Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (52)

Search Parameters:
Keywords = east Kunlun

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 6817 KiB  
Review
A Review of Jurassic Paleoclimatic Changes and Tectonic Evolution in the Qaidam Block, Northern Qinghai-Tibetan Plateau
by Ruiyang Chai, Yanan Zhou, Anliang Xiong, Zhenwei Chen, Dongwei Liu, Nan Jiang, Xin Cheng, Jingong Zhang and Hanning Wu
Sustainability 2025, 17(16), 7337; https://doi.org/10.3390/su17167337 - 14 Aug 2025
Viewed by 267
Abstract
Understanding the mechanisms and speed of paleo-aridification in the Qaidam Block—driven by tectonic uplift and shifts in atmospheric circulation—provides critical long-term context for assessing modern climate variability and anthropogenic impacts on water resources and desertification. This knowledge is essential for informing sustainable development [...] Read more.
Understanding the mechanisms and speed of paleo-aridification in the Qaidam Block—driven by tectonic uplift and shifts in atmospheric circulation—provides critical long-term context for assessing modern climate variability and anthropogenic impacts on water resources and desertification. This knowledge is essential for informing sustainable development strategies. We reconstruct the post-Triassic–Jurassic extinction tectonic-climatic evolution of the Qaidam Block on the northern Qinghai-Tibet Plateau margin through an integrated analysis of sedimentary facies, palynological assemblages, and Chemical Index of Alteration values from Late Triassic to Jurassic strata. The Indo-Eurasian convergence drove the uplift of the East Kunlun Orogen and strike-slip movement along the Altyn Tagh Fault, establishing a basin-range system. During the initial Late Triassic to Early Jurassic period, warm-humid conditions supported gymnosperm/fern-dominated ecosystems and facilitated coal formation. A Middle Jurassic shift from extensional to compressional tectonics coincided with a climatic transition from warm-humid, through cold-arid, to hot-arid states. This aridification, evidenced by a Bathonian-stage surge in drought-tolerant Classopollis pollen and a sharp decline in Chemical Index of Alteration values, intensified in the Late Jurassic due to the Yanshanian orogeny and distal subduction effects. Resultant thrust-strike-slip faulting and southeastward depocenter migration, under persistent aridity and intensified atmospheric circulation, drove widespread development of aeolian dune systems (e.g., Hongshuigou Formation) and arid fluvial-lacustrine environments. The tectonic-climate-ecosystem framework reveals how Jurassic tectonic processes amplified feedback to accelerate aridification. This mechanism provides a critical geological analog for addressing the current sustainability challenges facing the Qaidam Basin. Full article
Show Figures

Figure 1

26 pages, 17130 KiB  
Article
Petrogenesis of an Anisian A2-Type Monzogranite from the East Kunlun Orogenic Belt, Northern Qinghai–Tibet Plateau
by Chao Hui, Fengyue Sun, Shahzad Bakht, Yanqian Yang, Jiaming Yan, Tao Yu, Xingsen Chen, Yajing Zhang, Chengxian Liu, Xinran Zhu, Yuxiang Wang, Haoran Li, Jianfeng Qiao, Tao Tian, Renyi Song, Desheng Dou, Shouye Dong and Xiangyu Lu
Minerals 2025, 15(7), 685; https://doi.org/10.3390/min15070685 - 27 Jun 2025
Viewed by 368
Abstract
Late Paleozoic to Early Mesozoic granitoids in the East Kunlun Orogenic Belt (EKOB) provide critical insights into the complex and debated relationship between Paleo–Tethyan magmatism and tectonics. This study presents integrated bulk-rock geochemical and zircon isotopic data for the Xingshugou monzogranite (MG) to [...] Read more.
Late Paleozoic to Early Mesozoic granitoids in the East Kunlun Orogenic Belt (EKOB) provide critical insights into the complex and debated relationship between Paleo–Tethyan magmatism and tectonics. This study presents integrated bulk-rock geochemical and zircon isotopic data for the Xingshugou monzogranite (MG) to address these controversies. LA-ICP-MS zircon U-Pb dating constrains the emplacement age of the MG to 247.1 ± 1.5 Ma. The MG exhibits a peraluminous and low Na2O A2-type granite affinity, characterized by high K2O (4.69–6.80 wt.%) and Zr + Nb + Ce + Y (>350 ppm) concentrations, coupled with high Y/Nb (>1.2) and A/CNK ratios (1.54–2.46). It also displays low FeOT, MnO, TiO2, P2O5, and Mg# values (26–49), alongside pronounced negative Eu anomalies (Eu/Eu* = 0.37–0.49) and moderately fractionated rare earth element (REE) patterns ((La/Yb)N = 3.30–5.11). The MG exhibits enrichment in light rare earth elements (LREEs) and large ion lithophile elements (LILEs; such as Sr and Ba), and depletion in high field strength elements (HFSEs; such as Nb, Ta, and Ti), collectively indicating an arc magmatic affinity. Zircon saturation temperatures (TZr = 868–934 °C) and geochemical discriminators suggest that the MG was generated under high-temperature, low-pressure, relatively dry conditions. Combined with positive zircon εHf(t) (1.8 to 4.7) values, it is suggested that the MG was derived from partial melting of juvenile crust. Synthesizing regional data, this study suggests that the Xingshugou MG was formed in an extensional tectonic setting triggered by slab rollback of the Paleo-Tethys Oceanic slab. Full article
(This article belongs to the Special Issue Tectonic Evolution of the Tethys Ocean in the Qinghai–Tibet Plateau)
Show Figures

