space system and cause ecological fragmentation. The question of how to expand cities more scientifically and build eco-cities has become an important topic of sustainable urban construction. This paper takes Shanghai as a research case. A deep [...] Read more.
Urban expansion will squeeze the green space system and cause ecological fragmentation. The question of how to expand cities more scientifically and build eco-cities has become an important topic of sustainable urban construction. This paper takes Shanghai as a research case. A deep neural network combined with an attention mechanism model measures the comprehensive level of the built environment and green space pattern of urbanization and quantitatively analyzes the coordinated relationship between the two using the coupled degree of coordination model. Subsequently, the K-Means clustering model was used for spatial clustering to determine the governance and construction directions for different spatial areas and was, finally, combined with the LightGBM model plus SHAP to analyze the importance and threshold effect of the indicators on the degree of coupled coordination. The results of the study show that (1) the core area of the city shows a high state of coordination, indicating that Shanghai has a better green space construction in the central city, but the periphery shows different imbalances; (2) three different kinds of areas are identified, and different governance measures as well as the direction of urbanization are proposed according to the characteristics of the different areas; and (3) this study finds that the structural indicators of the built environment, such as Average Compactness, Weighted Average Height, and Land Use Diversity, have a significant influence on the coupling coordination degree and have different response thresholds. The results of the study provide theoretical support for regional governance and suggestions for the direction of urban expansion for sustainable urbanization. Full article
(This article belongs to the Special Issue Urban Planning and Sustainable Land Use—2nd Edition)
Show Figures

Figure 1

22 pages, 6699 KiB  
Article
Research on Grain Production Services in the Hexi Corridor Based on the Link Relationship of “Water–Soil–Carbon–Grain”
by Baiyang Li, Fuping Zhang, Qi Feng, Yongfen Wei, Guangwen Li and Zhiyuan Song
Land 2025, 14(8), 1542; https://doi.org/10.3390/land14081542 - 27 Jul 2025
Viewed by 267
Abstract
Elucidating the trade-offs and synergies among ecosystem services is crucial for effective ecosystem management and the promotion of sustainable development in specific regions. The Hexi Corridor, a vital agricultural hub in Northwest China, is instrumental in both ecological conservation and socioeconomic advancement throughout [...] Read more.
Elucidating the trade-offs and synergies among ecosystem services is crucial for effective ecosystem management and the promotion of sustainable development in specific regions. The Hexi Corridor, a vital agricultural hub in Northwest China, is instrumental in both ecological conservation and socioeconomic advancement throughout the area. Utilizing an integrated “water–soil–carbon–grain” framework, this study conducted a quantitative assessment of four essential ecosystem services within the Hexi Corridor from 2000 to 2020: water yield, soil conservation, vegetation carbon sequestration, and grain production. Our research thoroughly explores the equilibrium and synergistic interactions between grain production and other ecosystem services, while also exploring potential strategies to boost grain yields through the precise management of these services. The insights garnered are invaluable for strategic regional development and will contribute to the revitalization efforts in Northwest China. Key findings include the following: (1) between 2000 and 2020, grain production exhibited a steady increase, alongside rising trends in water yields, soil conservation, and carbon sequestration, all of which demonstrated significant synergies with agricultural productivity; (2) in areas identified as grain production hotspots, there were stronger positive correlations between grain output and carbon sequestration services, soil conservation, and water yields than the regional averages, suggesting more pronounced mutual benefits; (3) the implementation of strategic initiatives such as controlling soil erosion, expanding afforestation efforts, and enhancing water-saving irrigation infrastructure could simultaneously boost ecological services and agricultural productivity. These results significantly enhance our comprehension of the interplay between ecosystem services in the Hexi Corridor and present practical approaches for the optimization of regional agricultural systems. Full article
Show Figures

