Metabasites from the Central East Kunlun Orogenic Belt Inform a New Suture Model for Subduction and Collision in the Early Paleozoic Proto-Tethys Ocean
Abstract
:1. Introduction
2. Geological Setting
2.1. Regional Geology and Tectonics
2.2. Local Geology and Sampling
3. Analytical Methods
4. Results
4.1. Petrology of Metabasites
4.1.1. Garnet Amphibolite from Dagele (20DGL97)
4.1.2. Amphibolite from Dagele (20DGL99)
4.1.3. Retrograde Eclogite from East Nuomuhong (20NMH81)
4.2. Whole-Rock Compositions and Protoliths
4.2.1. Dagele (DGL) Metabasites
4.2.2. East Nuomuhong (NMH) Metabasites
4.3. Whole-Rock Sr–Nd Isotopes
4.4. Phase Equilibrium Modeling
4.4.1. P–T Pseudosection for Garnet Amphibolite from Dagele (20DGL97)
4.4.2. P–T Pseudosection for Retrograde Eclogite from East Nuomuhong (20NMH81)
4.5. Zircon Geochronology and REE Patterns
4.5.1. Amphibolite from Dagele (20DGL99)
4.5.2. Garnet Amphibolite from Dagele (20DGL97)
4.5.3. Retrograde Eclogite 20NMH84
5. Discussion
5.1. Ages of Protoliths and Metamorphic Events
5.1.1. Dagele Amphibolite and Garnet Amphibolite
5.1.2. East Nuomuhong Retrograde Eclogite
5.2. Nature of Mantle Protoliths
5.2.1. Assessment of Element Stability and Potential Crustal Contamination
- Relatively low La/Sm ratios in east Nuomuhong (1.39–4.09, avg. 2.12) and Dagele (1.06–5.31, avg. 2.29) compared with characteristics (La/Sm ratios > 4.5) of crustal contamination from [49];
- Relatively low LILE oxide contents (e.g., K2O, Na2O and TiO2);
- The metabasites studied here have a narrower range of ISr compared with metabasites that experienced insignificant crustal contamination [50].
5.2.2. Primary Mantle Source
5.2.3. Metasomatism of the Mantle Source and Discrimination of Protoliths
5.3. Metamorphic Evolution and Tectonic Implications
- Stage I: Oceanic crust formation and initial subduction (>515 Ma)
- 2.
- Stage II: Small ocean basin formation (515–486 Ma)
- 3.
- Stage III: Concurrent subduction along dominant and secondary suture boundaries (486 Ma to 427–421 Ma)
- 4.
- Stage IV: Subduction and collision along dominant and secondary suture zones (from 430–411 Ma)
- 5.
- Stage V: Post-collision extension and orogenic collapse (<411 Ma)
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zheng, Y.-F.; Chen, R.-X. Regional metamorphism at extreme conditions: Implications for orogeny at convergent plate margins. J. Asian Earth Sci. 2017, 145, 46–73. [Google Scholar] [CrossRef]
- Meng, F.C.; Cui, M.H.; Wu, X.K.; Ren, Y.F. Heishan mafic–ultramafic rocks in the Qimantag area of Eastern Kunlun, NW China: Remnants of an early Paleozoic incipient island arc. Gondwana Res. 2015, 27, 745–759. [Google Scholar] [CrossRef]
- Li, R.; Pei, X.; Li, Z.; Pei, L.; Chen, G.; Wei, B.; Chen, Y.; Liu, C.; Wang, M. Cambrian (~510 Ma) ophiolites of the East Kunlun orogen, China: A case study from the Acite ophiolitic tectonic mélange. Int. Geol. Rev. 2018, 60, 2063–2083. [Google Scholar] [CrossRef]
- Li, R.; Pei, X.; Wei, B.; Li, Z.; Pei, L.; Chen, G.; Chen, Y.; Liu, C. Middle Cambrian-Early Ordovician ophiolites in the central fault of the East Kunlun Orogen: Implications for an epicontinental setting related to Proto-Tethyan Ocean subduction. Gondwana Res. 2021, 94, 243–258. [Google Scholar] [CrossRef]
- Li, R.; Pei, X.; Wei, B.; Li, Z.; Pei, L.; Chen, Y.; Liu, C.; Cheng, G.; Wang, M.; Feng, K. Constraints of late Cambrian mafic rocks from the Qushi’ang ophiolite on a back-arc system in a continental margin, East Kunlun Orogen, Western China. J. Asian Earth Sci. 2019, 169, 117–129. [Google Scholar] [CrossRef]
