Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (289)

Search Parameters:
Keywords = easy cleaning

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 7417 KB  
Article
Exploring the Potential of Polyvinyl Alcohol–Borax-Based Gels for the Conservation of Historical Silk Fabrics by Comparative Cleaning Tests on Simplified Model Systems
by Ehab Al-Emam, Marta Cremonesi, Natalia Ortega Saez, Hilde Soenen, Koen Janssens and Geert Van der Snickt
Gels 2026, 12(1), 97; https://doi.org/10.3390/gels12010097 (registering DOI) - 22 Jan 2026
Viewed by 15
Abstract
Cleaning historical silk textiles is a particularly sensitive operation that requires precise control to prevent mechanical or chemical damage. In this study, we investigate using flexible PVA–borax-based gels to remove soot from silk, i.e., polyvinyl alcohol–borax (PVA-B) gels and polyvinyl alcohol–borax–agarose double network [...] Read more.
Cleaning historical silk textiles is a particularly sensitive operation that requires precise control to prevent mechanical or chemical damage. In this study, we investigate using flexible PVA–borax-based gels to remove soot from silk, i.e., polyvinyl alcohol–borax (PVA-B) gels and polyvinyl alcohol–borax–agarose double network gels (PVA-B/AG DN) loaded with different cleaning agents—namely, 30% ethanol and 1% Ecosurf EH-6—in addition to plain gels loaded with water. These gel formulations were tested on simplified model systems (SMS) and were applied using two methods: placing and tamping. The cleaning results were compared with a traditional contact-cleaning approach; micro-vacuuming followed by sponging. Visual inspection, 3D opto-digital microscopy, colorimetry, and machine-learning-assisted (ML) soot counting were exploited for the assessment of cleaning efficacy. Rheological characterization provided information about the flexibility and handling properties of the different gel formulations. Among the tested systems, the DN gel containing only water, applied by tamping, was easy to handle and demonstrated the highest soot-removal effectiveness without leaving residues, as confirmed by micro-Fourier Transform Infrared (micro-FTIR) analysis. Scanning electron microscope (SEM) micrographs proved the structural integrity of the treated silk fibers. Overall, this work allows us to conclude that PVA–borax-based gels offer an effective, adaptable, and low-risk cleaning strategy for historical silk fabrics. Full article
Show Figures

Figure 1

19 pages, 2028 KB  
Article
RSSI-Based Localization of Smart Mattresses in Hospital Settings
by Yeh-Liang Hsu, Chun-Hung Yi, Shu-Chiung Lee and Kuei-Hua Yen
J. Low Power Electron. Appl. 2026, 16(1), 4; https://doi.org/10.3390/jlpea16010004 - 14 Jan 2026
Viewed by 119
Abstract
(1) Background: In hospitals, mattresses are often relocated for cleaning or patient transfer, leading to mismatches between actual and recorded bed locations. Manual updates are time-consuming and error-prone, requiring an automatic localization system that is cost-effective and easy to deploy to ensure traceability [...] Read more.
(1) Background: In hospitals, mattresses are often relocated for cleaning or patient transfer, leading to mismatches between actual and recorded bed locations. Manual updates are time-consuming and error-prone, requiring an automatic localization system that is cost-effective and easy to deploy to ensure traceability and reduce nursing workload. (2) Purpose: This study presents a pragmatic, large-scale implementation and validation of a BLE-based localization system using RSSI measurements. The goal was to achieve reliable room-level identification of smart mattresses by leveraging existing hospital infrastructure. (3) Results: The system showed stable signals in the complex hospital environment, with a 12.04 dBm mean gap between primary and secondary rooms, accurately detecting mattress movements and restoring location confidence. Nurses reported easier operation, reduced manual checks, and improved accuracy, though occasional mismatches occurred when receivers were offline. (4) Conclusions: The RSSI-based system demonstrates a feasible and scalable model for real-world asset tracking. Future upgrades include receiver health monitoring, watchdog restarts, and enhanced user training to improve reliability and usability. (5) Method: RSSI–distance relationships were characterized under different partition conditions to determine parameters for room differentiation. To evaluate real-world scalability, a field validation involving 266 mattresses in 101 rooms over 42 h tested performance, along with relocation tests and nurse feedback. Full article
Show Figures

