Genesis of Calc-Alkaline Granitic Rocks: Evidence from Petrology and Geochemistry

A special issue of Minerals (ISSN 2075-163X). This special issue belongs to the section "Mineral Geochemistry and Geochronology".

Deadline for manuscript submissions: closed (31 March 2025) | Viewed by 9298

Special Issue Editors


E-Mail Website
Guest Editor
Institut für Geowissenschaften, Universität Heidelberg, 69120 Heidelberg, Germany
Interests: U-Pb dating; diffusion chronometry; radiogenic and non-traditional stable isotope; volcanism; calc-alkaline granitic rocks; magma origin
Frontiers Science Center for Deep Ocean Multispheres and Earth System, Key Lab of Submarine Geosciences and Prospecting Techniques, Ministry of Education (MOE) and College of Marine Geosciences, Ocean University of China, Qingdao 266100, China
Interests: andesite petrogenesis; subduction zone magmatism; collision zone magmatism; crustal recycling; continental crust growth and reworking

Special Issue Information

Dear Colleagues,

The planned Special Issue aims to attract research contributions on the topic of calc-alkaline granitic rocks, with special emphasis on their post-collisional origin, including a wide variety of igneous rocks in terms of their origin and genesis. Magmatism is often associated with a change in tectonic regime from compression to extension, which makes it yet more complex. Despite numerous research articles dealing with such magmatism, there is still much space for debate. Topics that are often a subject of debate are:

  • The mantle and/or crustal origin of magma;
  • The influence (if any) of syn-emplacement and syn-cooling tectonic processes on the final geochemical signature of the igneous suit;
  • Magma emplacement during within-plate settings, and the geodynamic controls of magmatism in extensional episodes;
  • The origin of accompanying mafic magmas, and the method of their mixing/mingling;
  • The age of the magma emplacement;
  • Thermobarometry, etc.

Contributions that include perspectives of critical raw material enrichment in post-collisional calc-alkaline granitic rocks are also welcome, as well as those assessing crustal thickness at the time of magmatism using geochemical and isotopic data.

We invite you to share experiences, field research findings, and indicators obtained with conventional and modern geochemical analytical methods, with the aim to strengthen our knowledge on the origin and genesis of post-collisional calc-alkaline granitic rocks.

Dr. Shuang-Qing Li
Dr. Long Chen
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Minerals is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2400 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • calc-alkaline granitic rocks
  • magma origin
  • genesis of post-collisional calc-alkaline granitic rocks
  • petrography
  • petrology
  • geochemistry
  • syn-emplacement tectogenesis
  • syn-cooling tectogenesis
  • mineralization
  • critical raw materials
  • geochronology

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (6 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

21 pages, 14597 KiB  
Article
Petrogenesis of Jurassic Granite from the Shuitou Pluton in South Jiangxi Province, South China: Implications for Ion-Adsorption Rare Earth Element Enrichment
by Shuifeng You, Defu Zhang, Hanfeng Liu, Meihua Tang, Xinlong Pang, Yufei Wang and Zhiwei Zhang
Minerals 2025, 15(5), 476; https://doi.org/10.3390/min15050476 - 30 Apr 2025
Viewed by 187
Abstract
Ion-adsorption rare earth deposits are mainly formed by the weathering and leaching of granite ore-forming parent rocks, and heavy rare earth elements (HREEs) are predominantly hosted in this type of deposit. In this study, we focused on the Late Jurassic REE mineralization parent [...] Read more.
Ion-adsorption rare earth deposits are mainly formed by the weathering and leaching of granite ore-forming parent rocks, and heavy rare earth elements (HREEs) are predominantly hosted in this type of deposit. In this study, we focused on the Late Jurassic REE mineralization parent rock, specifically the Shuitou pluton. We employed chronology, petrogeochemistry, and isotope geochemistry to elucidate the REE enrichment process in the granite. The results show that the zircon U–Pb age of the Shuitou pluton is ~150 Ma, and the monazite U–Pb age is ~145 Ma, suggesting that the pluton was formed in the Yanshan Stage. The rocks have high SiO2 (72.85–75.55 wt%), Al2O3 (12.85–14.63 wt%), and K2O (4.46–5.27 wt%) content, with A/CNK values of 1.05–1.19, differentiation index (DI) values of 87.48–95.59, zircon saturation temperature values of 689–746 °C, Nb/Ta ratios of 2.72–9.54, and Zr/Hf ratios of 7.12–26.11. In addition, the rocks also contain peraluminous minerals such as muscovite and garnet. These characteristics indicate that these rocks belong to highly fractionated S-type granite. The εHf(t) values of zircon and monazite range from −10.04 to −6.78 and from −9.3 to −8.2, respectively, indicating that the magma was primarily derived from Proterozoic metamorphosed sedimentary rocks of crustal origin. In the extensional tectonic setting of South China, a high temperature promotes the melting of REE-enriched accessory minerals, and a higher content of F increases the solubility of REEs in the molten mass. The presence of heavy rare earth minerals, such as garnet, in these rocks contributes to a high content of heavy rare earth elements (HREEs). Additionally, REE-enriched minerals like titanite, bastnaesite, and allanite create the necessary material conditions for the formation of ion-adsorption REE deposits. Full article
Show Figures