- Yang, J.S.; Robinson, P.T.; Jiang, C.F.; Xu, Z.Q. Ophiolites of the Kunlun Mountains, China and their tectonic implications. Tectonophysics 1996, 258, 215–231. [Google Scholar] [CrossRef]
- Bi, H.; Whitney, D.L.; Song, S.; Zhou, X. HP–UHP eclogites in the East Kunlun Orogen, China: P–T evidence for asymmetric suturing of the Proto-Tethys Ocean. Gondwana Res. 2022, 104, 199–214. [Google Scholar] [CrossRef]
- Song, S.G.; Bi, H.Z.; Qi, S.S.; Yang, L.M.; Allen, M.B.; Niu, Y.L.; Su, L.; Li, W.F. HP-UHP Metamorphic Belt in the East Kunlun Orogen: Final Closure of the Proto-Tethys Ocean and Formation of the Pan-North-China Continent. J. Petrol. 2018, 59, 2043–2060. [Google Scholar] [CrossRef]
- Qi, S.S.; Song, S.G.; Shi, L.C.; Cai, H.J.; Hu, J.C. Discovery and its geological significance of Early Paleozoic eclogite in Xiarihamu-Suhaitu area, western part of the East Kunlun. Acta Petrol. Sin. 2014, 11, 3345–3356, (In Chinese with English abstract). [Google Scholar]
- Qi, X.P.; Fan, X.G.; Yang, J.; Cui, J.T.; Wang, B.Y.; Fan, Y.Z. The discovery of Early Paleozoic eclogite in the upper reaches of Langmuri in eastern East Kunlun Mountains and its significance. Geol. Bull. China 2016, 35, 1771–1783, (In Chinese with English abstract). [Google Scholar]
- Meng, F.; Zhang, J.; Cui, M. Discovery of Early Paleozoic eclogite from the East Kunlun, Western China and its tectonic significance. Gondwana Res. 2013, 23, 825–836. [Google Scholar] [CrossRef]
- Du, W.; Jiang, C.; Xia, M.; Xia, Z.; Wei, Z.; Ling, J.; Wang, B. A newly discovered Early Paleozoic ophiolite in Dagele, Eastern Kunlun, China, and its geological significance. Geol. J. 2017, 52, 425–435. [Google Scholar] [CrossRef]
- Zhou, W.; Chang, F.; Huang, B.; Xia, B.; Fu, D.; Chi Fru, E.; Li, H.; Lü, X.; Mao, C. Oceanic subduction to continental collision in the NE Proto-Tethys revealed by early Paleozoic eclogites with high-temperature granulite-facies overprinting in the East Kunlun orogenic belt, northern Tibet. GSA Bull. 2023, 136, 619–636. [Google Scholar] [CrossRef]
- Dong, Y.; Sun, S.; Liu, X.; He, D.; Zhou, X.; Zhang, F.; Yang, Z.; Zhou, D. Geochronology and geochemistry of the Yazidaban ophiolitic mélange in Qimantagh: Constraints on the Early Paleozoic back-arc basin of the East Kunlun Orogen, northern Tibetan Plateau. J. Geol. Soc. 2018, 176, 306–322. [Google Scholar] [CrossRef]
- Holland, T.; Powell, R. Activity–composition relations for phases in petrological calculations: An asymmetric multicomponent formulation. Contrib. Mineral. Petrol. 2003, 145, 492–501. [Google Scholar] [CrossRef]
- Dong, Y.; He, D.; Sun, S.; Liu, X.; Zhou, X.; Zhang, F.; Yang, Z.; Cheng, B.; Zhao, G.; Li, J. Subduction and accretionary tectonics of the East Kunlun orogen, western segment of the Central China Orogenic System. Earth-Sci. Rev. 2018, 186, 231–261. [Google Scholar] [CrossRef]
- Feng, K.; Li, R.B.; Pei, X.Z.; Li, Z.C. Zircon U-Pb Dating and Geochemical Characteristics of Dagele Granite in the Eastern Margin of East Kunlun Orogenic Belt, China and Their Tectonic Implications. J. Earth Sci. Environ. 2020, 42, 442–463, (In Chinese with English abstract). [Google Scholar] [CrossRef]
- Li, R.; Pei, X.; Li, Z.; Pei, L.; Chen, G.; Liu, Z.; Chen, Y.; Liu, C.; Wang, M.; Zhang, M. Paleo-Tethyan Ocean Evolution and Indosinian Orogenesis in the East Kunlun Orogen, Northern Tibetan Plateau. Minerals 2022, 12, 1590. [Google Scholar] [CrossRef]