Figure 1

27 pages, 3231 KB  
Review
Towards Greener Sample Preparation: A Review on Micro-QuEChERS Advances and Applications in Food, Environmental, and Biological Matrices
by Athina Papadopoulou, Vasiliki Boti and Christina Nannou
Separations 2025, 12(12), 339; https://doi.org/10.3390/separations12120339 - 14 Dec 2025
Viewed by 668
Abstract
This review provides a comprehensive evaluation of recent advances in miniaturized Quick, Easy, Cheap, Effective, Rugged, and Safe (QuEChERS) sample preparation techniques applied across food, environmental, and biological matrices. Covering developments within 2020–2025, it focuses on analytical performance, environmental impact, and alignment with [...] Read more.
This review provides a comprehensive evaluation of recent advances in miniaturized Quick, Easy, Cheap, Effective, Rugged, and Safe (QuEChERS) sample preparation techniques applied across food, environmental, and biological matrices. Covering developments within 2020–2025, it focuses on analytical performance, environmental impact, and alignment with principles of sustainable and green analytical chemistry. Central to this review is the significant reduction in solvent and sample volumes achieved through miniaturization, thus decreasing the reagent consumption and hazardous waste generation. The integration of eco-friendly extraction solvents and sorbent materials enhances selectivity and reduces the environmental footprint. These methods are often coupled with high-resolution mass spectrometers, enabling sensitive, multi-residue, and suspect analysis. Challenges associated with complex matrices, low analyte concentrations, and the need for robust clean-up procedures are addressed through innovative hybrid workflows and advanced materials, e.g., polymeric electrospun fibers and deep eutectic solvents. The growing adoption of greener protocols is highlighted. Moreover, it underscores their potential to improve routine analytical workflows while reducing environmental burden. Future research should focus on the development of sustainable sample preparation with improved sensitivity, broader applicability, and minimal ecological impacts. This comprehensive assessment supports the ongoing transformation of analytical chemistry towards more sustainable practices without compromising analytical reliability and efficacy. Full article
Show Figures

Graphical abstract

18 pages, 1347 KB  
Data Descriptor
China’s 15-Year Mine Accident Report Dataset (2010–2025): Construction and Analysis
by Maoquan Wan, Hao Li, Hao Wang, Hanjun Gong and Jie Hou
Data 2025, 10(12), 202; https://doi.org/10.3390/data10120202 - 4 Dec 2025
Viewed by 1628
Abstract
Mine accidents pose severe threats to worker safety and sustainable mining development in China. However, existing mine accident data in China are often scattered, unstructured, and lack systematic integration, which limits their application in safety research and practice. This study constructed a standardized [...] Read more.
Mine accidents pose severe threats to worker safety and sustainable mining development in China. However, existing mine accident data in China are often scattered, unstructured, and lack systematic integration, which limits their application in safety research and practice. This study constructed a standardized structured dataset using 532 mine accident reports from official channels covering the period 2010–2025. The dataset went through four stages: data collection, standardized cleaning, structured annotation, and quality validation. It is stored in JSON Lines (JSONL) format for easy reuse. The dataset covers 27 provinces/autonomous regions/municipalities in China. Among accident levels, general accidents account for 65.6%; among accident types, roof accidents account for 20.3%. Accidents are geographically concentrated, with 11.7%, 8.3%, and 7.7% occurring in Shanxi, Gansu, and Inner Mongolia, respectively. Official data have shown an annual average decrease of 9.7% in mine accidents from 2018 to 2022, reflecting improved safety governance. This dataset addresses the gap of a full-element structured mine accident database in China, providing high-quality data for accident causation modeling, regional risk early warning, and safety policy evaluation. It also supports mine enterprises in targeted risk prevention and regulatory authorities in precise regulatory enforcement. Full article
Show Figures