Figure 1

28 pages, 9297 KiB  
Article
Petrogenesis and Tectonic Setting of Late Permian Granitoids in the East Kunlun Orogenic Belt, NW China: Constraints from Petrology, Geochemistry and Zircon U-Pb-Lu-Hf Isotopes
by Chao Hui, Fengyue Sun, Tao Wang, Yanqian Yang, Yun Chai, Jiaming Yan, Bakht Shahzad, Bile Li, Yajing Zhang, Tao Yu, Xingsen Chen, Chengxian Liu, Xinran Zhu, Yuxiang Wang, Zhengsong Wang, Haoran Li, Renyi Song and Desheng Dou
Minerals 2025, 15(4), 381; https://doi.org/10.3390/min15040381 - 4 Apr 2025
Viewed by 205
Abstract
Permian magmatic rocks are extensively distributed in the East Kunlun Orogenic Belt (EKOB), yet controversies persist regarding the petrogenesis of granitoid rocks and the tectonic evolution of the Buqingshan-A’nyemaqing Ocean (BAO), which is a part of the Paleo-Tethys. This study addresses these debates [...] Read more.
Permian magmatic rocks are extensively distributed in the East Kunlun Orogenic Belt (EKOB), yet controversies persist regarding the petrogenesis of granitoid rocks and the tectonic evolution of the Buqingshan-A’nyemaqing Ocean (BAO), which is a part of the Paleo-Tethys. This study addresses these debates through petrological analyses, whole-rock geochemistry and zircon U-Pb-Lu-Hf isotopic investigations of newly identified granitoids in the EKOB. Monzogranite (MG) and quartz porphyry (QP) yield weighted mean ages of 254.7 ± 1.1 Ma and 254.3 ± 1.1 Ma, respectively. Geochemically, the MG shows metaluminous to weakly peraluminous low-K calc-alkaline I-type affinity, characterized by high SiO2 and low K2O, MgO and FeOT contents, as well as marked enrichment in light rare earth elements (LREEs), but depletion in Eu, Ba, Sr, P and Ti anomalies. In contrast, the QP exhibits a peraluminous high-K calc-alkaline I-type affinity, displaying high SiO2 but low Na2O and P2O5 contents. It is enriched in LREEs and Rb but displays negative Nb, Sr, P and Ti anomalies. Zircon εHf(t) values range from −1.6 to 2.6 for MG and −4.4 to 1.5 for QP. We suggest that both MG and QP were derived from the partial melting of juvenile mafic lower crust, and that MG underwent a high degree of fractional crystallization. A synthesis of multiscale geological evidence allows us to propose a five-stage tectonic evolution for the BAO in the EKOB: (1) oceanic basin initiation before ca. 345 Ma; (2) incipient northward subduction commencing at ca. 278 Ma; (3) slab rollback stage (263–240 Ma); (4) syn-collisional compression (240–230 Ma); (5) post-collisional extension (230–195 Ma). Full article
Show Figures