Figure 1

18 pages, 6412 KiB  
Article
Geochemistry and Zircon U-Pb Chronology of West Kendewula Late Paleozoic A-Type Granites in the East Kunlun Orogenic Belt: Implications for Post-Collision Extension
by Bang-Shi Dong, Wen-Qin Wang, Gen-Hou Wang, Pei-Lie Zhang, Peng-Sheng Li, Zhao-Lei Ding, Ze-Jun He, Pu Zhao, Jing-Qi Zhang and Chao Bo
Appl. Sci. 2025, 15(12), 6661; https://doi.org/10.3390/app15126661 - 13 Jun 2025
Viewed by 526
Abstract
The Late Paleozoic granitoids widely distributed in the central section of the East Kunlun Orogenic Belt (EKOB) are responsible for the constraints on its post-collisional extensional processes. We report the whole-rock geochemical compositions, zircon U-Pb ages, and zircon Hf isotope data of granites [...] Read more.
The Late Paleozoic granitoids widely distributed in the central section of the East Kunlun Orogenic Belt (EKOB) are responsible for the constraints on its post-collisional extensional processes. We report the whole-rock geochemical compositions, zircon U-Pb ages, and zircon Hf isotope data of granites in the western Kendewula area. The granites, dated between 413.7 Ma and 417.7 Ma, indicate emplacement during the Early Devonian period. The granite is characterized by high silicon content (72.45–78.96 wt%), high and alkali content (7.59–9.35 wt%), high 10,000 × Ga/Al values, and low Al2O3 (11.29–13.32 wt%), CaO (0.07–0.31 wt%), and MgO contents (0.16–0.94 wt%). The rocks exhibit enrichment in large-ion lithophile element (LILE) content and high-field-strength element (HFSE) content, in addition to strong losses, showing significant depletion in Ba, Sr, P and Eu. These geochemical characteristics correspond to A2-type granites. The values of Rb/N and Ba/La and the higher zircon saturation temperature (800~900 °C) indicate that the magma source is mainly crustal, with the participation of mantle materials, although limited. In addition, the zircon εHf(t) values (−4.3–3.69) also support this view. In summary, the A2-type granite exposed in the western Kendewula region formed against a post-collisional extensional setting background, suggesting that the Southern Kunlun Terrane (SKT) entered a post-orogenic extensional phase in the evolution stage since the Early Devonian. The upwelling of the asthenospheric mantle of the crust, triggered by crustal detachment and partial melting, likely contributed to the flare-up of A2-type granite during this period. By studying the nature of granite produced during orogeny, the evolution process of the formation of orogenic belts is discussed, and our understanding of orogenic is enhanced. Full article
(This article belongs to the Special Issue Technologies and Methods for Exploitation of Geological Resources)
Show Figures

Figure 1

25 pages, 15544 KiB  
Article
Interpretable Dual-Channel Convolutional Neural Networks for Lithology Identification Based on Multisource Remote Sensing Data
by Sijian Wu and Yue Liu
Remote Sens. 2025, 17(7), 1314; https://doi.org/10.3390/rs17071314 - 7 Apr 2025
Cited by 1 | Viewed by 761
Abstract
Lithology identification provides a crucial foundation for various geological tasks, such as mineral exploration and geological mapping. Traditionally, lithology identification requires geologists to interpret geological data collected from the field. However, the acquisition of geological data requires a substantial amount of time and [...] Read more.
Lithology identification provides a crucial foundation for various geological tasks, such as mineral exploration and geological mapping. Traditionally, lithology identification requires geologists to interpret geological data collected from the field. However, the acquisition of geological data requires a substantial amount of time and becomes more challenging under harsh natural conditions. The development of remote sensing technology has effectively mitigated the limitations of traditional lithology identification. In this study, an interpretable dual-channel convolutional neural network (DC-CNN) with the Shapley additive explanations (SHAP) interpretability method is proposed for lithology identification; this approach combines the spectral and spatial features of the remote sensing data. The model adopts a parallel dual-channel structure to extract spectral and spatial features simultaneously, thus implementing lithology identification in remote sensing images. A case study from the Tuolugou mining area of East Kunlun (China) demonstrates the performance of the DC-CNN model in lithology identification on the basis of GF5B hyperspectral data and Landsat-8 multispectral data. The results show that the overall accuracy (OA) of the DC-CNN model is 93.51%, with an average accuracy (AA) of 89.77% and a kappa coefficient of 0.8988; these metrics exceed those of the traditional machine learning models (i.e., Random Forest and CNN), demonstrating its efficacy and potential utility in geological surveys. SHAP, as an interpretable method, was subsequently used to visualize the value and tendency of feature contribution. By utilizing SHAP feature-importance bar charts and SHAP force plots, the significance and direction of each feature’s contribution can be understood, which highlights the necessity and advantage of the new features introduced in the dataset. Full article
Show Figures

