Enhancing the Mechanical Properties of Sulfur-Modified Fly Ash/Metakaolin Geopolymers with Polypropylene Fibers
Abstract
1. Introduction
- -
- selection of a geopolymer formulation on a mixed binder in the form of metakaolin and fly ash with different dosages of technical sulfur and polypropylene fiber;
- -
- production of experimental test samples of geopolymer and determination of their density, compressive and flexural strength and capillary water absorption;
- -
- study of the structure of geopolymers modified with TS, using SEM and EDX analysis;
- -
- analysis of the experimental data results and selection of the most optimal ranges of the modifying additive content of technical sulfur and polypropylene fiber, ensuring the production of geopolymer composites with the required performance properties;
- -
- assessment of the possible area of application of a geopolymer composite modified with technical sulfur in real construction practice.
2. Materials and Methods
2.1. Materials
2.2. Methods
3. Results
4. Discussion
5. Conclusions
- (1)
- The possibility of using TS as a modifying additive in the manufacture of geopolymer composites has been proven. The maximum positive effect was recorded with a TS content of 3%. The increase in compressive strength was 12.6%, and flexural strength 12.8%. Capillary water absorption decreased by 18.2%. The optimal TS content, which allows obtaining a geopolymer without significant deterioration in properties, is up to 6%.
- (2)
- The addition of PF additionally improves the properties of geopolymer solutions modified with TS. The maximum increases in strength properties were recorded for the composition with 0.75% PF and 3% TS. The increases in compressive and flexural strength were 8.4% and 32.6% compared to the 3TS type composition. Capillary water absorption decreased by 12.9%. The optimal PF content for this type of geopolymer composite ranged from 0.25% to 1.25%.
- (3)
- Analysis of the microstructure of geopolymer matrices with different TS content shows that the best composition with 3% TS has the most homogeneous dense structure, represented by a network of gel-like products of the geopolymerization reaction and partially dissolved metakaolin layers, compared to the structure of the control composition. According to the results of EDX analysis of the composites, the following chemical elements were identified: Al, Si, O, K, Fe, Na and S. In the optimal amount of up to 3%, TS acts as a reactive component, completely dissolves in the alkaline activator and has better chemical stabilization in the structure of the geopolymer matrix.
- (4)
- The most rational compositions of geopolymer mortar based on metakaolin and fly ash, modified with sulfur and polypropylene fiber, in terms of microstructure and properties, were obtained.
- (5)
- Compared with traditional alkali-activated geopolymers, the resulting composite of carefully selected composition has better mechanical and physical characteristics and a more organized and ordered structure, and at the same time partially solves the problem of recycling accumulating sulfur waste.
- (6)
- In the future, to confirm the effectiveness of the obtained composite in a wide range of applications, it is planned to conduct studies aimed at studying:
- -
- the durability of sulfur-modified geopolymer concretes, namely, assessing resistance to the effects of chloride and sulfate environments and studying the degradation mechanism of this type of geopolymer in an aggressive environment;
- -
- reaction products and hydration mechanisms using additional analyses (X-ray phase, thermogravimetric and mercury porosimetry);
- -
- the influence of curing conditions of the composite on its characteristics;
- -
- the influence of different ratios of binder components on the final properties and behavior of the geopolymer composite with sulfur.