Figure 1

21 pages, 6090 KB  
Article
Interactive Visualizations of Integrated Long-Term Monitoring Data for Forest and Fuels Management on Public Lands
by Kate Jones and Jelena Vukomanovic
Forests 2025, 16(11), 1706; https://doi.org/10.3390/f16111706 - 9 Nov 2025
Cited by 1 | Viewed by 636
Abstract
Adaptive forest and fire management in parks and protected areas is becoming increasingly complex as climate change alters the frequency and intensity of disturbances (wildfires, pest and disease outbreaks, etc.), while park visitation and the number of people living adjacent to publicly managed [...] Read more.
Adaptive forest and fire management in parks and protected areas is becoming increasingly complex as climate change alters the frequency and intensity of disturbances (wildfires, pest and disease outbreaks, etc.), while park visitation and the number of people living adjacent to publicly managed lands continues to increase. Evidence-based, climate-adaptive forest and fire management practices are critical for the responsible stewardship of public resources and require the continued availability of long-term ecological monitoring data. The US National Park Service has been collecting long-term fire monitoring plot data since 1998, and has continued to add monitoring plots, but these data are housed in databases with limited access and minimal analytic capabilities. To improve the availability and decision support capabilities of this monitoring dataset, we created the Trends in Forest Fuels Dashboard (TFFD), which provides an implementation framework from data collection to web visualization. This easy-to-use and updatable tool incorporates data from multiple years, plot types, and locations. We demonstrate our approach at Rocky Mountain National Park using the ArcGIS Online (AGOL) software platform, which hosts TFFD and allows for efficient data visualizations and analyses customized for the end user. Adopting interactive, web-hosted tools such as TFFD allows the National Park Service to more readily leverage insights from long-term forest monitoring data to support decision making and resource allocation in the context of environmental change. Our approach translates to other data-to-decision workflows where customized visualizations are often the final steps in a pipeline designed to increase the utility and value of collected data and allow easier integration into reporting and decision making. This work provides a template for similar efforts by offering a roadmap for addressing data availability, cleaning, storage, and interactivity that may be adapted or scaled to meet a variety of organizational and management use cases. Full article
(This article belongs to the Special Issue Long-Term Monitoring and Driving Forces of Forest Cover)
Show Figures

Figure 1

17 pages, 3338 KB  
Review
An Overview of Oil Spill Modeling and Simulation for Surface and Subsurface Applications
by M. R. Riazi
J. Exp. Theor. Anal. 2025, 3(4), 29; https://doi.org/10.3390/jeta3040029 - 23 Sep 2025
Viewed by 1351
Abstract
In this review paper, we briefly discuss the occurrence of oil spills and their behavior under natural sea conditions and clean-up methods, as well as their environmental and economic impacts. We discuss methodologies for oil spill modeling used to predict the fate of [...] Read more.
In this review paper, we briefly discuss the occurrence of oil spills and their behavior under natural sea conditions and clean-up methods, as well as their environmental and economic impacts. We discuss methodologies for oil spill modeling used to predict the fate of a spill under dynamic physical and chemical processes. Weathering processes such as evaporation, emulsification, spreading, dissolution, dispersion, biodegradation, and sedimentation are considered within easy-to-use modeling frameworks. We present simple models based on the principles of thermodynamics, mass transfer, and kinetics that under certain conditions can predict oil thickness, volume, area, composition, and the distribution of toxic compounds in water and air over time for various types of oil and their products. Modeling approaches for underwater oil jets, including applications related to the 2010 BP oil spill in the Gulf of Mexico, are reviewed. The influence of sea surface velocity and wind speed on oil spill mapping, spill location, oil spill trajectory over time, areas affected by light, medium, and heavy oil, and comparisons between satellite images and model predictions are demonstrated. Finally, we introduce several recently published articles on more recent oil spill incidents and the application of predictive models in different regions. We also discuss the challenges, advantages, and disadvantages of various models and offer recommendations at the end of the paper. Full article
Show Figures