Graphical abstract

28 pages, 9297 KiB  
Article
Petrogenesis and Tectonic Setting of Late Permian Granitoids in the East Kunlun Orogenic Belt, NW China: Constraints from Petrology, Geochemistry and Zircon U-Pb-Lu-Hf Isotopes
by Chao Hui, Fengyue Sun, Tao Wang, Yanqian Yang, Yun Chai, Jiaming Yan, Bakht Shahzad, Bile Li, Yajing Zhang, Tao Yu, Xingsen Chen, Chengxian Liu, Xinran Zhu, Yuxiang Wang, Zhengsong Wang, Haoran Li, Renyi Song and Desheng Dou
Minerals 2025, 15(4), 381; https://doi.org/10.3390/min15040381 - 4 Apr 2025
Cited by 1 | Viewed by 393
Abstract
Permian magmatic rocks are extensively distributed in the East Kunlun Orogenic Belt (EKOB), yet controversies persist regarding the petrogenesis of granitoid rocks and the tectonic evolution of the Buqingshan-A’nyemaqing Ocean (BAO), which is a part of the Paleo-Tethys. This study addresses these debates [...] Read more.
Permian magmatic rocks are extensively distributed in the East Kunlun Orogenic Belt (EKOB), yet controversies persist regarding the petrogenesis of granitoid rocks and the tectonic evolution of the Buqingshan-A’nyemaqing Ocean (BAO), which is a part of the Paleo-Tethys. This study addresses these debates through petrological analyses, whole-rock geochemistry and zircon U-Pb-Lu-Hf isotopic investigations of newly identified granitoids in the EKOB. Monzogranite (MG) and quartz porphyry (QP) yield weighted mean ages of 254.7 ± 1.1 Ma and 254.3 ± 1.1 Ma, respectively. Geochemically, the MG shows metaluminous to weakly peraluminous low-K calc-alkaline I-type affinity, characterized by high SiO2 and low K2O, MgO and FeOT contents, as well as marked enrichment in light rare earth elements (LREEs), but depletion in Eu, Ba, Sr, P and Ti anomalies. In contrast, the QP exhibits a peraluminous high-K calc-alkaline I-type affinity, displaying high SiO2 but low Na2O and P2O5 contents. It is enriched in LREEs and Rb but displays negative Nb, Sr, P and Ti anomalies. Zircon εHf(t) values range from −1.6 to 2.6 for MG and −4.4 to 1.5 for QP. We suggest that both MG and QP were derived from the partial melting of juvenile mafic lower crust, and that MG underwent a high degree of fractional crystallization. A synthesis of multiscale geological evidence allows us to propose a five-stage tectonic evolution for the BAO in the EKOB: (1) oceanic basin initiation before ca. 345 Ma; (2) incipient northward subduction commencing at ca. 278 Ma; (3) slab rollback stage (263–240 Ma); (4) syn-collisional compression (240–230 Ma); (5) post-collisional extension (230–195 Ma). Full article
Show Figures