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Uali, A.; Kazymbetova, A.; Belgibayeva, A.; Nurpeissova, A.; Bakenov, Z.; Mukanova, A. Industrial sulfur separation and purification: Paving the way to energy applications. Chem. Eng. J. 2025, 510, 161574. [Google Scholar] [CrossRef]
- Iliev, I.; Filimonova, A.; Chichirov, A.; Vlasova, A.; Kamalieva, R.; Beloev, I. Natural and Waste Materials for Desulfurization of Gaseous Fuels and Petroleum Products. Fuels 2025, 6, 13. [Google Scholar] [CrossRef]
- Wan, G.; Sun, L.; Xu, L.; Lin, L. Emission of nitrogen/sulfur pollutants and migration of heavy metals during combustion of oily sludge from the oil refining process in fluidized bed. J. Energy Inst. 2024, 112, 101476. [Google Scholar] [CrossRef]
- Beloev, I.; Filimonova, A.; Chichirov, A.; Chichirova, N.; Filimonov, A.; Iliev, I. Utilization of Hydrogen-Containing Gas Waste from Deep Oil Refining at a Hybrid Power Plant with a Solid Oxide Fuel Cell. Eng. Proc. 2024, 60, 5. [Google Scholar] [CrossRef]
- Shcherban’, E.M.; Stel’makh, S.A.; Mailyan, L.R.; Beskopylny, A.N.; Smolyanichenko, A.S.; Chernil’nik, A.A.; Elshaeva, D.M.; Beskopylny, N.A. Structure and Properties of Variatropic Concrete Combined Modified with Nano- and Micro-silica. Constr. Mater. Prod. 2024, 7, 3. [Google Scholar] [CrossRef]
- Zubarev, K.P.; Shcherban’, E.M.; Stel’makh, S.A.; Beskopylny, A.N.; Elshaeva, D.; Chernil’nik, A.; Zakieva, N.I.; Pimenova, E.V.; Shilov, A.A. Structure and Properties Improvement by Recipe Factors of Geopolymer Basalt Fiber Reinforced Concrete for Building Enclosing Structures. Buildings 2024, 14, 743. [Google Scholar] [CrossRef]
- Wang, S.; Huang, W.; Liu, X.; Lin, P.; Ren, S.; Li, Y. Effect of High Content of Waste Tire Rubber and Sulfur on the Aging Behavior of Bitumen. Appl. Sci. 2022, 12, 5417. [Google Scholar] [CrossRef]
- D’Melo, D.; Raju, S.; Bhattacharya, S.; Subramani, S. Self-assembly of amorphous sulphur in bitumen–sulphur mixtures and its impact on properties. Constr. Build. Mater. 2016, 126, 976–982. [Google Scholar] [CrossRef]
- Wręczycki, J.; Demchuk, Y.; Bieliński, D.M.; Bratychak, M.; Gunka, V.; Anyszka, R.; Gozdek, T. Bitumen Binders Modified with Sulfur/Organic Copolymers. Materials 2022, 15, 1774. [Google Scholar] [CrossRef]
- Xie, S.; Yi, J.; Zhou, T.; Fini, E.H.; Feng, D. Phase transition process of sulfur in bitumen and its effect on rheological properties of bitumen. Constr. Build. Mater. 2023, 364, 129914. [Google Scholar] [CrossRef]
- Pahlavan, F.; Fini, E.H. Phenolic Compounds to Hinder Sulfur Crystallization in Sulfur-Extended Bitumen. Resour. Conserv. Recycl. 2022, 180, 106184. [Google Scholar] [CrossRef]
- Mousavi, M.; Fini, E.H. Phenolic compounds to amplify the effect of sulfur on Bitumen’s thermomechanical properties. Fuel 2021, 287, 119532. [Google Scholar] [CrossRef]
- Zhou, T.; Xie, S.; Kabir, S.F.; Cao, L.; Fini, E.H. Effect of Sulfur on Bio-Modified Rubberized Bitumen. Constr. Build. Mater. 2021, 273, 122034. [Google Scholar] [CrossRef]
- Dehestani, M.; Teimortashlu, E.; Molaei, M.; Ghomian, M.; Firoozi, S.; Aghili, S. Experimental data on compressive strength and durability of sulfur concrete modified by styrene and bitumen. Data Br. 2017, 13, 137–144. [Google Scholar] [CrossRef]
- Dugarte, M.; Martinez-Arguelles, G.; Torres, J. Experimental Evaluation of Modified Sulfur Concrete for Achieving Sustainability in Industry Applications. Sustainability 2019, 11, 70. [Google Scholar] [CrossRef]
- Mohammed, S.; Poornima, V. Strength and durability study of sulphur concrete with replaced fine aggregate. Mater. Today Proc. 2018, 5, 23888–23897. [Google Scholar] [CrossRef]
- Al-Otaibi, S.; Al-Aibani, A.; Al-Bahar, S.; Abdulsalam, M.; Al-Fadala, S. Potential for producing concrete blocks using sulphur polymeric concrete in Kuwait. J. King Saud Univ. Eng. Sci. 2019, 31, 327–331. [Google Scholar] [CrossRef]