Figure 1

14 pages, 2652 KB  
Article
Design and Study of a New Rotary Jet Wellbore Washing Device
by Shupei Li, Zhongrui Ji, Qi Feng, Shuangchun Yang and Xiuli Sun
Processes 2025, 13(9), 3015; https://doi.org/10.3390/pr13093015 - 21 Sep 2025
Viewed by 570
Abstract
Wellbore washing technology is a basic operation in wellbore maintenance. Problems such as low automation levels, long processing times, the fact that it is easy to cause downhole falling, and cleaning blind areas greatly affect the use and maintenance of traditional cleaning equipment. [...] Read more.
Wellbore washing technology is a basic operation in wellbore maintenance. Problems such as low automation levels, long processing times, the fact that it is easy to cause downhole falling, and cleaning blind areas greatly affect the use and maintenance of traditional cleaning equipment. These problems usually come from design defects such as a complicated installation process, a lack of an anti-impact structure, and a fixed jet direction. To address the aforementioned issues, this paper proposes an efficient and integrated rapid-disassembly and -assembly automatic filtration rotary jet cleaning device. The device is divided into two main units and further subdivided into four modules. The quick-assembly unit comprises an elastic connection module and a downstroke quick-assembly module, which can automatically compensate for deviations in equipment position during the installation process, ensuring the reliability of the installation process and the sealing of the equipment and facilitating the rapid connection and separation of the tool string. The wellbore cleaning unit includes a hydraulic rotary washing module and a rotary filtration storage module. The wellbore is jet-flushed by hydraulic drive, and the solid particles are separated and filtered during the cleaning fluid circulation process to realize the purification and reuse of the cleaning fluid. The device reduces the installation operation time and labor cost, improves the reliability of equipment in the well, improves the flushing coverage area and the cleaning efficiency, realizes the reuse of the cleaning liquid in the wellbore, reduces the energy consumption of the flowback treatment, and comprehensively improves the cleaning efficiency and the energy utilization efficiency. Full article
(This article belongs to the Section Manufacturing Processes and Systems)
Show Figures

Figure 1

17 pages, 1724 KB  
Article
New Paste Electrode Based on Copper and Gallium Mixed Metal Oxides-Decorated CNT for Highly Electrocatalyzed Hydrogen Evolution Reaction
by Claudio Barrientos, Silvana Moris, Dana Arias, Gina Pecchi, José Ibarra, Galo Ramírez and Leyla Gidi
Int. J. Mol. Sci. 2025, 26(18), 9057; https://doi.org/10.3390/ijms26189057 - 17 Sep 2025
Cited by 1 | Viewed by 918
Abstract
H2 has become one of the most attractive alternatives to replace fossil fuels in clean energy production, but large-scale production remains a challenge. A key step toward this goal is to develop new efficient electrocatalysts for H2 production. This work presents [...] Read more.
H2 has become one of the most attractive alternatives to replace fossil fuels in clean energy production, but large-scale production remains a challenge. A key step toward this goal is to develop new efficient electrocatalysts for H2 production. This work presents a new mixed metal oxides-decorated CNT paste electrode (MMO@C), which is highly electrocatalytic, for use in the hydrogen evolution reaction (HER). MMO@C is synthesized by a solvothermal method and used as an easy-to-prepare paste electrode. XPS and X-ray analysis indicate that the electrocatalyst corresponds to a mixed surface of Ga2O3-CuO-Cu2O-Cu(OH)2@C. The MMO@C electrocatalyst shows a positive Eo of 0.12 V vs. RHE at −10 mA cm−2 towards the HER in a neutral medium. In neutral and alkaline media, the presence of Ga2O3 facilitates the reduction of CuO to Cu(I) species, which is followed by the formation of Cu(s) active sites. Therefore, the excellent electrocatalytic performance toward the HER in a neutral medium is attributed to the synergistic effect between gallium and copper oxides on the electrode surface. The prominent H2 production using MMO@C electrocatalyst is 1.31 × 10−2 mol cm−2, with a turnover number (TON) of 39,423, a turnover frequency (TOF) of 13,141 h−1, and a faradaic efficiency (FE) of 94.3%. Although the Tafel slope reveals slow reaction kinetics, the outstanding onset potential allows for the coupling of the electrocatalyst to renewable energy production systems, making it an attractive candidate for producing green H2 and for application in membrane water electrolyzers. Full article
(This article belongs to the Special Issue Ion and Molecule Transport in Membrane Systems, 6th Edition)
Show Figures