Graphical abstract

17 pages, 26337 KiB  
Article
A Simple Scenario for Explaining Asymmetric Deformation Across the Altyn Tagh Fault in the Northern Tibetan Plateau: Contributions from Multiple Faults
by Yi Luo, Hongbo Jiang, Wanpeng Feng, Yunfeng Tian and Wenliang Jiang
Remote Sens. 2025, 17(7), 1277; https://doi.org/10.3390/rs17071277 - 3 Apr 2025
Viewed by 370
Abstract
Asymmetric deformation has been observed along the Altyn Tagh Fault (ATF), the northern boundary of the Tibetan Plateau. Several mechanisms have been proposed to explain this asymmetry, including contrasts in crustal strength, lower crust/upper mantle rheology, deep fault dislocation shifts, and dipping fault [...] Read more.
Asymmetric deformation has been observed along the Altyn Tagh Fault (ATF), the northern boundary of the Tibetan Plateau. Several mechanisms have been proposed to explain this asymmetry, including contrasts in crustal strength, lower crust/upper mantle rheology, deep fault dislocation shifts, and dipping fault geometry; however, the real scenario remains debated. This study utilizes a time series Interferometric Synthetic Aperture Radar (InSAR) technique to investigate spatially variable asymmetries across the western section of the ATF (83–89°E). We generated a high-resolution three-dimensional (3D) crustal velocity field from Sentinel-1 data for the northwestern Tibetan Plateau (~82–92°E; 33–40°N). Our results confirm that pronounced greater deformations within the Tibetan Plateau occur only along the westernmost section of the ATF (83–85.5°E). We propose this asymmetry is primarily driven by a splay fault system within a transition zone, bounded by the ATF in the north and the Margai Caka Fault (MCF)–Kunlun Fault (KLF) in the south, which accommodates an east–west extension in the central Tibetan Plateau while transferring sinistral shear to the KLF. The concentrated strain observed along the ATF and MCF–KLF lends more support to a block-style eastward extrusion model, rather than a continuously deforming model, for Tibetan crustal kinematics. Full article
Show Figures

Figure 1

11 pages, 2557 KiB  
Article
The Current Stress State and Seismic Hazard in the Kunlun Pass Region Following the Ms 8.1 Earthquake in 2001
by Jun Qiu, La Ta, Jiading Xu, Leilei Li and Lianshan Wang
Appl. Sci. 2025, 15(4), 2112; https://doi.org/10.3390/app15042112 - 17 Feb 2025
Viewed by 477
Abstract
The Kusaihu and Xidatan faults in the western part of the East Kunlun active fault present a miter compound relationship. The Quaternary activity of these two faults is vigorous and closely associated with potent and large earthquakes. The Ms 8.1 earthquake occurred on [...] Read more.
The Kusaihu and Xidatan faults in the western part of the East Kunlun active fault present a miter compound relationship. The Quaternary activity of these two faults is vigorous and closely associated with potent and large earthquakes. The Ms 8.1 earthquake occurred on the Kusai Lake fault on 14 November 2001. To understand the current stress state and seismic hazard in the Kunlun pass region following the Ms 8.1 Earthquake in 2001, the in situ stress measurement work of four boreholes at two measuring points in this area is conducted through the hydraulic fracturing method, and the in situ stress accumulation level in this area is analyzed using the Coulomb fracture criterion, Byerlee’s law, and the fault friction parameter μm. It is found that the in situ stress accumulation level in the study area is not high, and the possibility of fault slip is low. Full article
(This article belongs to the Topic Failure Characteristics of Deep Rocks, Volume II)
Show Figures