- Mohamed, O.; Zuaiter, H. Fresh Properties, Strength, and Durability of Fiber-Reinforced Geopolymer and Conventional Concrete: A Review. Polymers 2024, 16, 141. [Google Scholar] [CrossRef]
- Luo, J.; Shi, X.; Wang, Q.; Dai, J.; Deng, X.; Xue, Y. Study on Improving Measures of Mechanical Properties of Geopolymer Materials and Its Effect on CO2 Emission. Polymers 2023, 15, 1699. [Google Scholar] [CrossRef]
- Ranjbar, N.; Zhang, M. Fiber-reinforced geopolymer composites: A review. Cem. Concr. Compos. 2020, 107, 103498. [Google Scholar] [CrossRef]
- Zhong, H.; Zhang, M. Engineered geopolymer composites: A state-of-the-art review. Cem. Concr. Compos. 2023, 135, 104850. [Google Scholar] [CrossRef]
- Zhang, X.; Bai, C.; Qiao, Y.; Wang, X.; Jia, D.; Li, H.; Colombo, P. Porous geopolymer composites: A review. Compos. Part A Appl. Sci. Manuf. 2021, 150, 106629. [Google Scholar] [CrossRef]
- Paramonova, O.N.; Yydina, N.V. Construction Waste from Perspective of the Disperse Systems Stabilisation Theory. Mod. Trends Constr. Urban Territ. Plan. 2024, 3, 48–56. [Google Scholar] [CrossRef]
- Metwally, G.A.M.; Elemam, W.E.; Mahdy, M.; Ghannam, M. A comprehensive review of metakaolin-based ultra-high-performance geopolymer concrete enhanced with waste material additives. J. Build. Eng. 2025, 103, 112019. [Google Scholar] [CrossRef]
- Dong, Y.; El-Naggar, M.R.; Gao, R.; Li, Y.; Zhao, Y. Impact of Microwave Pre-Curing on Pore Structure and Environmental Performance of Metakaolin- and Fly Ash-Based Geopolymers. Buildings 2024, 14, 3918. [Google Scholar] [CrossRef]
- Ali, S.; Khanna, P.; Stewart, J.; Kafle, B.; Al-Ameri, R. Rheological and Mechanical Properties of Self-Compacting Geopolymer Concrete Reinforced with Short Basalt Fibres. J. Compos. Sci. 2025, 9, 264. [Google Scholar] [CrossRef]
- Ma, L.; Zhen, C.; Zeng, Q.; Li, B. Experimental Investigation on the Mechanical Properties of Geopolymer Recycled Aggregate Concrete Reinforced with Steel-Polypropylene Hybrid Fiber. Buildings 2025, 15, 1723. [Google Scholar] [CrossRef]
- Anilkumar; Sreekeshava, K.S.; Bhargavi, C. Studies on Optimization of Fly Ash, GGBS and Precipitated Silica in Geopolymer Concrete. Constr. Mater. 2025, 5, 29. [Google Scholar] [CrossRef]
- Kmiotek, A.; Figiela, B.; Łach, M.; Aruova, L.; Korniejenko, K. An Investigation of Key Mechanical and Physical Characteristics of Geopolymer Composites for Sustainable Road Infrastructure Applications. Buildings 2025, 15, 1262. [Google Scholar] [CrossRef]
- Sridhar, M.; Vinod Kumar, M. Structural and Sustainability Enhancement of Composite Sandwich Slab Panels Using Novel Fibre-Reinforced Geopolymer Concrete. J. Compos. Sci. 2024, 8, 479. [Google Scholar] [CrossRef]
- Marathe, S.; Szemiot-Jankowska, N.; Kumar, S.; Muthu, M. Degradation Potential of Metakaolin-Based Geopolymer Composites Immersed in Real and Simulated Acidic Environments. Sustainability 2025, 17, 468. [Google Scholar] [CrossRef]
- Li, Z.; Yang, Y.; Dong, T.; Chen, Z. Improving Drying Shrinkage Performance of Metakaolin-Based Geopolymers by Adding Cement. Buildings 2025, 15, 1650. [Google Scholar] [CrossRef]
- Choi, H.; Pour-Ghaz, M.; Park, S. Compressive strength degradation of metakaolin-based geopolymer with an excessively high S/A ratio: Insights from nanoindentation on N-A-S-H gel structure. J. Build. Eng. 2025, 108, 112870. [Google Scholar] [CrossRef]
- Istuque, D.B.; Soriano, L.; Borrachero, M.V.; da Silva, R.G.; Akasaki, J.L.; Payá, J.; Tashima, M.M. Influence of Portland cement and sewage sludge ash additions on metakaolin-based geopolymers. J. Build. Eng. 2025, 111, 113103. [Google Scholar] [CrossRef]
