Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (197)

Search Parameters:
Keywords = earth topographical modeling

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 2107 KB  
Article
Multi-Feature Fusion and Cloud Restoration-Based Approach for Remote Sensing Extraction of Lake and Reservoir Water Bodies in Bijie City
by Bai Xue, Yiying Wang, Yanru Song, Changru Liu and Pi Ai
Appl. Sci. 2025, 15(21), 11490; https://doi.org/10.3390/app152111490 - 28 Oct 2025
Abstract
Current lake and reservoir water body extraction algorithms are confronted with two critical challenges: (1) design dependency on specific geographical features, leading to constrained cross-regional adaptability (e.g., the JRC Global Water Body Dataset achieves ~90% overall accuracy globally, while the ESA WorldCover 2020 [...] Read more.
Current lake and reservoir water body extraction algorithms are confronted with two critical challenges: (1) design dependency on specific geographical features, leading to constrained cross-regional adaptability (e.g., the JRC Global Water Body Dataset achieves ~90% overall accuracy globally, while the ESA WorldCover 2020 reaches ~92% for water body classification, both showing degraded performance in complex karst terrains); (2) information loss due to cloud occlusion, compromising dynamic monitoring accuracy. To address these limitations, this study presents a multi-feature fusion and multi-level hierarchical extraction algorithm for lake and reservoir water bodies, leveraging the Google Earth Engine (GEE) cloud platform and Sentinel-2 multispectral imagery in the karst landscape of Bijie City. The proposed method integrates the Automated Water Extraction Index (AWEIsh) and Modified Normalized Difference Water Index (MNDWI) for initial water body extraction, followed by a comprehensive fusion of multi-source data—including Normalized Difference Vegetation Index (NDVI), Normalized Difference Built-up Index (NDBI), Normalized Difference Red-Edge Index (NDREI), Sentinel-2 B8/B9 spectral bands, and Digital Elevation Model (DEM). This strategy hierarchically mitigates vegetation shadows, topographic shadows, and artificial feature non-water targets. A temporal flood frequency algorithm is employed to restore cloud-occluded water bodies, complemented by morphological filtering to exclude non-target water features (e.g., rivers and canals). Experimental validation using high-resolution reference data demonstrates that the algorithm achieves an overall extraction accuracy exceeding 96% in Bijie City, effectively suppressing dark object interference (e.g., false positives due to topographic and anthropogenic features) while preserving water body boundary integrity. Compared with single-index methods (e.g., MNDWI), this method reduces false positive rates caused by building shadows and terrain shadows by 15–20%, and improves the IoU (Intersection over Union) by 6–13% in typical karst sub-regions. This research provides a universal technical framework for large-scale dynamic monitoring of lakes and reservoirs, particularly addressing the challenges of regional adaptability and cloud compositing in karst environments. Full article
Show Figures

Figure 1

26 pages, 28516 KB  
Article
Geology-Topography Constrained Super-Resolution of Geochemical Maps via Enhanced U-Net
by Yao Pei, Yuanfang Wang, Xiaolong Li, Tie Gao, Shengfa Wang and Xiaoshan Zhou
Minerals 2025, 15(10), 1088; https://doi.org/10.3390/min15101088 - 19 Oct 2025
Viewed by 265
Abstract
Geochemical maps are essential visualization tools for studying the distribution patterns of elements on the Earth’s surface. They provide critical insights into geological structure, mineralization processes, and environmental evolution. Traditional interpolation methods often fail to adequately reconstruct high-frequency details in geochemical maps with [...] Read more.
Geochemical maps are essential visualization tools for studying the distribution patterns of elements on the Earth’s surface. They provide critical insights into geological structure, mineralization processes, and environmental evolution. Traditional interpolation methods often fail to adequately reconstruct high-frequency details in geochemical maps with low sampling density. This study proposes a super-resolution (SR) reconstruction method for geochemical maps based on an enhanced U-Net architecture, validated in the Gouli area of Qinghai Province. By integrating residual blocks, multi-scale neural networks, and constraints from topographic features (elevation, slope, aspect) and geological map embeddings, our method enhances the resolution of stream sediment geochemical maps from 1:50,000 to 1:25,000 scale. Experimental results demonstrate that the proposed method outperforms SRCNN, VDSR, and standard U-Net models in both peak signal-to-noise ratio (PSNR) and structural similarity index (SSIM). Specifically, with all constraints incorporated, the method achieves maximum and mean PSNR values of 38.486 and 25.334, respectively, and maximum and mean SSIM values of 0.968 and 0.817. The reconstructed high-resolution (HR) geochemical maps exhibit superior detail clarity and maintain strong spatial correlation with the original HR data. Studies have shown that this method can effectively learn multi-scale geochemical patterns and detect subtle anomalies missed in low-resolution (LR) maps. Moreover, the reconstructed HR geochemical maps exhibit better alignment with the Ag, Cu, and Pb anomalies in known mineralization zones (Maixiulongwa and Sanchakou areas), thereby providing strong support for precise mineral exploration. Full article
(This article belongs to the Special Issue Selected Papers from the 7th National Youth Geological Congress)
Show Figures