Graphical abstract

23 pages, 47311 KiB  
Article
Petrogenesis and Tectonic Evolution of I- and A-Type Granites of Mount Abu Kibash and Tulayah, Egypt: Evidence for Transition from Subduction to Post-Collision Magmatism
by Amr El-Awady, Mabrouk Sami, Rainer Abart, Douaa Fathy, Esam S. Farahat, Mohamed S. Ahmed, Hassan Osman and Azza Ragab
Minerals 2024, 14(8), 806; https://doi.org/10.3390/min14080806 - 9 Aug 2024
Cited by 1 | Viewed by 1164
Abstract
The Neoproterozoic granitic rocks of Mount Abu Kibash and Tulayah in the central Eastern Desert of Egypt are of geodynamic interest and provide us with important information about the evolution and growth of the northern part of the Arabian–Nubian Shield (ANS) continental crust. [...] Read more.
The Neoproterozoic granitic rocks of Mount Abu Kibash and Tulayah in the central Eastern Desert of Egypt are of geodynamic interest and provide us with important information about the evolution and growth of the northern part of the Arabian–Nubian Shield (ANS) continental crust. They are primarily composed of granodiorites and syenogranites based on new field, mineralogical, and geochemical analyses. The granodiorites are marked by an enrichment of LILEs such as Sr, K, Rb, Ba compared to HFSEs like Nb, Ta, Ti and show a higher concentration of LREEs relative to HREEs. This composition suggests a subduction-related setting and aligns with the characteristics of subducted I-type granites in the ANS. Chemistry of the analyzed primary amphiboles in the investigated granodiorites support a calc-alkaline nature, mixed source and subduction-related setting. The granodiorites represent an early magmatic phase in this setting, likely formed from a mix of mantle-derived mafic magmas and lower crust material, with subsequent fractional crystallization. On the other hand, syenogranites exhibit high SiO2 (72.02–74.02 wt%), total alkali (7.82–8.01 wt%), and Al2O3 (13.79–14.25 wt%) levels, suggesting their derivation from peraluminous (A/CNK > 1) parental magmas. Their REE-normalized patterns are flat with a pronounced negative Eu anomaly, typical of post-collisional A2-type granites worldwide. These rocks originated from the partial melting of a juvenile lower crustal source (tonalite) in a post-collisional setting, driven by lithospheric delamination that facilitated mantle upwelling and underplating to the lower crust. Interaction between the upwelled mantle and lower crust led to fertilization (enrichment with HFSE and alkalis) of the lithosphere before partial melting. Fractional crystallization coupled with less considerable crustal assimilation are the main magmatic processes during the evolution of these rocks. The transition from subduction to post-collisional setting was accompanied by crustal uplifting, thickening and extensional collapse of ANS continental crust that caused emplacement of large masses of A-type granites in the northern ANS. Full article
Show Figures

Figure 1

20 pages, 17674 KiB  
Article
Early Cretaceous A-Type Acidic Magmatic Belt in Northern Lhasa Block: Implications for the Evolution of the Bangong–Nujiang Ocean Lithosphere
by Deng Xiao, Xinjie Yang, Chao Teng, Tianshe Cheng, Ning Zhu and Jun Cao
Minerals 2024, 14(7), 681; https://doi.org/10.3390/min14070681 - 29 Jun 2024
Viewed by 850
Abstract
A-type granites have been the subject of considerable interest due to their distinct anorogenic geological background. The A-type and arc-related granites are crucial in deciphering the evolution of the ocean closure and continental collision in the Tibet Plateau. The demise of the Bangong–Nujiang [...] Read more.
A-type granites have been the subject of considerable interest due to their distinct anorogenic geological background. The A-type and arc-related granites are crucial in deciphering the evolution of the ocean closure and continental collision in the Tibet Plateau. The demise of the Bangong–Nujiang suture zone (BNSZ) and the Yarlung–Tsangpo suture zone was accompanied by the emplacement of volumes of syn-collisional and post-collisional granites. Controversy has persisted regarding the contribution of the collisional granites within the Lhasa Block to the growth of the Tibetan Plateau. This study provides key evidence about the evolution of the Lhasa Block and Bangong–Nujiang Ocean (BNO) by the newly documented 1200 km long, Early Cretaceous A-type acidic magmatic belt. The resolution was achieved through the utilization of petrology, whole-rock geochemistry, zircon U-Pb geochronology, and in situ zircon Hf isotope analysis of the Burshulaling Granites in the eastern segment and previous existing data in the central and western segment of the Lhasa Block. The Burshulaling Granites are characterized as peraluminous, high-K calc-alkaline series, indicating a post-collision setting with high temperature and low pressure. The zircon grains from two granite samples yield 206Pb/238U ages of 115–113 Ma. In situ zircon Hf analyses with 206Pb/238U ages give εHf(t) of −6.2–0.6, showing prominent characteristics of crust-mantle interaction. Granites from east to west exhibit whole-rock geochemical and geochronological similarities that fall within the well-constrained Early Cretaceous time frame (117–103 Ma) and track post-collisional A-type acidic magmatic belt along BNSZ. We argue that this magmatism resulted from slab break-off or orogenic root detachment, leading to melting and mixing of the lower crust. Meanwhile, this study indicates the existence of the Bangong–Nujiang Ocean southward subduction or a collapse following an Andean-type orogen. Full article
Show Figures