Figure 1

35 pages, 18372 KiB  
Article
The Initial Subduction Time of the Proto-Tethys Ocean in the Eastern Section of the East Kunlun Orogen: The Constraints from the Zircon U-Pb Ages and the Geochemistry of the Kekesha Intrusion
by Jian Song, Xianzhi Pei, Zuochen Li, Ruibao Li, Lei Pei, Youxin Chen and Chengjun Liu
Minerals 2025, 15(2), 127; https://doi.org/10.3390/min15020127 - 27 Jan 2025
Cited by 1 | Viewed by 907
Abstract
The Cambrian period marks a crucial phase in the initial subduction of the Proto-Tethys Ocean beneath the East Kunlun Orogen. Studying the I-type granites and mafic–ultramafic rocks formed during this period can provide valuable insights into the early Paleozoic tectonic evolution of the [...] Read more.
The Cambrian period marks a crucial phase in the initial subduction of the Proto-Tethys Ocean beneath the East Kunlun Orogen. Studying the I-type granites and mafic–ultramafic rocks formed during this period can provide valuable insights into the early Paleozoic tectonic evolution of the region. This paper incorporates petrology, LA-ICP-MS zircon U-Pb geochronology, and whole-rock major and trace element data obtained from the Kekesha intrusion in the eastern section of the East Kunlun Orogen. The formation age, petrogenesis, and magmatic source region of the intrusion are revealed, and the early tectonic evolution process of the subduction of the Proto-Tethys Ocean is discussed. The Kekesha intrusion includes four main rock types: gabbro, gabbro diorite, quartz diorite, and granodiorite. The zircon U-Pb ages are 515.7 ± 7.4 Ma for gabbro, 508.9 ± 9.8 Ma for gabbro diorite, 499.6 ± 4.0 Ma for quartz diorite, and 502.3 ± 9.3 Ma and 501.6 ± 6.2 Ma for granodiorite, respectively, indicating that they were formed in the Middle Cambrian. The geochemical results indicate that the gabbro belongs to the high-Al calc-alkaline basalt series, the gabbro diorite belongs to the medium-high-K calc-alkaline basalt series, the quartz diorite belongs to the quasi-aluminous medium-high-K calc-alkaline I-type granite series, and the granodiorite belongs to the weakly peraluminous calc-alkaline I-type granite series, all of which belong to the medium-high-K calc-alkaline series that have undergone varying degrees of differentiation and contamination. Gabbro and gabbro diorite exhibit significant enrichment in light rare earth elements (LREEs), depletion in heavy rare earth elements (HREEs), and an enhanced negative anomaly in Eu (Europium). Compared to gabbro and gabbro diorite, quartz diorite and granodiorite exhibit more pronounced enrichment in LREEs, more significant depletion in HREEs, and an enhanced negative anomaly in Eu. All four rock types are enriched in large-ion lithophile elements (LILEs) such as Cs, Rb, Th, Ba, and U, and are depleted in high-field-strength elements (HFSEs) such as Nb, Ta, and Ti. This indicates that these rocks originated from the same or similar mixed mantle source regions, and that they are formed in the island-arc tectonic environment. This paper suggests that the gabbro and gabbro diorite are mainly derived from the basic magma formed by partial melting of the lithospheric mantle metasomatized by subducted slab melt in the oceanic crust subduction zone and mixed with a small amount of asthenosphere mantle material. Quartz diorite results from the crystal fractionation of basic magma and experiences crustal contamination during magmatic evolution. Granodiorite forms through the crystal fractionation of basic magma, mixed with partial melting products from quartz diorite. While the lithology of the intrusions differs, their geochemical characteristics suggest they share the same tectonic environment. Together, they record the geological processes associated with island-arc formation in the East Kunlun region, driven by the northward subduction of the Proto-Tethys Ocean during the Early Paleozoic. Based on regional tectonic evolution, it is proposed that the Proto-Tethys Ocean began subducting northward beneath the East Kunlun block from the Middle Cambrian. The Kekesha intrusion formed between 516 and 500 Ma, marking the early stages of Proto-Tethys Ocean crust subduction. Full article
Show Figures

Figure 1

15 pages, 9366 KiB  
Article
Study of the Genesis Process and Deep Prospecting Breakthrough in the Gouli Ore Concentration of the East Kunlun Metallogenic Belt Using Audio Magnetotelluric Data
by Ji’en Dong, Peng Wang, Hua Li, Huiqing Zhang, Mingfu Zhao, Haikui Tong, Xiaoliang Yu, Jie Li and Binshun Zhang
Minerals 2024, 14(9), 930; https://doi.org/10.3390/min14090930 - 12 Sep 2024
Viewed by 982
Abstract
The East Kunlun Orogenic Belt is an essential part of the Qin-Qikun composite orogenic system, the most crucial orogenic belt in Qinghai Province, and an important gold ore-producing area in China. The Gouli gold field in its eastern section is one of the [...] Read more.
The East Kunlun Orogenic Belt is an essential part of the Qin-Qikun composite orogenic system, the most crucial orogenic belt in Qinghai Province, and an important gold ore-producing area in China. The Gouli gold field in its eastern section is one of the most important gold fields discovered in the belt in recent years. The Mailong mining area is an important gold mining area in the Gouli ore-concentrated area. The area has experienced frequent and intense magmatic activity, with intrusive rock bodies extensively exposed and intersected by a complex network of fault structures, providing excellent geological conditions for the formation of gold deposits. However, it is difficult to explore due to high altitude, poor transportation, and shallow coverage. This study used an audio magnetotelluric sounding method to track the deep direction and inclination of known mineral belts in the Mailong mining area, and identified mineral exploration targets, providing a basis for mineral exploration. Subsequently, a gold ore body was discovered through drilling verification, achieving a breakthrough in deep mineral exploration. The electromagnetic exploration method works well for exploring structurally altered rock-type gold deposits in plateau desert areas, and combined with the results of this electromagnetic exploration, a metallogenic geological model and genesis process of the Mailong mining area has been constructed. Full article
Show Figures