- Dollente, I.J.R.; Valerio, D.N.R.; Quiatchon, P.R.J.; Abulencia, A.B.; Villoria, M.B.D.; Garciano, L.E.O.; Promentilla, M.A.B.; Guades, E.J.; Ongpeng, J.M.C. Enhancing the Mechanical Properties of Historical Masonry Using Fiber-Reinforced Geopolymers. Polymers 2023, 15, 1017. [Google Scholar] [CrossRef] [PubMed]
- Guo, G.; Lv, C.; Liu, J.; Wang, L. Properties of Fiber-Reinforced One-Part Geopolymers: A Review. Polymers 2022, 14, 3333. [Google Scholar] [CrossRef] [PubMed]
- Chakkor, O. Durability and Mechanical Analysis of Basalt Fiber Reinforced Metakaolin–Red Mud-Based Geopolymer Composites. Buildings 2025, 15, 2010. [Google Scholar] [CrossRef]
- Palanivelu, R.; Panchanatham, B.; Zapris, A.G.; Kytinou, V.K. Non-Conventional and Sustainable Retrofitting of Fire-Exposed Reinforced Concrete Columns Using Basalt Fiber–Engineered Geopolymer Composites. Buildings 2025, 15, 1962. [Google Scholar] [CrossRef]
- Li, Y.; Maimait, A.; Cheng, J.; Duan, Y.; Chen, Y.; Dong, H. Properties of Fiber-Reinforced Geopolymer Mortar Using Coal Gangue and Aeolian Sand. Materials 2024, 17, 3225. [Google Scholar] [CrossRef]
- Griño, A.A., Jr.; Soriano, H.S.P.; Promentilla, M.A.B.; Ongpeng, J.M.C. Exploring the Potential of Polypropylene Fibers and Bacterial Co-Culture in Repairing and Strengthening Geopolymer-Based Construction Materials. Buildings 2023, 13, 2668. [Google Scholar] [CrossRef]
- Hussain, S.; Matthews, J.; Amritphale, S.; Edwards, R.; Matthews, E.; Paul, N.; Kraft, J. Influence of Steel and Poly Vinyl Alcohol Fibers on the Development of High-Strength Geopolymer Concrete. Minerals 2024, 14, 1007. [Google Scholar] [CrossRef]
- Wu, P.; Wan, X.; Lu, Q.; Zhang, Y. Study on Mechanical Properties of Steel Fiber-Reinforced Geopolymer Concrete under Multi-Axial Loads. Buildings 2024, 14, 2780. [Google Scholar] [CrossRef]
- Palizzolo, L.; Sanfilippo, C.; Ullah, S.; Benfratello, S. Strengthening of Masonry Structures by Sisal-Reinforced Geopolymers. Sustainability 2024, 16, 9181. [Google Scholar] [CrossRef]
- Mohammed, A.D.A.A.; Ronghui, W.; Huseien, G.F. Mechanical Properties of Natural Jute Fiber-Reinforced Geopolymer Concrete: Effects of Various Lengths and Volume Fractions. J. Compos. Sci. 2024, 8, 450. [Google Scholar] [CrossRef]
- Puzatova, A.V.; Dmitrieva, M.A.; Tovpinets, A.О.; Leitsin, V.N. Study of Structural Defects Evolution in Fine-Grained Concrete Using Computed Tomography Methods. Adv. Eng. Res. 2024, 24, 227–237. [Google Scholar] [CrossRef]
- Kondratieva, T.N.; Chepurnenko, A.S. Prediction of Rheological Parameters of Polymers by Machine Learning Methods. Adv. Eng. Res. 2024, 24, 36–47. [Google Scholar] [CrossRef]
- Oti, J.; Adeleke, B.O.; Casabuena, L.R.; Kinuthia, J.M.; Sule, S. Utilization of a PFA-GGBS-Based Precursor in Geopolymer Concrete Production as a Sustainable Substitute for Conventional Concrete. Materials 2025, 18, 1309. [Google Scholar] [CrossRef]
- Stel’makh, S.A.; Beskopylny, A.N.; Shcherban, E.M.; Elshaeva, D.; Chernilnik, A.; Kuimov, D.; Evtushenko, A.; Oganesyan, S. Geopolymer Concrete Physical and Mechanical Properties on a Combined Binder Reinforced with Dispersed Polypropylene Fiber. Polymers 2025, 17, 1710. [Google Scholar] [CrossRef]
- Shcherban’, E.M.; Stel’makh, S.A.; Beskopylny, A.N.; Meskhi, B.; Efremenko, I.; Shilov, A.A.; Vialikov, I.; Ananova, O.; Chernil’nik, A.; Elshaeva, D. Composition, Structure and Properties of Geopolymer Concrete Dispersedly Reinforced with Sisal Fiber. Buildings 2024, 14, 2810. [Google Scholar] [CrossRef]
- Alshaaer, M.; Alanazi, A.O.S.; Absa, I.M.I. Use of Sulfur Waste in the Production of Metakaolin-Based Geopolymers. Sustainability 2023, 15, 13608. [Google Scholar] [CrossRef]
- EN 12390-7:2019; Testing Hardened Concrete—Part 7: Density of Hardened Concrete. iTeh Standards: Etobicoke, ON, Canada, 2019. Available online: https://standards.iteh.ai/catalog/standards/cen/811a0cf3-55e3-495a-b06e-5c302d5f2806/en-12390-7-2019 (accessed on 25 June 2025).