Figure 1

20 pages, 11785 KiB  
Article
Spatiotemporal Variation in NDVI in the Sunkoshi River Watershed During 2000–2021 and Its Response to Climate Factors and Soil Moisture
by Zhipeng Jian, Qinli Yang, Junming Shao, Guoqing Wang and Vishnu Prasad Pandey
Water 2025, 17(15), 2232; https://doi.org/10.3390/w17152232 - 26 Jul 2025
Viewed by 351
Abstract
Given that the Sunkoshi River watershed (located in the southern foot of the Himalayas) is sensitive to climate change and its mountain ecosystem provides important services, we aim to evaluate its spatial and temporal variation patterns of vegetation, represented by the Normalized Difference [...] Read more.
Given that the Sunkoshi River watershed (located in the southern foot of the Himalayas) is sensitive to climate change and its mountain ecosystem provides important services, we aim to evaluate its spatial and temporal variation patterns of vegetation, represented by the Normalized Difference Vegetation Index (NDVI), during 2000–2021 and identify the dominant driving factors of vegetation change. Based on the NDVI dataset (MOD13A1), we used the simple linear trend model, seasonal and trend decomposition using loess (STL) method, and Mann–Kendall test to investigate the spatiotemporal variation features of NDVI during 2000–2021 on multiple scales (annual, seasonal, monthly). We used the partial correlation coefficient (PCC) to quantify the response of the NDVI to land surface temperature (LST), precipitation, humidity, and soil moisture. The results indicate that the annual NDVI in 52.6% of the study area (with elevation of 1–3 km) increased significantly, while 0.9% of the study area (due to urbanization) degraded significantly during 2000–2021. Daytime LST dominates NDVI changes on spring, summer, and winter scales, while precipitation, soil moisture, and nighttime LST are the primary impact factors on annual NDVI changes. After removing the influence of soil moisture, the contributions of climate factors to NDVI change are enhanced. Precipitation shows a 3-month lag effect and a 5-month cumulative effect on the NDVI; both daytime LST and soil moisture have a 4-month lag effect on the NDVI; and humidity exhibits a 2-month cumulative effect on the NDVI. Overall, the study area turned green during 2000–2021. The dominant driving factors of NDVI change may vary on different time scales. The findings will be beneficial for climate change impact assessment on the regional eco-environment, and for integrated watershed management. Full article
(This article belongs to the Section Hydrology)
Show Figures

Figure 1

19 pages, 5148 KiB  
Article
Analysis of the Charge Structure Accompanied by Hail During the Development Stage of Thunderstorm on the Qinghai–Tibet Plateau
by Yajun Li, Xiangpeng Fan and Yuxiang Zhao
Atmosphere 2025, 16(8), 906; https://doi.org/10.3390/atmos16080906 - 26 Jul 2025
Viewed by 190
Abstract
The charge structure and lightning activities during the development stage of a thunderstorm with a hail-falling process in Datong County of Qinghai Province on 16 August 2014 were studied by using a multi-station observation network composed of a very-high-frequency, three-dimensional, lightning-radiation-source location system [...] Read more.
The charge structure and lightning activities during the development stage of a thunderstorm with a hail-falling process in Datong County of Qinghai Province on 16 August 2014 were studied by using a multi-station observation network composed of a very-high-frequency, three-dimensional, lightning-radiation-source location system and broadband electric field. The research results show that two discharge regions appeared during the development stage of the thunderstorm. The charge structure was all a negative dipolar polarity in two discharge regions; however, the heights of the charge regions were different. The positive-charge region at a height of 2–3.5 km corresponds to −1–−10 °C and the negative-charge region at a height of 3.5–5 km corresponds to −11–−21 °C in one discharge region; the positive-charge region at a height of 4–5 km corresponds to −15–−21 °C and the negative-charge region at a height of 5–6 km corresponds to −21–−29 °C in another region. The charge regions with the same polarity at different heights in the two discharge regions gradually connected with the occurrence of the hail-falling process during the development stage of the thunderstorm, and the overall height of the charge regions decreased. All the intracloud lightning flashes that occurred in the thunderstorm were of inverted polarity discharge, and the horizontal transmission distance of the discharge channel was short, all within 10 km. The negative intracloud lightning flash, negative cloud-to-ground lightning flash, and positive cloud-to-ground lightning flash generated during the thunderstorm process accounted for 83%, 16%, and 1% of the total number of lightning flashes, respectively. Negative cloud-to-ground lightning flashes mainly occurred more frequently in the early phase of the thunderstorm development stage. As the thunderstorm developed, the frequency of intracloud lightning flashes became greater than that of negative cloud-to-ground lightning flashes, and finally far exceeded it. The frequency of lightning flashes decreases sharply and the intensity of thunderstorms decreases during the hail-falling period. Full article
(This article belongs to the Section Meteorology)
Show Figures