Graphical abstract

22 pages, 32792 KB  
Article
MRV-YOLO: A Multi-Channel Remote Sensing Object Detection Method for Identifying Reclaimed Vegetation in Hilly and Mountainous Mining Areas
by Xingmei Li, Hengkai Li, Jingjing Dai, Kunming Liu, Guanshi Wang, Shengdong Nie and Zhiyu Zhang
Forests 2025, 16(10), 1536; https://doi.org/10.3390/f16101536 - 2 Oct 2025
Viewed by 355
Abstract
Leaching mining of ion-adsorption rare earths degrades soil organic matter and hampers vegetation recovery. High-resolution UAV remote sensing enables large-scale monitoring of reclamation, yet vegetation detection accuracy is constrained by key challenges. Conventional three-channel detection struggles with terrain complexity, illumination variation, and shadow [...] Read more.
Leaching mining of ion-adsorption rare earths degrades soil organic matter and hampers vegetation recovery. High-resolution UAV remote sensing enables large-scale monitoring of reclamation, yet vegetation detection accuracy is constrained by key challenges. Conventional three-channel detection struggles with terrain complexity, illumination variation, and shadow effects. Fixed UAV altitude and missing topographic data further cause resolution inconsistencies, posing major challenges for accurate vegetation detection in reclaimed land. To enhance multi-spectral vegetation detection, the model input is expanded from the traditional three channels to six channels, enabling full utilization of multi-spectral information. Furthermore, the Channel Attention and Global Pooling SPPF (CAGP-SPPF) module is introduced for multi-scale feature extraction, integrating global pooling and channel attention to capture multi-channel semantic information. In addition, the C2f_DynamicConv module replaces conventional convolutions in the neck network to strengthen high-dimensional feature transmission and reduce information loss, thereby improving detection accuracy. On the self-constructed reclaimed vegetation dataset, MRV-YOLO outperformed YOLOv8, with mAP@0.5 and mAP@0.5:0.95 increasing by 4.6% and 10.8%, respectively. Compared with RT-DETR, YOLOv3, YOLOv5, YOLOv6, YOLOv7, yolov7-tiny, YOLOv8-AS, YOLOv10, and YOLOv11, mAP@0.5 improved by 6.8%, 9.7%, 5.3%, 6.5%, 6.4%, 8.9%, 4.6%, 2.1%, and 5.4%, respectively. The results demonstrate that multichannel inputs incorporating near-infrared and dual red-edge bands significantly enhance detection accuracy for reclaimed vegetation in rare earth mining areas, providing technical support for ecological restoration monitoring. Full article
(This article belongs to the Section Forest Inventory, Modeling and Remote Sensing)
Show Figures