- GOST R 58277-2018; Dry Construction Mixtures Based on Cement Binder. Test Methods. Standartinform: Moscow, Russia, 2019.
- Hamed, Y.R.; Keshta, M.M.; Elshikh, M.M.Y.; Elshami, A.A.; Matthana, M.H.S.; Youssf, O. Performance of Sustainable Geopolymer Concrete Made of Different Alkaline Activators. Infrastructures 2025, 10, 41. [Google Scholar] [CrossRef]
- Beskopylny, A.N.; Shcherban’, E.M.; Stel’makh, S.A.; Mailyan, L.R.; Meskhi, B.; Razveeva, I.; Kozhakin, A.; Beskopylny, N.; El’shaeva, D.; Artamonov, S. Method for Concrete Structure Analysis by Microscopy of Hardened Cement Paste and Crack Segmentation Using a Convolutional Neural Network. J. Compos. Sci. 2023, 7, 327. [Google Scholar] [CrossRef]
- Araújo, L.B.R.; Targino, D.L.L.; Babadopulos, L.F.A.L.; Fabbri, A.; Cabral, A.E.B.; Chehade, R.; Costa, H.N. Impact of Curing Temperature and Steel Slag Aggregates on High-Strength Self-Compacting Alkali-Activated Concrete. Buildings 2025, 15, 457. [Google Scholar] [CrossRef]
- Carrillo Beltran, R.; Picazo Camilo, E.; Perea Toledo, G.; Corpas Iglesias, F.A. Study of Novel Geopolymer Concrete Prepared with Slate Stone Cutting Sludge, Chamotte, Steel Slag and Activated with Olive Stone Bottom Ash. Materials 2025, 18, 1974. [Google Scholar] [CrossRef] [PubMed]
- Alshaaer, M.; Alanazi, A.O.S. Synthesis and Characterization of Novel Hybrid Wollastonite–Metakaolin-Based Geopolymers. Materials 2024, 17, 4338. [Google Scholar] [CrossRef]
- Antipas, I.R. Effect of Glass Fiber Reinforcement on the Mechanical Properties of Polyester Composites. Adv. Eng. Res. 2023, 23, 387–397. [Google Scholar] [CrossRef]
- Morgun, V.N. About Dynamics of Improving the Foam Concrete Technological and Operational Properties upon Disperse Reinforcement with Polypropylene Fibers. Mod. Trends Constr. Urban Territ. Plan. 2023, 2, 69–76. [Google Scholar] [CrossRef]
- Shcherban’, E.M.; Stel’makh, S.A.; Mailyan, L.R.; Beskopylny, A.N.; Smolyanichenko, A.S.; Chernil’nik, A.; Elshaeva, D.; Beskopylny, N. Influence of Polymer Fibers on the Structure and Properties of Modified Variatropic Vibrocentrifuged Concrete. Polymers 2024, 16, 642. [Google Scholar] [CrossRef]
- Wang, J.; Wang, W.; Lu, L.; Luo, Q.; Lai, J.; Xie, X.; Li, B.; Zhuang, R.; YHe, Y. Strength development and polymerization reaction mechanism of sulfur-tailings-based geopolymer produced with CaO and Na2SiO3 composite activator. Constr. Build. Mater. 2024, 421, 135692. [Google Scholar] [CrossRef]
- Chen, X.; Zhang, J.; Lu, M.; Chen, B.; Gao, S.; Bai, J.; Zhang, H.; Yang, Y. Study on the effect of calcium and sulfur content on the properties of fly ash based geopolymer. Constr. Build. Mater. 2022, 314, 125650. [Google Scholar] [CrossRef]
- Jia, Y.; Zhang, J.; Zou, X.; Kang, D.; Cong, H.; Zhu, J.; Zhao, E.; Li, S.; Bai, Y.; Zhang, T.; et al. Investigation into the evolutionary behavior of completely solid waste materials high-sulfur quaternary cementitious systems in a high-alkali environment materials. Constr. Build. Mater. 2025, 474, 140996. [Google Scholar] [CrossRef]
- Guo, Y.; Xu, X.; Guo, W. Utilization of sulfur iron ore tailing (SIOT) in GGBS-metakaolin based alkali-activated mortar. Constr. Build. Mater. 2024, 447, 138139. [Google Scholar] [CrossRef]