- He, D.; Dong, Y.; Liu, X.; Zhou, X.; Zhang, F.; Sun, S. Zircon U–Pb geochronology and Hf isotope of granitoids in East Kunlun: Implications for the Neoproterozoic magmatism of Qaidam Block, Northern Tibetan Plateau. Precambrian Res. 2018, 314, 377–393. [Google Scholar] [CrossRef]
- Mo, X.X.; Luo, Z.H.; Deng, J.F.; Yu, X.H.; Liu, C.D.; Chen, H.W.; Liu, H.Y. Granitoids and Crustal Crowth in the East Kunlun Orogenic Belt. Geol. J. China Univ. 2007, 13, 403–414, (In Chinese with English Abstract). [Google Scholar]
- Dong, J.; Song, S.; Su, L.; Allen, M.B.; Li, Y.; Wang, C. Early Devonian mafic igneous rocks in the East Kunlun Orogen, NW China: Implications for the transition from the Proto- to Paleo-Tethys oceans. Lithos 2020, 376–377, 105771. [Google Scholar] [CrossRef]
- Morimoto, N. Nomenclature of pyroxenes. Mineral. Petrol. 1988, 39, 55–76. [Google Scholar] [CrossRef]
- Smith, J.V. Feldspar Minerals: In Three Volumes. 2. Chemical and Textural Properties; Springer: Berlin/Heidelberg, Germany, 1974. [Google Scholar]
- Leake, B.E.; Woolley, A.R.; Birch, W.D.; Burke, E.A.; Ferraris, G.; Grice, J.D.; Hawthorne, F.C.; Kisch, H.J.; Krivovichev, V.G.; Schumacher, J.C. Nomenclature of amphiboles: Additions and revisions to the International Mineralogical Association’s amphibole nomenclature. Mineral. Mag. 2004, 68, 209–215. [Google Scholar] [CrossRef]
- Le Bas, M.J.; Le Maitre, R.W.; Streckeisen, A.; Zanettin, B. A Chemical Classification of Volcanic Rocks Based on the Total Alkali-Silica Diagram. J. Petrol. 1986, 27, 745–750. [Google Scholar] [CrossRef]
- Irvine, T.N.; Baragar, W.R.A. A Guide to the Chemical Classification of the Common Volcanic Rocks. Can. J. Earth Sci. 1971, 8, 523–548. [Google Scholar] [CrossRef]
- Pearce, J.A.; Peate, D.W. Tectonic Implications of the Composition of Volcanic ARC Magmas. Annu. Rev. Earth Planet. Sci. 1995, 23, 251–285. [Google Scholar] [CrossRef]
- Sengun, F. Geochemistry and Tectonic Setting of Amphibolites in the Pamukova Metamorphics from the Armutlu Peninsula, NW Turkey. Arab. J. Geosci. 2022, 15, 605. [Google Scholar] [CrossRef]
- Hastie, A.R.; Kerr, A.C.; Pearce, J.A.; Mitchell, S.F. Classification of Altered Volcanic Island Arc Rocks using Immobile Trace Elements: Development of the Th–Co Discrimination Diagram. J. Petrol. 2007, 48, 2341–2357. [Google Scholar] [CrossRef]
- Sun, S.S.; McDonough, W.F. Chemical and Isotopic Systematic of Oceanic Basalt: Implications for the Mantal Composition and Processes; Special Publications; Geological Society: London, UK, 1989; Volume 42, pp. 313–345. [Google Scholar]
- Hofmann, A.W. Mantle geochemistry: The message from oceanic volcanism. Nature 1997, 385, 219–229. [Google Scholar] [CrossRef]
- Powell, R.; Holland, T.; Worley, B. Calculating phase diagrams involving solid solutions via non-linear equations, with examples using THERMOCALC. J. Metamorph. Geol. 1998, 16, 577–588. [Google Scholar] [CrossRef]
- Holland, T.J.B.; Powell, R. An improved and extended internally consistent thermodynamic dataset for phases of petrological interest, involving a new equation of state for solids. J. Metamorph. Geol. 2011, 29, 333–383. [Google Scholar] [CrossRef]
- Green, E.C.R.; White, R.W.; Diener, J.F.A.; Powell, R.; Holland, T.J.B.; Palin, R.M. Activity–composition relations for the calculation of partial melting equilibria in metabasic rocks. J. Metamorph. Geol. 2016, 34, 845–869. [Google Scholar] [CrossRef]