Figure 1

8 pages, 1515 KB  
Proceeding Paper
Spatiotemporal Analysis of Forest Fires in Cyprus Using Earth Observation and Climate Data
by Maria Prodromou, Stella Girtsou, George Leventis, Georgia Charalampous, Alexis Apostolakis, Marios Tzouvaras, Christodoulos Mettas, Giorgos Giannopoulos, Charalampos Kontoes and Diofantos Hadjimitsis
Environ. Earth Sci. Proc. 2025, 35(1), 54; https://doi.org/10.3390/eesp2025035054 - 29 Sep 2025
Cited by 1 | Viewed by 448
Abstract
Wildfire detection remains a critical challenge for authorities, with human activity being the leading cause. The historical conditions prevailing in burned forest areas require a comprehensive analysis at both the environmental and anthropogenic levels. This study presents a multidimensional dataset comprising data from [...] Read more.
Wildfire detection remains a critical challenge for authorities, with human activity being the leading cause. The historical conditions prevailing in burned forest areas require a comprehensive analysis at both the environmental and anthropogenic levels. This study presents a multidimensional dataset comprising data from 2008 to 2024 and integrating Earth observation data and anthropogenic, environmental, meteorological, topographic, and fire-related features. This study evaluates, through time series analysis, the impact of climate trends such as increased temperature in comparison with anthropogenic activities such as deliberate fires. Time series analysis reveals that although climatic conditions with increased temperature and reduced precipitation in Cyprus intensify the risk of fire, the presence of fire events is primarily due to deliberate actions. The findings of this study support national-scale fire modeling, offering a foundation for targeted prevention, early warning systems, and sustainable forest fire management strategies. Full article
Show Figures

Figure 1

26 pages, 656 KB  
Review
Advancing Flood Detection and Mapping: A Review of Earth Observation Services, 3D Data Integration, and AI-Based Techniques
by Tommaso Destefanis, Sona Guliyeva, Piero Boccardo and Vanina Fissore
Remote Sens. 2025, 17(17), 2943; https://doi.org/10.3390/rs17172943 - 25 Aug 2025
Viewed by 3489
Abstract
Floods are among the most frequent and damaging hazards worldwide, with impacts intensified by climate change and rapid urban growth. This review analyzes how satellite-based Earth Observation (EO) technologies are evolving to meet operational needs in flood detection and water depth estimation, with [...] Read more.
Floods are among the most frequent and damaging hazards worldwide, with impacts intensified by climate change and rapid urban growth. This review analyzes how satellite-based Earth Observation (EO) technologies are evolving to meet operational needs in flood detection and water depth estimation, with a focus on the Copernicus Emergency Management Service (CEMS) as a mature and widely adopted European framework. We compare the capabilities of conventional EO datasets—optical and Synthetic Aperture Radar (SAR)—with 3D geospatial datasets such as high-resolution Digital Elevation Models (DEMs) and Light Detection and Ranging (LiDAR). While 2D EO imagery is essential for rapid surface water mapping, 3D datasets add volumetric context, enabling improved flood depth estimation and urban impact assessment. LiDAR, in particular, can capture microtopography between high-rise structures, but its operational use is constrained by cost, data availability, and update frequency. We also review how artificial intelligence (AI), including machine learning and deep learning, is enhancing automation, generalization, and near-real-time processing in flood mapping. Persistent gaps remain in model transferability, uncertainty quantification, and the integration of scarce high-resolution topographic data. We conclude by outlining a roadmap towards hybrid frameworks that combine EO observations, 3D datasets, and physics-informed AI, bridging the gap between current technological capabilities and the demands of real-world emergency management. Full article
Show Figures