Figure 1

19 pages, 26264 KiB  
Article
Coseismic Slip and Downdip Afterslip Associated with the 2021 Maduo Earthquake Revealed by Sentinel-1 A/B Data
by Yang He, Zhen Tian, Lina Su, Hongwu Feng, Wenhua Yan and Yongqi Zhang
Appl. Sci. 2024, 14(15), 6771; https://doi.org/10.3390/app14156771 - 2 Aug 2024
Cited by 1 | Viewed by 1232
Abstract
On 22 May 2021, an earthquake (98.3° E and 34.59° N) struck Maduo town in Qinghai province, occurring along a relatively obscure secondary fault within the block. We utilized 105 archived Sentinel-1A/B acquisitions to investigate the coseismic deformation and the evolution of postseismic [...] Read more.
On 22 May 2021, an earthquake (98.3° E and 34.59° N) struck Maduo town in Qinghai province, occurring along a relatively obscure secondary fault within the block. We utilized 105 archived Sentinel-1A/B acquisitions to investigate the coseismic deformation and the evolution of postseismic displacements in both the temporal and spatial domains, as well as the associated dynamic mechanisms of the 2021 Maduo earthquake. The interference fringes and coseismic deformation revealed that the primary feature of this event was the rupture along a left-lateral strike-slip fault. The released seismic moment was close to 1.88 × 1020 N·m, which is equivalent to an Mw 7.45 event. Simultaneously, the maximum coseismic slip reached approximately 4 m along the fault plane. The evolution of postseismic displacements in both the temporal and spatial domains over 450 days following the mainshock was further analyzed to explore the underlying physical mechanisms. Generally, the patterns of coseismic slip and afterslip were similar, although the postseismic displacements decayed rapidly over time. The modeled afterslip downdip of the coseismic rupture (at depths of 15–40 km) effectively explains the postseismic deformation, with a released moment estimated at 4.57 × 1019 N·m (corresponding to Mw 7.04). Additionally, we found that regions with high coseismic slip tend to exhibit weak seismicity, and that afterslip and aftershocks are likely driven by each other. Finally, we estimated the Coulomb Failure Stress changes (ΔCFS) triggered by both coseismic rupture and aseismic slip resulting from this event. The co- and postseismic ΔCFS show similar patterns, but the magnitude of the postseismic ΔCFS is much lower (0.01 MPa). We found that ΔCFS notably increased on the Yushu segment of the Garze-Yushu-Xianshuihe Fault (GYXF), as well as the Maqin–Maqu and Tuosuo Lake sections of the East Kunlun Fault (EKF). Therefore, we infer that these fault segments may have a higher potential seismic risk and should be carefully monitored in the future. Full article
(This article belongs to the Special Issue Novel Approaches for Earthquake and Land Subsidence Prediction)
Show Figures

Figure 1

17 pages, 8826 KiB  
Article
The Middle Triassic Intermediate to Basic Rocks in the Eastern Kunlun Orogenic Belt, Northeast Tibet: Implication for the Paleo-Tethyan Ocean Closure
by Wei Du, Lei Pei, Zuochen Li, Ruibao Li, Youxin Chen, Chengjun Liu, Guochao Chen and Xianzhi Pei
Minerals 2024, 14(7), 667; https://doi.org/10.3390/min14070667 - 27 Jun 2024
Cited by 1 | Viewed by 983
Abstract
Large volumes of Early Mesozoic intermediate to basic igneous rocks related to the evolution of the Paleo-Tethys Ocean are exposed in the East Kunlun Orogenic Belt (EKOB). The petrography, geochemistry, and results of zircon U-Pb dating of Defusheng intermediate to basic rocks from [...] Read more.
Large volumes of Early Mesozoic intermediate to basic igneous rocks related to the evolution of the Paleo-Tethys Ocean are exposed in the East Kunlun Orogenic Belt (EKOB). The petrography, geochemistry, and results of zircon U-Pb dating of Defusheng intermediate to basic rocks from the eastern segment of the EKOB are presented in this report. Zircon U–Pb dating of the intermediate to basic rocks yields ages of 239–245 Ma (Middle Triassic). Defusheng intermediate to basic rocks have low TiO2 contents (0.80–1.47 wt.%) and widely varying MgO (3.14–6.08 wt.%), and are enriched in large ion lithophile elements and light rare earth elements, having a geochemical composition similar to that of island arc basalts. The variation diagrams of major elements indicate that the Defusheng intermediate to basic rocks underwent fractional clinopyroxene and olivine crystallization. Depletion of the high-field-strength elements Nb, Ta, and Ti may have been caused by the mantle wedge having been infiltrated by fluids derived from the subducted slab. The Defusheng intermediate to basic rocks represent magmatic records of the Early Mesozoic oceanic crust subduction in Eastern Kunlun. This indicates that the final closure of the Paleo-Tethyan Ocean and the beginning of collisional orogeny occurred after the Middle Triassic. Full article
(This article belongs to the Section Mineral Geochemistry and Geochronology)
Show Figures