- White, R.W.; Powell, R.; Holland, T.J.B.; Johnson, T.E.; Green, E.C.R. New mineral activity–composition relations for thermodynamic calculations in metapelitic systems. J. Metamorph. Geol. 2014, 32, 261–286. [Google Scholar] [CrossRef]
- White, R.W.; Powell, R.; Holland, T.J.B.; Worley, B.A. The effect of TiO2 and Fe2O3 on metapelitic assemblages at greenschist and amphibolite facies conditions: Mineral equilibria calculations in the system K2O–FeO–MgO–Al2O3–SiO2–H2O–TiO2–Fe2O3. J. Metamorph. Geol. 2000, 18, 497–511. [Google Scholar] [CrossRef]
- Tomkins, H.S.; Powell, R.; Ellis, D.J. The pressure dependence of the zirconium-in-rutile thermometer. J. Metamorph. Geol. 2007, 25, 703–713. [Google Scholar] [CrossRef]
- Lin, M.; Zhang, G.; Li, N.; Li, H.; Wang, J. An Improved In Situ Zircon U-Pb Dating Method at High Spatial Resolution (≤10 μm Spot) by LA-MC-ICP-MS and its Application. Geostand. Geoanalytical Res. 2021, 45, 265–285. [Google Scholar] [CrossRef]
- Wang, P.; Guo, F.; Wang, Z.; Feng, N. Zircon U-Pb Chronology, Geological and Geochemical Characteristics of Metamorphosed Basic Rocks in the Middle Reaches of Lalingzaohuo, Qimantage Area of East Kunlun Mountains. Can. J. Earth Sci. 2021, 27, 408–421. [Google Scholar] [CrossRef]
- Li, W.; Neubauer, F.; Liu, Y.; Genser, J.; Ren, S.; Han, G.; Liang, C. Paleozoic evolution of the Qimantagh magmatic arcs, Eastern Kunlun Mountains: Constraints from zircon dating of granitoids and modern river sands. J. Asian Earth Sci. 2013, 77, 183–202. [Google Scholar] [CrossRef]
- Rubatto, D. Zircon: The Metamorphic Mineral. Rev. Mineral. Geochem. 2017, 83, 261–295. [Google Scholar] [CrossRef]
- Rubatto, D.; Hermann, J.; Berger, A.; Engi, M. Protracted fluid-induced melting during Barrovian metamorphism in the Central Alps. Contrib. Mineral. Petrol. 2009, 158, 703–722. [Google Scholar] [CrossRef]
- Jian, X.; Weislogel, A.; Pullen, A.; Shang, F. Formation and evolution of the Eastern Kunlun Range, northern Tibet: Evidence from detrital zircon U-Pb geochronology and Hf isotopes. Gondwana Res. 2020, 83, 63–79. [Google Scholar] [CrossRef]
- Tang, H.; Zhang, H.F.; Zhang, M.J.; Zou, H.; Zhang, J. Neoproterozoic and early Paleozoic metamorphism recorded in gneisses from the East Kunlun Orogenic belt. Precambrian Res. 2022, 375, 106650. [Google Scholar] [CrossRef]
- He, D.; Dong, Y.; Hauzenberger, C.A.; Sun, S.; Neubauer, F.; Zhou, B.; Yue, Y.; Hui, B.; Ren, X.; Chong, F. Neoproterozoic HP granulite and its tectonic implication for the East Kunlun Orogen, northern Tibetan Plateau. Precambrian Res. 2022, 378, 106–778. [Google Scholar] [CrossRef]
- He, D.; Dong, Y.; Liu, X.; Yang, Z.; Sun, S.; Cheng, B.; Li, W. Tectono-thermal events in East Kunlun, Northern Tibetan Plateau: Evidence from zircon U–Pb geochronology. Gondwana Res. 2016, 30, 179–190. [Google Scholar] [CrossRef]
- Lu, S.; Li, H.; Zhang, C.; Niu, G. Geological and geochronological evidence for the Precambrian evolution of the Tarim Craton and surrounding continental fragments. Precambrian Res. 2008, 160, 94–107. [Google Scholar] [CrossRef]
- Song, S.; Niu, Y.; Su, L.; Zhang, C.; Zhang, L. Continental orogenesis from ocean subduction, continent collision/subduction, to orogen collapse, and orogen recycling: The example of the North Qaidam UHPM belt, NW China. Earth-Sci. Rev. 2014, 129, 59–84. [Google Scholar] [CrossRef]
- Lassiter, J.C.; DePaolo, D.J. Plume/Lithosphere Interaction in the Generation of Continental and Oceanic Flood Basalts: Chemical and Isotopic Constraints. In Large Igneous Provinces: Continental, Oceanic, and Planetary Flood Volcanism; Lassiter, J.C., DePaolo, D.J., Eds.; Wiley: Hoboken, NJ, USA, 1997; pp. 335–355. [Google Scholar]