Figure 1

15 pages, 997 KB  
Article
Reactive Power Optimization Control Method for Distribution Network with Hydropower Based on Improved Discrete Particle Swarm Optimization Algorithm
by Tao Liu, Bin Jia, Shuangxiang Luo, Xiangcong Kong, Yong Zhou and Hongbo Zou
Processes 2025, 13(8), 2455; https://doi.org/10.3390/pr13082455 - 3 Aug 2025
Viewed by 705
Abstract
With the rapid development of renewable energy, the proportion of small hydropower as a clean energy in the distribution network (DN) is increasing. However, the randomness and intermittence of small hydropower has brought new challenges to the operation of DN; especially, the problems [...] Read more.
With the rapid development of renewable energy, the proportion of small hydropower as a clean energy in the distribution network (DN) is increasing. However, the randomness and intermittence of small hydropower has brought new challenges to the operation of DN; especially, the problems of increasing network loss and reactive voltage exceeding the limit have become increasingly prominent. Aiming at the above problems, this paper proposes a reactive power optimization control method for DN with hydropower based on an improved discrete particle swarm optimization (PSO) algorithm. Firstly, this paper analyzes the specific characteristics of small hydropower and establishes its mathematical model. Secondly, considering the constraints of bus voltage and generator RP output, an extended minimum objective function for system power loss is established, with bus voltage violation serving as the penalty function. Then, in order to solve the following problems: that the traditional discrete PSO algorithm is easy to fall into local optimization and slow convergence, this paper proposes an improved discrete PSO algorithm, which improves the global search ability and convergence speed by introducing adaptive inertia weight. Finally, based on the IEEE-33 buses distribution system as an example, the simulation analysis shows that compared with GA optimization, the line loss can be reduced by 3.4% in the wet season and 13.6% in the dry season. Therefore, the proposed method can effectively reduce the network loss and improve the voltage quality, which verifies the effectiveness and superiority of the proposed method. Full article
Show Figures

Figure 1

25 pages, 1183 KB  
Article
A Novel Data-Driven Multi-Branch LSTM Architecture with Attention Mechanisms for Forecasting Electric Vehicle Adoption
by Md Mizanur Rahaman, Md Rashedul Islam, Mia Md Tofayel Gonee Manik, Md Munna Aziz, Inshad Rahman Noman, Mohammad Muzahidur Rahman Bhuiyan, Kanchon Kumar Bishnu and Joy Chakra Bortty
World Electr. Veh. J. 2025, 16(8), 432; https://doi.org/10.3390/wevj16080432 - 1 Aug 2025
Cited by 1 | Viewed by 1747
Abstract
Accurately predicting how quickly people will adopt electric vehicles (EVs) is vital for planning charging stations, managing supply chains, and shaping climate policy. We present a forecasting model that uses three separate Long Short-Term Memory (LSTM) branches—one for past EV sales, one for [...] Read more.
Accurately predicting how quickly people will adopt electric vehicles (EVs) is vital for planning charging stations, managing supply chains, and shaping climate policy. We present a forecasting model that uses three separate Long Short-Term Memory (LSTM) branches—one for past EV sales, one for infrastructure and policy signals, and one for economic trends. An attention mechanism first highlights the most important weeks in each branch, then decides which branch matters most at any point in time. Trained end-to-end on publicly available data, the model beats traditional statistical methods and newer deep learning baselines while remaining small enough to run efficiently. An ablation study shows that every branch and both attention steps improve accuracy, and that adding policy and economic data helps more than relying on EV history alone. Because the network is modular and its attention weights are easy to interpret, it can be extended to produce confidence intervals, include physical constraints, or forecast adoption of other clean-energy technologies. Full article
Show Figures

Figure 1

22 pages, 3169 KB  
Review
A Mini-Review on Electrocatalytic Self-Cleaning Membrane Materials for Sustainable Fouling Control
by Honghuan Yin and Zhonglong Yin
Membranes 2025, 15(7), 191; https://doi.org/10.3390/membranes15070191 - 25 Jun 2025
Cited by 1 | Viewed by 1878
Abstract
Although membrane technology has been widely applied in water treatment, membrane fouling is an inevitable issue that has largely limited its application. Benefiting from the advantages of green power, easy integration and low chemical consumption, electrocatalytic membrane (ECM) technology received attention, using it [...] Read more.
Although membrane technology has been widely applied in water treatment, membrane fouling is an inevitable issue that has largely limited its application. Benefiting from the advantages of green power, easy integration and low chemical consumption, electrocatalytic membrane (ECM) technology received attention, using it to enable electrically driven self-cleaning performance recently, making it highly desirable for sustainable fouling control. In this work, we comprehensively summarized the conventional (e.g., carbonaceous materials, metal and metal oxide) and emerging (e.g., metal–organic framework and MXene) materials for the fabrication of an ECM. Then the fabrication methods and operating modes of an ECM were emphasized. Afterwards, the application of different ECM materials in membrane fouling control was highlighted and the corresponding mechanism was revealed. Based on existing research findings, we proposed the challenges and future prospects of ECM materials for practical application. This study provides enlightening knowledge into the development of ECM materials for sustainable fouling control. Full article
Show Figures