Figure 1

23 pages, 7350 KB  
Article
Mechanisms of Spatial Coupling Between Plantation Species Distribution and Historical Disturbance in the Complex Topography of Eastern Yunnan
by Xiyu Zhang, Chao Zhang and Lianjin Fu
Remote Sens. 2025, 17(17), 2925; https://doi.org/10.3390/rs17172925 - 22 Aug 2025
Viewed by 859
Abstract
Forest disturbance is a major driver shaping the structure and function of plantation ecosystems. Current research predominantly focuses on single forest types or landscape scales. However, species-level fine-scale assessments of disturbance dynamics are still scarce. In this study, we investigated Chinese fir ( [...] Read more.
Forest disturbance is a major driver shaping the structure and function of plantation ecosystems. Current research predominantly focuses on single forest types or landscape scales. However, species-level fine-scale assessments of disturbance dynamics are still scarce. In this study, we investigated Chinese fir (Cunninghamia lanceolata), Armand pine (Pinus armandii), and Yunnan pine (Pinus yunnanensis) plantations in the mountainous eastern Yunnan Plateau. We developed a Spatial Coupling Framework of Disturbance Legacy (SC-DL) to systematically elucidate the spatial associations between contemporary species distribution patterns and historical disturbance regimes. Using the Google Earth Engine (GEE) platform, we reconstructed pixel-level disturbance trajectories by integrating long-term Landsat time series (1993–2024) and applying the LandTrendr algorithm. By fusing multi-source remote sensing features (Sentinel-1/2) with terrain factors, employing RFE, and performing a multi-model comparison, we generated 10 m-resolution species distribution maps for 2024. Spatial overlay analysis quantified the cumulative proportion of the historically disturbed area and the spatial aggregation patterns of historical disturbances within current species ranges. Key results include the following: (1) The model predicting disturbance year achieved high accuracy (R2 = 0.95, RMSE = 2.02 years, MAE = 1.15 years). The total disturbed area from 1993 to 2024 was 872.7 km2, exhibiting three distinct phases. (2) The random forest (RF) model outperformed other classifiers, achieving an overall accuracy (OA) of 95.17% and a Kappa coefficient (K) of 0.93. Elevation was identified as the most discriminative feature. (3) Significant spatial differentiation in disturbance types emerged: anthropogenic disturbances (e.g., logging and reforestation/afforestation) dominated (63.1% of total disturbed area), primarily concentrated within Chinese fir zones (constituting 70.2% of disturbances within this species’ range). Natural disturbances accounted for 36.9% of the total, with fire dominating within the Yunnan pine range (79.3% of natural disturbances in this zone) and drought prevailing in the Armand pine range (71.3% of natural disturbances in this zone). (4) Cumulative disturbance characteristics differed markedly among species zones: Chinese fir zones exhibited the highest cumulative proportion of disturbed area (42.6%), with strong spatial aggregation. Yunnan pine zones followed (36.5%), exhibiting disturbances linearly distributed along dry–hot valleys. Armand pine zones showed the lowest proportion (20.9%), characterized by sparse disturbances within fragmented, high-altitude habitats. These spatial patterns reflect the combined controls of topographic adaptation, management intensity, and environmental stress. Our findings establish a scientific basis for identifying disturbance-prone areas and inform the development of differentiated precision management strategies for plantations. Full article
Show Figures

Figure 1

19 pages, 60167 KB  
Article
Mapping Ecosystem Carbon Storage in the Nanling Mountains of Guangdong Province Using Machine Learning Based on Multi-Source Remote Sensing
by Wei Wang, Liangbo Tang, Ying Zhang, Junxing Cai, Xiaoyuan Chen and Xiaoyun Mao
Atmosphere 2025, 16(8), 954; https://doi.org/10.3390/atmos16080954 - 10 Aug 2025
Viewed by 865
Abstract
Accurate assessment of terrestrial ecosystem carbon storage is essential for understanding the global carbon cycle and informing climate change mitigation strategies. However, traditional estimation models face significant challenges in complex mountainous regions due to difficulties in data acquisition and high ecosystem heterogeneity. This [...] Read more.
Accurate assessment of terrestrial ecosystem carbon storage is essential for understanding the global carbon cycle and informing climate change mitigation strategies. However, traditional estimation models face significant challenges in complex mountainous regions due to difficulties in data acquisition and high ecosystem heterogeneity. This study focuses on the Nanling Mountains in Guangdong Province, China, utilizing the Google Earth Engine (GEE) platform to integrate multi-source remote sensing data (Sentinel-1/2, ALOS, GEDI, MODIS), topographic/climatic variables, and field-collected samples. We employed machine learning models to achieve high-precision prediction and high-resolution mapping of ecosystem carbon storage while also analyzing spatial differentiation patterns. The results indicate that the Random Forest algorithm outperformed Gradient Boosting Decision Tree and Classification and Regression Tree (CART) algorithms by suppressing overfitting through dual randomization. The integration of multi-source data significantly enhanced model performance, achieving a coefficient of determination (R2) of 0.87 for aboveground biomass (AGB) and 0.65 for soil organic carbon (SOC). Integrating precipitation, temperature, and topographic variables improved SOC prediction accuracy by 96.77% compared to using optical data alone. The total carbon storage reached 404 million tons, with forest ecosystems contributing 96.7% of the total and soil carbon pools accounting for 60%. High carbon density zones (>160 Mg C/ha) were mainly concentrated in mid-elevation gentle slopes (300–700 m). The proposed integrated “optical-radar-topography-climate” framework offers a scalable and transferable solution for monitoring carbon storage in complex terrains and provides robust scientific support for carbon sequestration planning in subtropical mountain ecosystems. Full article
Show Figures