- Zhang, G.; Wang, J.; Webb, A.A.G.; Zhang, L.; Liu, S.; Fu, B.; Wu, C.; Wang, S. The protoliths of central Himalayan eclogites. GSA Bull. 2021, 134, 1949–1966. [Google Scholar] [CrossRef]
- Aldanmaz, E.; Pearce, J.A.; Thirlwall, M.F.; Mitchell, J.G. Petrogenetic evolution of late Cenozoic, post-collision volcanism in western Anatolia, Turkey. J. Volcanol. Geotherm. Res. 2000, 102, 67–95. [Google Scholar] [CrossRef]
- Deniel, C. Geochemical and isotopic (Sr, Nd, Pb) evidence for plume–lithosphere interactions in the genesis of Grande Comore magmas (Indian Ocean). Chem. Geol. 1998, 144, 281–303. [Google Scholar] [CrossRef]
- Pearce, J.A. Geochemical fingerprinting of oceanic basalts with applications to ophiolite classification and the search for Archean oceanic crust. Lithos 2008, 100, 14–48. [Google Scholar] [CrossRef]
- Class, C.; Miller, D.M.; Goldstein, S.L.; Langmuir, C.H. Distinguishing melt and fluid subduction components in Umnak Volcanics, Aleutian Arc. Geochem. Geophys. Geosyst. 2000, 1, 10. [Google Scholar] [CrossRef]
- Li, H.; Hermann, J.; Zhang, L. Melting of subducted slab dictates trace element recycling in global arcs. Sci. Adv. 2022, 8, eabh2166. [Google Scholar] [CrossRef] [PubMed]
- Furnes, H.; Dilek, Y. Geochemical characterization and petrogenesis of intermediate to silicic rocks in ophiolites: A global synthesis. Earth-Sci. Rev. 2017, 166, 1–37. [Google Scholar] [CrossRef]
- Turner, S.; Caulfield, J.; Turner, M.; van Keken, P.; Maury, R.; Sandiford, M.; Prouteau, G. Recent contribution of sediments and fluids to the mantle’s volatile budget. Nat. Geosci. 2012, 5, 50–54. [Google Scholar] [CrossRef]
- Saccani, E. A new method of discriminating different types of post-Archean ophiolitic basalts and their tectonic significance using Th-Nb and Ce-Dy-Yb systematics. Geosci. Front. 2015, 6, 481–501. [Google Scholar] [CrossRef]
- Dilek, Y.; Furnes, H. Ophiolite genesis and global tectonics: Geochemical and tectonic fingerprinting of ancient oceanic lithosphere. GSA Bull. 2011, 123, 387–411. [Google Scholar] [CrossRef]
- Bi, H.; Song, S.; Whitney, D.L.; Wang, C.; Su, L. HP–UHT granulites in the East Kunlun Orogen, NW China: Constraints on the transition from compression to extension in an arc setting of the Proto-Tethys Ocean. J. Metamorph. Geol. 2021, 39, 1071–1095. [Google Scholar] [CrossRef]
- He, D.; Dong, Y.; Hauzenberger, C.A.; Sun, S.; Liu, X.; Yue, Y. Pressure-temperature evolution of the Qingshuiquan mafic granulite: Implications for Proto-Tethys subduction in the East Kunlun orogenic belt, northern Tibetan Plateau. GSA Bull. 2022, 135, 1034–1052. [Google Scholar] [CrossRef]
- Chen, N.; Sun, M.; Wang, Q.; Zhang, K.; Wan, Y.; Chen, H. U-Pb dating of zircon from the Central Zone of the East Kunlun Orogen and its implications for tectonic evolution. Sci. China Ser. D Earth Sci. 2008, 51, 929–938. [Google Scholar] [CrossRef]
- Zha, X.; Dong, Y.; He, D.; Li, M.; Gao, X.; Liu, X.; Hu, C.; Xu, L. Early palaeozoic arc-continent collision in East Kunlun, northern Tibet: Evidence from the minerology, geochemistry, and geochronology of the Adatan garnet amphibolites. Int. Geol. Rev. 2022, 65, 1–21. [Google Scholar] [CrossRef]
- Li, C.; Zhang, H.F.; Chen, A. Early Paleozoic metamorphic evolution of the East Kunlun Orogen recorded in Langmuri garnet-amphibolite. Acta Petrol. Sin. 2022, 38, 639–654, (In Chinese with English abstract). [Google Scholar]