Figure 1

16 pages, 1870 KiB  
Review
Recent Advances in the Development and Industrial Applications of Wax Inhibitors: A Comprehensive Review of Nano, Green, and Classic Materials Approaches
by Parham Joolaei Ahranjani, Hamed Sadatfaraji, Kamine Dehghan, Vaibhav A. Edlabadkar, Prasant Khadka, Ifeanyi Nwobodo, VN Ramachander Turaga, Justin Disney and Hamid Rashidi Nodeh
J. Compos. Sci. 2025, 9(8), 395; https://doi.org/10.3390/jcs9080395 - 26 Jul 2025
Viewed by 277
Abstract
Wax deposition, driven by the crystallization of long-chain n-alkanes, poses severe challenges across industries such as petroleum, oil and natural gas, food processing, and chemical manufacturing. This phenomenon compromises flow efficiency, increases energy demands, and necessitates costly maintenance interventions. Wax inhibitors, designed to [...] Read more.
Wax deposition, driven by the crystallization of long-chain n-alkanes, poses severe challenges across industries such as petroleum, oil and natural gas, food processing, and chemical manufacturing. This phenomenon compromises flow efficiency, increases energy demands, and necessitates costly maintenance interventions. Wax inhibitors, designed to mitigate these issues, operate by altering wax crystallization, aggregation, and adhesion over the pipelines. Classic wax inhibitors, comprising synthetic polymers and natural compounds, have been widely utilized due to their established efficiency and scalability. However, synthetic inhibitors face environmental concerns, while natural inhibitors exhibit reduced performance under extreme conditions. The advent of nano-based wax inhibitors has revolutionized wax management strategies. These advanced materials, including nanoparticles, nanoemulsions, and nanocomposites, leverage their high surface area and tunable interfacial properties to enhance efficiency, particularly in harsh environments. While offering superior performance, nano-based inhibitors are constrained by high production costs, scalability challenges, and potential environmental risks. In parallel, the development of “green” wax inhibitors derived from renewable resources such as vegetable oils addresses sustainability demands. These eco-friendly formulations introduce functionalities that reinforce inhibitory interactions with wax crystals, enabling effective deposition control while reducing reliance on synthetic components. This review provides a comprehensive analysis of the mechanisms, applications, and comparative performance of classic and nano-based wax inhibitors. It highlights the growing integration of sustainable and hybrid approaches that combine the reliability of classic inhibitors with the advanced capabilities of nano-based systems. Future directions emphasize the need for cost-effective, eco-friendly solutions through innovations in material science, computational modeling, and biotechnology. Full article
(This article belongs to the Section Composites Manufacturing and Processing)
Show Figures

Figure 1

16 pages, 3043 KiB  
Article
Soil Salinity Drives the Arbuscular Mycorrhizal Fungal Generalists and Specialists Subcommunity Assembly in Extremely Dryland Forest in China
by Mengjun Qu, Jianming Wang, Yin Wang, Xuge Zou, Xun Lei, Meiwen Luo, Wenkai Wang and Jingwen Li
Microorganisms 2025, 13(8), 1742; https://doi.org/10.3390/microorganisms13081742 - 25 Jul 2025
Viewed by 141
Abstract
AM fungi play a pivotal role in regulating ecosystem functioning and processes. However, the assembly of soil AM fungal communities and its drivers across Populus euphratica forests in extremely arid regions remain largely unclear. Here, we explored the composition and assembly processes of [...] Read more.
AM fungi play a pivotal role in regulating ecosystem functioning and processes. However, the assembly of soil AM fungal communities and its drivers across Populus euphratica forests in extremely arid regions remain largely unclear. Here, we explored the composition and assembly processes of AM fungal communities in the soil of P. euphratica forests in northwest China. The results showed that soil salinity affected the composition, assembly processes, and network stability and complexity of AM fungal communities. Stochastic processes rather than deterministic processes dominated the community assembly of AM fungi. Habitat generalists were more susceptible to deterministic processes than specialists. In addition, the network analysis showed that fungal network complexity had a hump-shaped relationship with increasing soil salinity, while network stability had a U-shaped relationship. This research suggests that soil salinity plays an essential role in determining AM fungal community composition and assembly processes in P. euphratica forests of arid regions. Full article
(This article belongs to the Section Environmental Microbiology)
Show Figures

Figure 1

Back to TopTop