Figure 1

15 pages, 6811 KiB  
Article
Petrogenesis of the Dalaku’an Mafic–Ultramafic Intrusion in the East Kunlun, Xinjiang: Constraints from the Mineralogy of Amphiboles
by Yazhou Fan, Yali Deng, Zhaode Xia, Minghao Ren and Jianhan Huang
Minerals 2024, 14(7), 651; https://doi.org/10.3390/min14070651 - 26 Jun 2024
Cited by 1 | Viewed by 1963
Abstract
The Dalaku’an mafic–ultramafic intrusion, located in the western segment of the East Kunlun, presents conducive conditions for the magmatic Cu-Ni sulfide deposits. According to the detailed petrographic observation, the amphiboles within distinct rock types were analyzed by EPMA analysis. The crystallization conditions, such [...] Read more.
The Dalaku’an mafic–ultramafic intrusion, located in the western segment of the East Kunlun, presents conducive conditions for the magmatic Cu-Ni sulfide deposits. According to the detailed petrographic observation, the amphiboles within distinct rock types were analyzed by EPMA analysis. The crystallization conditions, such as temperature, pressure, oxygen fugacity, and water content of the magma, were calculated to explore the genesis of the intrusion. The amphiboles were divided into three types: Amp-I, characterized by low silicon content but enrichment of aluminum, titanium, and alkali, predominantly comprising Tschermakitic hornblende and Magnesio-hornblende with mantle-derived traits; Amp-II, exhibiting elevated silicon content but diminished levels of aluminum, titanium, and alkali, primarily constituted of Magnesio-hornblende; whereas Amp-III manifests as Actinolitic hornblende, indicative of crustal origins. The calculated temperatures of amphiboles ranged between Amp-I (955–880) °C, Amp-II (852–774) °C, and Amp-III (761–760) °C; the pressures ranged between Amp-I (454–274) MPa, Amp-II (194–93) MPa, and Amp-III (101–84) MPa; the oxygen fugacities (△NNO) ranged between Amp-I (0.93–2.17), Amp-II (1.55–2.52), and Amp-III (1.89); and the water contents (H2Omelt) ranged from (6.69–8.67) to (5.90–7.32). The magma experienced multiple stages of crystallization and underwent complex magma evolution at different depths. The high oxygen fugacity and water content could be attributed to the subduction of the oceanic crust. The magma source of the Dalaku’an intrusion was metasomatized by fluids from subducting plates, thereby originating within a post-collision extension. Full article
(This article belongs to the Special Issue Using Mineral Chemistry to Characterize Ore-Forming Processes)
Show Figures

Figure 1

23 pages, 8354 KiB  
Article
The Discovery of the New UHP Eclogite from the East Kunlun, Northwestern China, and Its Tectonic Significance
by Feng Chang, Guibin Zhang and Lu Xiong
Minerals 2024, 14(6), 582; https://doi.org/10.3390/min14060582 - 31 May 2024
Cited by 1 | Viewed by 1362
Abstract
The East Kunlun Orogenic Belt (EKOB), northwestern China, recording long-term and multiple accretionary and collisional events of the Tethyan Ocean, belongs to a high-pressure to ultra-high-pressure (HP-UHP) metamorphic belt that underwent complex metamorphic overprinting in the early Paleozoic. In this contribution, we carry [...] Read more.
The East Kunlun Orogenic Belt (EKOB), northwestern China, recording long-term and multiple accretionary and collisional events of the Tethyan Ocean, belongs to a high-pressure to ultra-high-pressure (HP-UHP) metamorphic belt that underwent complex metamorphic overprinting in the early Paleozoic. In this contribution, we carry out an integrated study, including field investigations, petrographic observations, whole-rock analyses, zircon U-Pb dating, and P-T condition modeling using THERMOCALC in the NCKFMASHTO system for the eclogites, especially for the newly discovered UHP eclogite in the eastern part of EKOB. The eclogites exhibit geochemistry ranging from normal mid-ocean ridge basalt (N-MORB) to enriched mid-ocean ridge basalt (E-MORB). Zircons from the eclogites yield metamorphic ages of 416–413 Ma, indicating the eclogite facies metamorphism. Coesite inclusions in garnet and omphacite and quartz exsolution in omphacite and pseudosection calculation suggest that some eclogites experienced UHP eclogite facies metamorphism. The eclogites from the eastern part of EKOB record peak conditions of 29–33 kbar/705–760 °C, first retrograde conditions of 10 kbar at 9.5–12.5 kbar/610–680 °C, and second retrograde conditions at ~6 kbar/<600 °C. New evidence of the early Paleozoic UHP metamorphism in East Kunlun is identified in our study. Thus, we suggest that these eclogites were produced by the oceanic crust subducting to the depth of 100 km and exhumation. The presence of East Gouli and Gazhima eclogites in this study and other eclogites (430–414 Ma) in East Kunlun record the final closure of the local branch ocean of the Proto-Tethys and the evolution from subduction to collision. Full article
(This article belongs to the Special Issue Microbeam Analysis Characterization in Petrogenesis and Ore Deposit)
Show Figures