Figure 1

22 pages, 28581 KB  
Article
Remote Sensing Interpretation of Geological Elements via a Synergistic Neural Framework with Multi-Source Data and Prior Knowledge
by Kang He, Ruyi Feng, Zhijun Zhang and Yusen Dong
Remote Sens. 2025, 17(16), 2772; https://doi.org/10.3390/rs17162772 - 10 Aug 2025
Viewed by 882
Abstract
Geological elements are fundamental components of the Earth’s ecosystem, and accurately identifying their spatial distribution is essential for analyzing environmental processes, guiding land-use planning, and promoting sustainable development. Remote sensing technologies, combined with artificial intelligence algorithms, offer new opportunities for the efficient interpretation [...] Read more.
Geological elements are fundamental components of the Earth’s ecosystem, and accurately identifying their spatial distribution is essential for analyzing environmental processes, guiding land-use planning, and promoting sustainable development. Remote sensing technologies, combined with artificial intelligence algorithms, offer new opportunities for the efficient interpretation of geological features. However, in areas with dense vegetation coverage, the information directly extracted from single-source optical imagery is limited, thereby constraining interpretation accuracy. Supplementary inputs such as synthetic aperture radar (SAR), topographic features, and texture information—collectively referred to as sensitive features and prior knowledge—can improve interpretation, but their effectiveness varies significantly across time and space. This variability often leads to inconsistent performance in general-purpose models, thus limiting their practical applicability. To address these challenges, we construct a geological element interpretation dataset for Northwest China by incorporating multi-source data, including Sentinel-1 SAR imagery, Sentinel-2 multispectral imagery, sensitive features (such as the digital elevation model (DEM), texture features based on the gray-level co-occurrence matrix (GLCM), geological maps (GMs), and the normalized difference vegetation index (NDVI)), as well as prior knowledge (such as base geological maps). Using five mainstream deep learning models, we systematically evaluate the performance improvement brought by various sensitive features and prior knowledge in remote sensing-based geological interpretation. To handle disparities in spatial resolution, temporal acquisition, and noise characteristics across sensors, we further develop a multi-source complement-driven network (MCDNet) that integrates an improved feature rectification module (IFRM) and an attention-enhanced fusion module (AFM) to achieve effective cross-modal alignment and noise suppression. Experimental results demonstrate that the integration of multi-source sensitive features and prior knowledge leads to a 2.32–6.69% improvement in mIoU for geological elements interpretation, with base geological maps and topographic features contributing most significantly to accuracy gains. Full article
(This article belongs to the Special Issue Multimodal Remote Sensing Data Fusion, Analysis and Application)
Show Figures