- Mirgozar Langaroudi, M.A.; Mohtasham Moein, M.; Saradar, A.; Karakouzian, M. Investigation of the Mechanical Properties and Durability of Fiber-Reinforced Geopolymer Mortars Containing Metakaolin and Glass Powder. Infrastructures 2025, 10, 25. [Google Scholar] [CrossRef]
- Sariyev, B.; Konysbekov, A.; Jexembayeva, A.; Konkanov, M. A Comparative Study of the Rheological Properties of a Fly Ash-Based Geopolymer Reinforced with PP Fiber for 3D Printing: An Experimental and Numerical Approach. Buildings 2024, 14, 2068. [Google Scholar] [CrossRef]
- Waqas, R.M.; Zaman, S.; Alkharisi, M.K.; Butt, F.; Alsuhaibani, E. Influence of Bentonite and Polypropylene Fibers on Geopolymer Concrete. Sustainability 2024, 16, 789. [Google Scholar] [CrossRef]
- Arredondo, S.P.; Corral, R.; Valenciano, A.; Rosas, C.A.; Gómez, J.M.; Medina, T.J.; Soto, M.; Bernal, J.M. Strength, Elastic Properties and Fiber–Matrix Interaction Mechanism in Geopolymer Composites. Polymers 2022, 14, 1248. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Sun, H.-X.; Zhang, Y.; Yu, B. Surface Cracking and Fractal Characteristics of Bending Fractured Polypropylene Fiber-Reinforced Geopolymer Mortar. Fractal Fract. 2021, 5, 142. [Google Scholar] [CrossRef]
- Agustini, N.K.A.; Triwiyono, A.; Sulistyo, D.; Suyitno, S. Mechanical Properties and Thermal Conductivity of Fly Ash-Based Geopolymer Foams with Polypropylene Fibers. Appl. Sci. 2021, 11, 4886. [Google Scholar] [CrossRef]
- Pham, K.V.A.; Nguyen, T.K.; Le, T.A.; Han, S.W.; Lee, G.; Lee, K. Assessment of Performance of Fiber Reinforced Geopolymer Composites by Experiment and Simulation Analysis. Appl. Sci. 2019, 9, 3424. [Google Scholar] [CrossRef]
- Ahmed, T.I.; Rashed, A.S.; Tobbala, D.E. Sustainable Self-Healing Geopolymer Concrete Incorporating Recycled Plastic, Brick Waste, and Bacillus sphaericus. Ceramics 2025, 8, 72. [Google Scholar] [CrossRef]
- Saprykina, T.K.; Zhadanov, V.I. Improving Theoretical Concepts of Composition Design of Dispersedly-Reinforced Concretes. Mod. Trends Constr. Urban Territ. Plan. 2024, 3, 66–73. [Google Scholar] [CrossRef]
- Rusnak, C.R. Sustainable Strategies for Concrete Infrastructure Preservation: A Comprehensive Review and Perspective. Infrastructures 2025, 10, 99. [Google Scholar] [CrossRef]
- Klyuev, A.V.; Kashapov, N.F.; Klyuev, S.V.; Lesovik, R.V.; Ageeva, M.S.; Fomina, E.V.; Ayubov, N.A. Development of alkali-activated binders based on technogenic fibrous materials. Constr. Mater. Prod. 2023, 6, 60–73. [Google Scholar] [CrossRef]
- Shcherban’, E.M.; Beskopylny, A.N.; Stel’makh, S.A.; Mailyan, L.R.; Meskhi, B.; Shilov, A.A.; Pimenova, E.; El’shaeva, D. Combined Effect of Ceramic Waste Powder Additives and PVA on the Structure and Properties of Geopolymer Concrete Used for Finishing Facades of Buildings. Materials 2023, 16, 3259. [Google Scholar] [CrossRef]
- Meskhi, B.; Beskopylny, A.N.; Stel’makh, S.A.; Shcherban’, E.M.; Mailyan, L.R.; Shilov, A.A.; El’shaeva, D.; Shilova, K.; Karalar, M.; Aksoylu, C.; et al. Analytical Review of Geopolymer Concrete: Retrospective and Current Issues. Materials 2023, 16, 3792. [Google Scholar] [CrossRef] [PubMed]