Figure 1

27 pages, 6175 KiB  
Article
Metabasites from the Central East Kunlun Orogenic Belt Inform a New Suture Model for Subduction and Collision in the Early Paleozoic Proto-Tethys Ocean
by Feng Chang, Guibin Zhang, Lu Xiong, Shuaiqi Liu, Shuzhen Wang and Yixuan Liu
Minerals 2024, 14(5), 449; https://doi.org/10.3390/min14050449 - 24 Apr 2024
Cited by 1 | Viewed by 1480
Abstract
The discovery of eclogite outcrops in the East Kunlun Orogen Belt (EKOB) has confirmed the existence of an Early Paleozoic HP-UHP metamorphic belt. However, the protoliths and metamorphic histories of widespread metabasites remain poorly constrained. We collected three types of metabasites from the [...] Read more.
The discovery of eclogite outcrops in the East Kunlun Orogen Belt (EKOB) has confirmed the existence of an Early Paleozoic HP-UHP metamorphic belt. However, the protoliths and metamorphic histories of widespread metabasites remain poorly constrained. We collected three types of metabasites from the central part of EKOB. We present an integrated study of petrography, whole-rock geochemistry, Sr-Nd isotopes, estimated P–T conditions, and zircon U-Pb isotope ages. The results show that amphibolites and retrograde eclogites have clockwise P–T paths with peak conditions of, respectively, 11–12 kbar and 675–695 °C, and 21.5–22.2 kbar and 715–750 °C. Zircon dating of metabasites from Dagele yields Late Ordovician (~449 Ma) to Early Silurian (~440 Ma) protolith ages and Early Devonian (~414 Ma) amphibolite facies metamorphic ages. Retrograde eclogites from east Nuomuhong have a protolith age of ~902 Ma and metamorphic ages of ~418 Ma, consistent with other eclogites from East Kunlun. Our data suggest that the protoliths of Dagele metabasites represent arc-type magmatism during the subduction of a small back-arc oceanic basin. Instead, the protoliths of retrograde eclogites are Neoproterozoic tholeiitic basalts emplaced into continental crust and subsequently deeply subducted. We develop a new model for Early Paleozoic subduction and collision in the East Kunlun region, emphasizing the role of ‘dominant’ and ‘secondary’ suture boundaries. This model helps explain the ages and metamorphic histories of the metabasites studied here and offers new perspectives on the evolution of the Proto-Tethys Ocean. Full article
(This article belongs to the Special Issue Experimental Petrology: Metamorphic Evolution of Eclogite)
Show Figures

Figure 1

21 pages, 6772 KiB  
Article
Assessment of Strong Earthquake Risk in Maqin–Maqu Segment of the Eastern Kunlun Fault, Northeast Tibet Plateau
by Zhengfang Li and Bengang Zhou
Appl. Sci. 2024, 14(7), 2691; https://doi.org/10.3390/app14072691 - 22 Mar 2024
Viewed by 1246
Abstract
The East Kunlun Fault Zone, as a highly seismically active fault, has witnessed five earthquakes with magnitudes exceeding M7.0 to the west of Animaqing Mountain since 1900. Conversely, the historical records for the Maqin–Maqu segment in the east of Animaqing Mountain show no [...] Read more.
The East Kunlun Fault Zone, as a highly seismically active fault, has witnessed five earthquakes with magnitudes exceeding M7.0 to the west of Animaqing Mountain since 1900. Conversely, the historical records for the Maqin–Maqu segment in the east of Animaqing Mountain show no M7.0 or above earthquakes, designating it as a distinctive seismic gap within this fault zone. We analyzed the tectonic background and structural features of the Maqin–Maqu segment within the East Kunlun Fault Zone to evaluate its potential seismic capacity. Utilizing a new established probability recurrence model, we calculated the seismic hazard for both segments over the next 100 years. The results indicate that the probability of M7.0 or above earthquake occurring in the Maqu segment in the next 100 years is 11.47%, classified as a moderate probability event. The joint probability of at least one M7.0 or above strong earthquake occurring in the entire Maqin–Maqu segment in the next 100 years is 16.14%, also classified as a moderate probability event, while the probability for the Maqin segment alone is 5.36%, classified as a low probability event. Considering the uncertainty of the probability model, a qualitative hazard classification for each segment was further conducted. The comprehensive evaluation suggests a low risk of a major earthquake occurring in the Maqin segment in the next 100 years, while the Maqu segment is assessed to have a higher risk. Full article
(This article belongs to the Special Issue Advanced Research in Seismic Monitoring and Activity Analysis)
Show Figures

Figure 1

Back to TopTop