Graphical abstract

15 pages, 2675 KB  
Article
Aloe Vera as an Adjunct in Endodontic Irrigation: Impact on Dentin Bond Strength and Cytotoxicity
by Lucas David Galvani, Ester Alves Ferreira Bordini, Diana Gabriela Soares, Joatan Lucas de Sousa Gomes Costa, José Rodolfo Verbicário, Fernando Pozzi Semeghini Guastaldi, Milton Carlos Kuga and Luís Geraldo Vaz
Materials 2025, 18(12), 2874; https://doi.org/10.3390/ma18122874 - 18 Jun 2025
Cited by 1 | Viewed by 920
Abstract
This study evaluated the effects of mechanical agitation of Aloe vera Barbadensis Miller solution at different concentrations using passive ultrasonic irrigation (PUI), XP Endo Finisher (XPF), XP Clean (XPC), and Easy Clean (ECL), compared to conventional endodontic irrigation (CIE), on bond strength and [...] Read more.
This study evaluated the effects of mechanical agitation of Aloe vera Barbadensis Miller solution at different concentrations using passive ultrasonic irrigation (PUI), XP Endo Finisher (XPF), XP Clean (XPC), and Easy Clean (ECL), compared to conventional endodontic irrigation (CIE), on bond strength and adhesive failure patterns in the cervical, middle, and apical thirds of the root canal. Aloe vera solutions at 1%, 3%, and 5% were tested to reverse collagen fiber collapse induced by hypochlorous acid, a free radical released by 2.5% sodium hypochlorite, which impairs dentin hybridization and the light curing of resin cement. Fiberglass posts were cemented using an etch-and-rinse adhesive system (Ambar; FGM) and conventional dual resin cement (Allcem Core) in root dentin across all thirds. Human teeth underwent chemical–mechanical preparation, and the Aloe vera solution was agitated using the CIE, PUI, XPF, XPC, or ECL protocols. Slices from each root third were evaluated under a stereomicroscope at 10× magnification and subjected to the push-out test. Cytotoxicity was assessed by applying various Aloe vera concentrations to stem cells from the apical papilla (SCAPs) for 24 h, followed by analysis of cell metabolism (Alamar Blue), viability (Live/Dead), and proliferation (F-actin). Aloe vera demonstrated significant biological activity and enhanced bond strength, particularly at 3% and 5%, irrespective of the agitation method or root third. Thus, it can be concluded that using Aloe vera solution is an alternative for pre-treatment before the cementation of fiberglass posts with conventional dual-cure resin cement in endodontically treated dentin. Full article
Show Figures

Figure 1

20 pages, 4485 KB  
Article
Experimental Study on the Pulsed Operating Characteristics of a Hydrogen–Oxygen Engine Based on Microwave Ignition Technology
by Zijie Xiong, Zibo Wang, Shenbin Wang and Yusong Yu
Sustainability 2025, 17(12), 5549; https://doi.org/10.3390/su17125549 - 16 Jun 2025
Viewed by 1356
Abstract
The fuel produced through water electrolysis is non-toxic and clean, and the water propulsion system offers low cost and easy integration with other systems. This study investigates the pulse operating characteristics of a water electrolytic chemical propulsion engine using microwave ignition technology. A [...] Read more.
The fuel produced through water electrolysis is non-toxic and clean, and the water propulsion system offers low cost and easy integration with other systems. This study investigates the pulse operating characteristics of a water electrolytic chemical propulsion engine using microwave ignition technology. A high-speed camera captured flame images, while a spectrometer and pressure sensor were used for data quantification. Three peak gas pressure points were selected for data analysis. The experimental results revealed that the flame color changes at different combustion stages, starting white and turning blue at the flame tip during stable combustion. Combustion pressure fluctuated between −0.53 kPa and 765 kPa, with an average of ≈32 kPa, showing a rapid pressure rise followed by smooth decay. At all three operating points, the thrust was small (0.38 N, 0.37 N, and 0.35 N), but after the third operating point, thrust increased significantly to 2.25 N, an enhancement of 508.1%. Spectral data indicated that the combustion products included H, O, and N atoms. This study is the first to investigate the pulsed conditions of a direct microwave ignition system and provide insights into its operating characteristics. The system will be optimized in the future. Full article
Show Figures