Metakaolin | ||||||||
Mass fraction of silicon oxide SiO2 (%) | 55.2 | |||||||
Mass fraction of aluminum oxide Al2O3 (%) | 42.4 | |||||||
Mass fraction of iron oxide Fe2O3 (%) | 0.8 | |||||||
Moisture (%) | 0.1 | |||||||
LOI (%) | 1.5 | |||||||
FA | ||||||||
SiO2 (%) | Al2O3 (%) | Fe2O3 (%) | СаО (%) | MgO (%) | TiO2 (%) | P2O5 (%) | SO3 (%) | LOI (%) |
50.82 | 20.5 | 7.71 | 5.55 | 2.18 | 0.87 | 0.21 | 0.16 | 12.0 |
Potassium liquid glass | ||||||||
Density at temperature (20 ± 0.5) °C (g/cm3) | 1.41 ± 0.03 | |||||||
Mass fraction of potassium oxide (K2O) (wt%) | 10.8 ± 0.3 | |||||||
Mass fraction of silicon dioxide (SiO2) (wt%) | 23.8 ± 0.5 | |||||||
Silicate modulus | 2.2 ± 0.1 | |||||||
QS | ||||||||
Bulk density (kg/m3) | 1360 | |||||||
Apparent density (kg/m3) | 2564 | |||||||
The content of dust and clay particles (%) | 0.07 | |||||||
Content of clay in lumps (%) | 0 | |||||||
Fineness modulus | 1.63 | |||||||
TS | ||||||||
Bulk density (kg/m3) | 1338 | |||||||
Sulfur mass fraction (%) | 99.95 | |||||||
Ash content (%) | 0.02 | |||||||
Mass fraction of organic substances (%) | 0.01 | |||||||
Mass fraction of acids in terms of sulfuric acid | 0.002 | |||||||
Mass fraction of water (%) | 0.018 | |||||||
PF | ||||||||
Fiber diameter (µm) | 12 | |||||||
Fiber length (mm) | 16–24 | |||||||
Tensile strength (MPa) | 320 | |||||||
Density (g/cm2) | 0.91 |
Mixture Type | M (g) | FA (g) | K2O(SiO2)n (g) | QS (g) | TS (g) | PF (g) |
---|---|---|---|---|---|---|
0TS/0PF | 1080 | 120 | 1275 | 4050 | 0 | 0 |
3TS/0PF | 1080 | 120 | 1275 | 4050 | 36 | 0 |
3TS/0.25PF | 1080 | 120 | 1275 | 4050 | 36 | 3 |
3TS/0.50PF | 1080 | 120 | 1275 | 4050 | 36 | 6 |
3TS/0.75PF | 1080 | 120 | 1275 | 4050 | 36 | 9 |
3TS/1.0PF | 1080 | 120 | 1275 | 4050 | 36 | 12 |
3TS/1.25PF | 1080 | 120 | 1275 | 4050 | 36 | 15 |
3TS/1.50PF | 1080 | 120 | 1275 | 4050 | 36 | 18 |
6TS/0PF | 1080 | 120 | 1275 | 4050 | 72 | 0 |
6TS/0.25PF | 1080 | 120 | 1275 | 4050 | 72 | 3 |
6TS/0.50PF | 1080 | 120 | 1275 | 4050 | 72 | 6 |
6TS/0.75PF | 1080 | 120 | 1275 | 4050 | 72 | 9 |
6TS/1.0PF | 1080 | 120 | 1275 | 4050 | 72 | 12 |
6TS/1.25PF | 1080 | 120 | 1275 | 4050 | 72 | 15 |
6TS/1.50PF | 1080 | 120 | 1275 | 4050 | 72 | 18 |
9TS/0PF | 1080 | 120 | 1275 | 4050 | 108 | 0 |
9TS/0.25PF | 1080 | 120 | 1275 | 4050 | 108 | 3 |
9TS/0.50PF | 1080 | 120 | 1275 | 4050 | 108 | 6 |
9TS/0.75PF | 1080 | 120 | 1275 | 4050 | 108 | 9 |
9TS/1.0PF | 1080 | 120 | 1275 | 4050 | 108 | 12 |
9TS/1.25PF | 1080 | 120 | 1275 | 4050 | 108 | 15 |
9TS/1.50PF | 1080 | 120 | 1275 | 4050 | 108 | 18 |
TS (%) | PF (%) | |||||
---|---|---|---|---|---|---|
0.25 | 0.50 | 0.75 | 1.0 | 1.25 | 1.5 | |
∆R (%) | ||||||
3 | 2.5 | 4.0 | 8.4 | 5.9 | 3.1 | 2.5 |
6 | 1.7 | 3.8 | 8.0 | 5.2 | 2.1 | 2.4 |
9 | 1.5 | 3.1 | 7.7 | 4.2 | 1.5 | 1.1 |
TS (%) | PF (%) | |||||
---|---|---|---|---|---|---|
0.25 | 0.50 | 0.75 | 1.0 | 1.25 | 1.5 | |
∆Rtb (%) | ||||||
3 | 5.7 | 23.0 | 32.6 | 28.9 | 14.5 | 5.7 |
6 | 5.5 | 21.8 | 30.2 | 26.5 | 12.5 | 3.5 |
9 | 4.5 | 19.8 | 28.4 | 23.6 | 12.1 | −4.2 |