- Maruyama, S.; Liou, J.G. Initiation of ultrahigh-pressure metamorphism and its significance on the Proterozoic–Phanerozoic boundary. Isl. Arc 1998, 7, 6–35. [Google Scholar] [CrossRef]
- Whitney, D.L.; Evans, B.W. Abbreviations for names of rock-forming minerals. Am. Mineral. 2010, 95, 185–187. [Google Scholar] [CrossRef]
- Zhang, G.; Han, L.; Zhang, L.; Song, S.; Liu, S. The transition from oceanic to continental subduction and collision: A case study of the North Qaidam ultrahigh-pressure metamorphic belt, northern Tibetan Plateau. J. Asian Earth Sci. 2023, 242, 105488. [Google Scholar] [CrossRef]
- Dong, J.; Wei, C.J.; Zhang, J.X. Ultra high temperature metamorphism of mafic granulites from South Altyn Orogen, West China: A result from the rapid exhumation of deeply subducted continental crust. J. Metamorph. Geol. 2018, 3, 315–338. [Google Scholar] [CrossRef]
- Zhang, Z.; Ding, H.; Dong, X.; Tian, Z.; Du, J. Metamorphism and tectonic mechanisms of subduction zones. Acta Petrol. Sin. 2021, 37, 3377–3398, (In Chinese with English abstract). [Google Scholar] [CrossRef]
- Wu, F.; Wan, B.; Zhao, L.; Xiao, W.; Zhu, R. Tethyan geodynamics. Acta Petrol. Sin. 2020, 36, 1627–1674, (In Chinese with English abstract). [Google Scholar]
- Wen, T.; Dong, J.; Wang, C.; Song, S. Two ophiolite belts in the East Kunlun Orogenic Belt record evolution from the Proto-Tethys to Paleo-Tethys Oceans. Int. Geol. Rev. 2022, 65, 1957–1976. [Google Scholar] [CrossRef]
- Duan, X.-P.; Meng, F.-C.; Jia, L.-H. Early Paleozoic mantle evolution of East Kunlun Orogenic Belt in Qinghai, NW China: Evidence from the geochemistry and geochronology of the Late Ordovician to Late Silurian mafic-ultramafic rocks in the Qimantag region. Int. Geol. Rev. 2020, 62, 1883–1903. [Google Scholar] [CrossRef]
- Cui, M.H.; Meng, F.C.; Wu, X.K. Early Ordovician island arc of Yaziquan, west of Qimantag Mountain, East Kunlun: Evidences from geochemistry, Sm-Nd isotope and geochronology of intermediate-basic rocks. Acta Petrol. Sin. 2011, 27, 3365–3379, (In Chinese with English abstract). [Google Scholar]
- Song, T.Z.; Zhao, H.X.; Zhang, W.K.; Bai, X.D.; Yang, M. The Geological Features of Shizigou Ophiolites in Qimantage Area. Northwestern Geol. 2010, 43, 124–133, (In Chinese with English abstract). [Google Scholar]
- Dong, G.; Luo, M.; Mo, X.; Zhao, Z.; Dong, L.; Yu, X.; Wang, X.; Li, X.; Huang, X.; Liu, Y. Petrogenesis and tectonic implications of early Paleozoic granitoids in East Kunlun belt: Evidences from geochronology, geochemistry and isotopes. Geosci. Front. 2018, 9, 1383–1397. [Google Scholar] [CrossRef]
- Feng, H.B.; Meng, F.C.; Li, S.R.; Jia, L.H. Characteristics and tectonic significance of chromites from Qingshuiquan serpentinite of East Kunlun, Northwest China. Acta Petrol. Sin. 2015, 31, 2129–2144, (In Chinese with English abstract). [Google Scholar]
- Qi, X.P.; Yang, J.; Fan, X.G.; Cui, J.T.; Cai, Z.F.; Zeng, X.W.; Wei, W.; Qu, X.X.; Zhai, Y.M. Age, geochemical characteristics and tectonic significance of Changshishan ophiolite in central East Kunlun tectonic mélange belt along the east section of East Kunlun Mountains. Geol. China 2016, 43, 797–816. [Google Scholar] [CrossRef]
- Wei, B. Study on the Geological Characteristic and Tectonic Attribute of the Ophiolite and Island-Arc-Type Igneous Rocks, Central Belt of East Kunlun (Eastern Section). Master’s Thesis, Chang’an University, Xi’an, China, 2015. [Google Scholar]