Figure 1

24 pages, 7568 KB  
Article
Developing a Superhydrophilic/Underwater Superoleophobic Plasma-Modified PVDF Microfiltration Membrane with Copolymer Hydrogels for Oily Water Separation
by Hasan Ali Hayder, Peng Shi and Sama M. Al-Jubouri
Appl. Sci. 2025, 15(12), 6654; https://doi.org/10.3390/app15126654 - 13 Jun 2025
Cited by 3 | Viewed by 1976
Abstract
Polymer membranes often face challenges of oil fouling and rapid water flux decline during the separation of oil-in-water emulsions, making them a focal point of ongoing research and development efforts. Coating PVDF membranes with a hydrogel layer equips the developed membranes with robust [...] Read more.
Polymer membranes often face challenges of oil fouling and rapid water flux decline during the separation of oil-in-water emulsions, making them a focal point of ongoing research and development efforts. Coating PVDF membranes with a hydrogel layer equips the developed membranes with robust potential to mitigate oil fouling. However, developing a controllable thickness of a stable hydrogel layer to prevent the blocking of membrane pores remains a critical issue. In this work, atmospheric pressure low-temperature plasma was used to prepare the surface of a PVDF membrane to improve its wettability and adhesion properties for coating with a thin hydrophilic film of an AM-NaA copolymer hydrogel. The AM-NaA/PVDF membrane exhibited superhydrophilic and underwater superoleophobic properties, along with exceptional anti-crude oil-fouling characteristics and a self-cleaning function. The AM-NaA/PVDF membrane achieved high separation efficiency, exceeding 99% for various oil-in-water emulsions, with residual oil content in the permeate of less than 10 mg/L after a single-step separation. Additionally, it showed a high-water flux of 5874 L/m2·h for crude oil-in-water emulsions. The AM-NaA/PVDF membrane showed good stability and easy cleaning by water washing over multiple crude oil-in-water emulsion separation and regeneration cycles. Adding CaCl2 destabilized emulsions by promoting oil droplet coalescence, further boosting flux. This strategy provides a practical pathway for the development of highly reusable and oil-fouling-resistant membranes for the efficient separation of emulsified oily water. Full article
Show Figures

Figure 1

32 pages, 5956 KB  
Review
Nanomaterial ZnO Synthesis and Its Photocatalytic Applications: A Review
by Chunxiang Zhu and Xihui Wang
Nanomaterials 2025, 15(9), 682; https://doi.org/10.3390/nano15090682 - 30 Apr 2025
Cited by 33 | Viewed by 9043
Abstract
Zinc oxide (ZnO), a cheap, abundant, biocompatible, and wide band gap semiconductor material with easy tunable morphologies and properties, makes it one of the mostly studied metal oxides in the area of materials science, physics, chemistry, biochemistry, and solid-state electronics. Its versatility, easy [...] Read more.
Zinc oxide (ZnO), a cheap, abundant, biocompatible, and wide band gap semiconductor material with easy tunable morphologies and properties, makes it one of the mostly studied metal oxides in the area of materials science, physics, chemistry, biochemistry, and solid-state electronics. Its versatility, easy bandgap engineering with transitional and rare earth metals, as well as the diverse nanomorphology empower ZnO as a promising photocatalyst. The use of ZnO as a functional material is attracting increased attention both for academia and industry, especially under the current energy paradigm shift toward clean and renewable sources. Extensive work has been performed in recent years using ZnO as an active component for different photocatalytic applications. Therefore, a thorough and timely review of the process is necessary. The aim of this review is to provide a general summary of the current state of ZnO nanostructures, synthesis strategies, and modification approaches, with the main application focus on varied photocatalysis applications, serving as an introduction, a reference, and an inspiration for future research. Full article
Show Figures

Graphical abstract

Back to TopTop