TS (%) | PF (%) | |||||
---|---|---|---|---|---|---|
0.25 | 0.50 | 0.75 | 1.0 | 1.25 | 1.5 | |
∆Wk (%) | ||||||
3 | −2.6 | −8.7 | −12.9 | −7.4 | −1.9 | 4.8 |
6 | −1.9 | −7.5 | −10.5 | −6.6 | −1.4 | 6.6 |
9 | −1.2 | −7.3 | −8.0 | −5.2 | −0.9 | 7.1 |
Ref. Num. | Waste Type | Optimal Content (wt%) | Result |
---|---|---|---|
[50] | Sulfur waste from oil refineries | Up to 5% | Increase in compressive strength from 22.5 MPa to 29.9 MPa. Denser and more compact microstructure of the geopolymer |
[61] | Sulfur-tailings | Main component of the binder | A geopolymer composite with compressive strength up to 32.2 MPa and high efficiency of heavy metal immobilization was obtained |
[62] | SO3 | 4% | Increases in compressive and flexural strength by 17.91% and 15.56% |
[63] | Desulfurization ashes | 50% | The possibility of using desulphurization ash with high sulphur content as the main binder component in the manufacture of low-cement composites was proven |
[64] | Waste from enrichment of sulfide iron ores | 25–50% | Geopolymer composites with improved sulphate resistance and frost resistance were obtained |
Ref. Num. | Fiber Type | Optimal Content (wt%) | Result |
---|---|---|---|
[65] | Polypropylene | 0.2–0.4% | Increased flexural strength and higher resistance of geopolymer to chloride ion permeability |
[66] | 0.25–0.5% | Developed geopolymer concrete for 3D printing with improved productivity and required strength properties | |
[67] | 0.5% | Improved mechanical properties and durability | |
[68] | 1.0% | Increase in flexural strength by 65% | |
[69,70,71] | 0.5–1.5% | Provided an increase in compressive and flexural strength of geopolymer composites |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stel’makh, S.A.; Shcherban’, E.M.; Beskopylny, A.N.; Mailyan, L.R.; Shilov, A.A.; Razveeva, I.; Oganesyan, S.; Pogrebnyak, A.; Chernil’nik, A.; Elshaeva, D. Enhancing the Mechanical Properties of Sulfur-Modified Fly Ash/Metakaolin Geopolymers with Polypropylene Fibers. Polymers 2025, 17, 2119. https://doi.org/10.3390/polym17152119
Stel’makh SA, Shcherban’ EM, Beskopylny AN, Mailyan LR, Shilov AA, Razveeva I, Oganesyan S, Pogrebnyak A, Chernil’nik A, Elshaeva D. Enhancing the Mechanical Properties of Sulfur-Modified Fly Ash/Metakaolin Geopolymers with Polypropylene Fibers. Polymers. 2025; 17(15):2119. https://doi.org/10.3390/polym17152119
Chicago/Turabian StyleStel’makh, Sergey A., Evgenii M. Shcherban’, Alexey N. Beskopylny, Levon R. Mailyan, Alexandr A. Shilov, Irina Razveeva, Samson Oganesyan, Anastasia Pogrebnyak, Andrei Chernil’nik, and Diana Elshaeva. 2025. "Enhancing the Mechanical Properties of Sulfur-Modified Fly Ash/Metakaolin Geopolymers with Polypropylene Fibers" Polymers 17, no. 15: 2119. https://doi.org/10.3390/polym17152119
APA StyleStel’makh, S. A., Shcherban’, E. M., Beskopylny, A. N., Mailyan, L. R., Shilov, A. A., Razveeva, I., Oganesyan, S., Pogrebnyak, A., Chernil’nik, A., & Elshaeva, D. (2025). Enhancing the Mechanical Properties of Sulfur-Modified Fly Ash/Metakaolin Geopolymers with Polypropylene Fibers. Polymers, 17(15), 2119. https://doi.org/10.3390/polym17152119