- Zhang, Y.; Pei, X.; Ding, S.; Li, R.; Feng, J.; Sun, Y.; Li, Z.; Chen, Y. LA-ICP-MS zircon U-Pb age of quartz diorite at the Kekesha area of Dulan County, eastern section of the East Kunlun orogenic belt, China and its significance. Geol. Bull. China Geol. 2010, 29, 79–85. [Google Scholar]
- Wu, J.; Lan, C.L.; Li, J.L.; Yu, L.J. Determination of opholite at the western margin of Aqikekule lake, east Kunlun of Xijiang. Geol. Sci. Technol. Inf. 2001, 20, 6–10. [Google Scholar]
- Li, S.; Zhao, S.; Liu, X.; Cao, H.; Yu, S.; Li, X.; Somerville, I.; Yu, S.; Suo, Y. Closure of the Proto-Tethys Ocean and Early Paleozoic amalgamation of microcontinental blocks in East Asia. Earth-Sci. Rev. 2018, 186, 37–75. [Google Scholar] [CrossRef]
- Li, R.; Pei, X.; Li, Z.; Sun, Y.; Feng, J.; Pei, L.; Chen, G.; Liu, C.; Chen, Y. Geochemical Features, Age, and Tectonic Significance of the Kekekete Mafic-ultramafic Rocks, East Kunlun Orogen, China. Acta Geol. Sin. Engl. Ed. 2013, 87, 1319–1333. [Google Scholar] [CrossRef]
- Chen, J.; Fu, L.; Wei, J.; Selby, D.; Zhang, D.; Zhou, H.; Zhao, X.; Liu, Y. Proto-Tethys magmatic evolution along northern Gondwana: Insights from Late Silurian–Middle Devonian A-type magmatism, East Kunlun Orogen, Northern Tibetan Plateau, China. Lithos 2020, 356–357, 105304. [Google Scholar] [CrossRef]
- Song, X.-Y.; Yi, J.-N.; Chen, L.-M.; She, Y.-W.; Liu, C.-Z.; Dang, X.-Y.; Yang, Q.-A.; Wu, S.-K. The Giant Xiarihamu Ni-Co Sulfide Deposit in the East Kunlun Orogenic Belt, Northern Tibet Plateau, China. Econ. Geol. 2016, 111, 29–55. [Google Scholar] [CrossRef]
- Xin, W.; Sun, F.-Y.; Li, L.; Yan, J.-M.; Zhang, Y.-T.; Wang, Y.-C.; Shen, T.-S.; Yang, Y.-J. The Wulonggou metaluminous A2-type granites in the Eastern Kunlun Orogenic Belt, NW China: Rejuvenation of subduction-related felsic crust and implications for post-collision extension. Lithos 2018, 312–313, 108–127. [Google Scholar] [CrossRef]
- Zhang, J.; Ma, C.; Xiong, F.; Liu, B.; Li, J.; Pan, Y. Early Paleozoic high-Mg diorite-granodiorite in the eastern Kunlun Orogen, western China: Response to continental collision and slab break-off. Lithos 2014, 210–211, 129–146. [Google Scholar] [CrossRef]
- Zhang, J.; Lei, H.; Ma, C.; Li, J.; Pan, Y. Silurian-Devonian granites and associated intermediate-mafic rocks along the eastern Kunlun Orogen, western China: Evidence for a prolonged post-collisional lithospheric extension. Gondwana Res. 2021, 89, 131–146. [Google Scholar] [CrossRef]
- Fu, L.; Bagas, L.; Wei, J.; Chen, Y.; Chen, J.; Zhao, X.; Zhao, Z.; Li, A.; Zhang, W. Growth of early Paleozoic continental crust linked to the Proto-Tethys subduction and continental collision in the East Kunlun Orogen, northern Tibetan Plateau. GSA Bull. 2022, 135, 1709–1733. [Google Scholar] [CrossRef]
- Yu, M.; Dick, J.M.; Feng, C.; Li, B.; Wang, H. The tectonic evolution of the East Kunlun Orogen, northern Tibetan Plateau: A critical review with an integrated geodynamic model. J. Asian Earth Sci. 2020, 191, 104168. [Google Scholar] [CrossRef]
- Cui, H.; Zhong, R.; Wang, X.; Li, Z.; Ling, Y.; Yu, C.; Chen, H. Reassessment of the zircon Raman spectroscopic pressure sensor and application to pressure determination of fused silica capillary capsule. Ore Geol. Rev. 2020, 122, 103540. [Google Scholar] [CrossRef]
- Li, C.-F.; Li, X.-H.; Li, Q.-L.; Guo, J.-H.; Li, X.-H.; Yang, Y.-H. Rapid and precise determination of Sr and Nd isotopic ratios in geological samples from the same filament loading by thermal ionization mass spectrometry employing a single-step separation scheme. Anal. Chim. Acta 2012, 727, 54–60. [Google Scholar] [CrossRef]