Figure 1

30 pages, 8490 KiB  
Article
Two Distinct Fractional Crystallization Mechanisms of A-Type Granites in the Nanling Range, South China: A Case Study of the Jiuyishan Complex Massif and Xianghualing Intrusive Stocks
by Wenzhou Xiao, Chaoyun Liu, Kaixuan Tan, Xianzhe Duan, Kaituo Shi, Qinglin Sui, Peng Feng, Mabrouk Sami, Mohamed S. Ahmed and Feng Zi
Minerals 2023, 13(5), 605; https://doi.org/10.3390/min13050605 - 27 Apr 2023
Cited by 12 | Viewed by 2679
Abstract
The petrogenesis of A-type granites with different occurrences in the Nanling Range remains unclear. In this study, a case study of the Jiuyishan complex massif and Xianghualing intrusive stocks was conducted to determine this problem. The Jiuyishan complex massif is composed of four [...] Read more.
The petrogenesis of A-type granites with different occurrences in the Nanling Range remains unclear. In this study, a case study of the Jiuyishan complex massif and Xianghualing intrusive stocks was conducted to determine this problem. The Jiuyishan complex massif is composed of four units (Jinjiling, Pangxiemu, Shaziling and Xishan). These four units have similar zircon U-Pb ages of approximately 153 Ma, with high Zr + Nb + Ce + Y contents (>350 ppm), high 10,000 Ga/Al ratios (>2.6), and a high crystallization temperature, indicating A-type affinities. They show a gradual change in lithology and geochemistry, implying a fractional crystallization process. These units also have similar εNd(t) values (−8.2 to −5.8) and zircon εHf(t) values (−7.5 to −2.2) except for the Shaziling MMEs (mafic microgranular enclaves) (−14.2 to 4.8), demonstrating their lower crustal source. However, the Shaziling unit may have contributed mantle-derived magma based on the geochemical data of its hosted MMEs. In comparison, the two Xianghualing intrusive stocks have similar geochemical features but exhibit highly evolved features (high Rb, U, Y, Ta and Nb contents and low Eu, Ba, Sr, P, Ti, Ca, Mg and Fe contents, with V-shaped REE distribution patterns). They have different zircon U-Pb ages of approximately 160 Ma and 155 Ma. The two stocks also have similar whole-rock εNd(t) values (−6.5 to −5.7) and zircon εHf(t) values (−7.6 to −2.7) and equally illustrate a lower crustal source region. Combining with their vertical zonation, they may have experienced remarkable fractional crystallization with possible assimilation processes. We propose that the Jiuyishan complex and Xianghualing stocks have two distinct fractional crystallization mechanisms during their formation. The Jiuyishan complex was formed by in situ crystal mush fractionation, while the Xianghualing stocks were formed by flowage differentiation during magma ascent or gravitational settling during magma solidification after emplacement. However, more than one mechanism affected the fractional crystallization processes of these granitic rocks. Full article
Show Figures

Figure 1

21 pages, 5294 KiB  
Article
Petrogenesis and Tectonic Implications of the Cryogenian I-Type Granodiorites from Gabgaba Terrane (NE Sudan)
by Mabrouk Sami, Munir M. A. Adam, Xinbiao Lv, El Saeed R. Lasheen, Antoaneta Ene, Hesham M. H. Zakaly, Saad S. Alarifi, Nasser M. Mahdy, Abdel Rahman A. Abdel Rahman, Adil Saeed, Esam S. Farahat, Douaa Fathy and Shehata Ali
Minerals 2023, 13(3), 331; https://doi.org/10.3390/min13030331 - 27 Feb 2023
Cited by 21 | Viewed by 3142
Abstract
The widely distributed granitic intrusions in the Nubian Shield can provide comprehensive data for understanding its crustal evolution. We present new bulk-rock geochemistry and isotopic (zircon U-Pb and Lu-Hf) data from the Haweit granodiorites in the Gabgaba Terrane (NE Sudan). The dated zircons [...] Read more.
The widely distributed granitic intrusions in the Nubian Shield can provide comprehensive data for understanding its crustal evolution. We present new bulk-rock geochemistry and isotopic (zircon U-Pb and Lu-Hf) data from the Haweit granodiorites in the Gabgaba Terrane (NE Sudan). The dated zircons presented a 206Pb/238U Concordia age of 718.5 ± 2.2 Ma, indicating that they crystallized during the Cryogenian. The granodiorites contain both biotite and amphibole as the main mafic constituents. The samples exhibit metaluminous (A/CNK = 0.84–0.94) and calc-alkaline signatures. Their mineralogical composition and remarkable low P2O5, Zr, Ce, and Nb concentrations confirm that they belong to I-type granites. They exhibit subduction-related magma geochemical characters such as enrichment in LILEs and LREEs and depletion in HFSEs and HREEs, with a low (La/Yb)N ratio (3.0–5.9) and apparent negative Nb anomaly. The positive Hf(t) values (+7.34 to +11.21) and young crustal model age (TDMC = 734–985 Ma) indicates a juvenile composition of the granodiorites. The data suggest that the Haweit granodiorites may have formed from partially melting a juvenile low-K mafic source. During subduction, the ascending asthenosphere melts might heat and partially melt the pre-existing lower crust mafic materials to generate the Haweit granodiorites in the middle segment of the Nubian Shield. Full article
Show Figures

Figure 1

Back to TopTop