- Li, X.; Zhang, L.; Wei, C.; Slabunov, A.I.; Bader, T. Quartz and orthopyroxene exsolution lamellae in clinopyroxene and the metamorphic P–T path of Belomorian eclogites. J. Metamorph. Geol. 2017, 36, 1–22. [Google Scholar] [CrossRef]
- Vermeesch, P. IsoplotR: A free and open toolbox for geochronology. Geosci. Front. 2018, 9, 1479–1493. [Google Scholar] [CrossRef]
- Wiedenbeck, M.; Allé, P.; Corfu, F.; Griffin, W.L.; Meier, M.; Oberli, F.; Quadt, A.V.; Roddick, J.C.; Spiegel, W. Three Natural Zircon Standards for U-Th-Pb, Lu-Hf, Trace Element and REE Analyses. Geostand. Newsl. 1995, 19, 1–23. [Google Scholar] [CrossRef]
- Xiong, L.; Zhang, G.; Song, S.; Liu, S.; Feng, D.; Chang, F. Eclogite in the East Kunlun Orogen, northwestern China: A record of the Neoproterozoic breakup of Rodinia and early Paleozoic continental subduction. GSA Bull. 2023. [Google Scholar] [CrossRef]
20NMH81 | 20DGL97 | |
---|---|---|
H2O | 1.75 | excess |
SiO2 | 49.45 | 54.96 |
Al2O3 | 10.39 | 8.28 |
CaO | 10.84 | 10.15 |
MgO | 13.37 | 3.35 |
TFeO | 10.97 | 15.15 |
K2O | 0.05 | 0.06 |
Na2O | 2.15 | 1.93 |
TiO2 | 1.13 | 2.33 |
MnO | 0.13 | 0.23 |
O | 0.22 | 0.84 |
Locality | Rock | Age | Tectonic Setting | Reference |
---|---|---|---|---|
Heishan | Mafic-ultramafic complex | 486 Ma | Initial subduction of Qimantagh ocean basin in Early Ordovician | [2] |
Heishan | Basalt | 445 Ma | Subduction, back-arc spreading setting | [72] |
Xarihamu | Gabbro | 427 Ma | Continental subduction | |
Yaziquan | Diorite | 480 Ma | Intra-oceanic island arc | [2,73] |
Shizigou | Gabbro | 449 Ma | Small oceanic basin subduction | [74] |
Changgou | Gabbro | 431 | Formation age of ophiolite | [75] |
Yazidaban | Diabase | 421.5 Ma | Subduction of the back-arc basin | [14] |
Adatan | Garnet amphibolite | 457–452 Ma | Subduction of the back-arc basin | [63] |
420–410 Ma | Continent collision | |||
Dagele | Gabbro | 445 Ma | Island arc environment of SSZ | [12] |
Qingshui-quan | Granulite | 507 Ma | Oceanic crust subduction | [61] |
Qingshui-quan | Gabbro harzburgite | 518 Ma - | SSZ forearc–arc setting | [6,76] |
Changshi -shan | Gabbro | 537 Ma | SSZ type | [77] |
Qushi’ang | Meta-gabbro | 505 Ma | SSZ back-arc basin | [5] |
Acite | Meta-gabbro | 512 Ma | Forearc–arc setting | [3] |
Tatuo- Wutuo | Gabbro | 522 Ma | SSZ back-arc basin | [78] |
Gabbro | 516 Ma | SSZ slab rollback | [4] | |
Kekesha | Qtz-diorite | 515 Ma | Start of oceanic basin subduction | [79] |
Aqike kulehu | Peridotite -cumulate | - | Oceanic crust subduction | [80] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chang, F.; Zhang, G.; Xiong, L.; Liu, S.; Wang, S.; Liu, Y. Metabasites from the Central East Kunlun Orogenic Belt Inform a New Suture Model for Subduction and Collision in the Early Paleozoic Proto-Tethys Ocean. Minerals 2024, 14, 449. https://doi.org/10.3390/min14050449
Chang F, Zhang G, Xiong L, Liu S, Wang S, Liu Y. Metabasites from the Central East Kunlun Orogenic Belt Inform a New Suture Model for Subduction and Collision in the Early Paleozoic Proto-Tethys Ocean. Minerals. 2024; 14(5):449. https://doi.org/10.3390/min14050449
Chicago/Turabian StyleChang, Feng, Guibin Zhang, Lu Xiong, Shuaiqi Liu, Shuzhen Wang, and Yixuan Liu. 2024. "Metabasites from the Central East Kunlun Orogenic Belt Inform a New Suture Model for Subduction and Collision in the Early Paleozoic Proto-Tethys Ocean" Minerals 14, no. 5: 449. https://doi.org/10.3390/min14050449