Figure 1

20 pages, 9135 KB  
Article
Kolmogorov–Arnold Networks for Interpretable Crop Yield Prediction Across the U.S. Corn Belt
by Mustafa Serkan Isik, Ozan Ozturk and Mehmet Furkan Celik
Remote Sens. 2025, 17(14), 2500; https://doi.org/10.3390/rs17142500 - 18 Jul 2025
Viewed by 1527
Abstract
Accurate crop yield prediction is essential for stabilizing food supply chains and reducing the uncertainties in financial risks related to agricultural production. Yet, it is even more essential to understand how crop yield models make predictions depending on their relationship to Earth Observation [...] Read more.
Accurate crop yield prediction is essential for stabilizing food supply chains and reducing the uncertainties in financial risks related to agricultural production. Yet, it is even more essential to understand how crop yield models make predictions depending on their relationship to Earth Observation (EO) indicators. This study presents a state-of-the-art explainable artificial intelligence (XAI) method to estimate corn yield prediction over the Corn Belt in the continental United States (CONUS). We utilize the recently introduced Kolmogorov–Arnold Network (KAN) architecture, which offers an interpretable alternative to the traditional Multi-Layer Perceptron (MLP) approach by utilizing learnable spline-based activation functions instead of fixed ones. By including a KAN in our crop yield prediction framework, we are able to achieve high prediction accuracy and identify the temporal drivers behind crop yield variability. We create a multi-source dataset that includes biophysical parameters along the crop phenology, as well as meteorological, topographic, and soil parameters to perform end-of-season and in-season predictions of county-level corn yields between 2016–2023. The performance of the KAN model is compared with the commonly used traditional machine learning (ML) models and its architecture-wise equivalent MLP. The KAN-based crop yield model outperforms the other models, achieving an R2 of 0.85, an RMSE of 0.84 t/ha, and an MAE of 0.62 t/ha (compared to MLP: R2 = 0.81, RMSE = 0.95 t/ha, and MAE = 0.71 t/ha). In addition to end-of-season predictions, the KAN model also proves effective for in-season yield forecasting. Notably, even three months prior to harvest, the KAN model demonstrates strong performance in in-season yield forecasting, achieving an R2 of 0.82, an MAE of 0.74 t/ha, and an RMSE of 0.98 t/ha. These results indicate that the model maintains a high level of explanatory power relative to its final performance. Overall, these findings highlight the potential of the KAN model as a reliable tool for early yield estimation, offering valuable insights for agricultural planning and decision-making. Full article
Show Figures

Figure 1

26 pages, 3615 KB  
Article
Soil Organic Carbon Mapping Through Remote Sensing and In Situ Data with Random Forest by Using Google Earth Engine: A Case Study in Southern Africa
by Javier Bravo-García, Juan Mariano Camarillo-Naranjo, Francisco José Blanco-Velázquez and María Anaya-Romero
Land 2025, 14(7), 1436; https://doi.org/10.3390/land14071436 - 9 Jul 2025
Cited by 2 | Viewed by 1425
Abstract
This study, conducted within the SteamBioAfrica project, assessed the potential of Digital Soil Mapping (DSM) to estimate Soil Organic Carbon (SOC) across key regions of southern Africa: Otjozondjupa and Omusati (Namibia), Chobe (Botswana), and KwaZulu-Natal (South Africa). Random Forest (RF) models were implemented [...] Read more.
This study, conducted within the SteamBioAfrica project, assessed the potential of Digital Soil Mapping (DSM) to estimate Soil Organic Carbon (SOC) across key regions of southern Africa: Otjozondjupa and Omusati (Namibia), Chobe (Botswana), and KwaZulu-Natal (South Africa). Random Forest (RF) models were implemented in the Google Earth Engine (GEE) environment, integrating multi-source datasets including real-time Sentinel-2 imagery, topographic variables, climatic data, and regional soil samples. Three model configurations were evaluated: (A) climatic, topographic, and spectral data; (B) topographic and spectral data; and (C) spectral data only. Model A achieved the highest overall accuracy (R2 up to 0.78), particularly in Otjozondjupa, whereas Model B resulted in the lowest RMSE and MAE. Model C exhibited poorer performance, underscoring the importance of multi-source data integration. SOC variability was primarily influenced by elevation, precipitation, temperature, and Sentinel-2 bands B11 and B8. However, data scarcity and inconsistent sampling, especially in Chobe, reduced model reliability (R2: 0.62). The originality of this study lay in the scalable integration of real-time Sentinel-2 data with regional datasets in an open-access framework. The resulting SOC maps provided actionable insights for land-use planning and climate adaptation in savanna ecosystems. Full article
(This article belongs to the Special Issue Digital Earth and Remote Sensing for Land Management)
Show Figures

Figure 1

17 pages, 15661 KB  
Article
A Powerful Approach in Visualization: Creating Photorealistic Landscapes with AI
by Gusztáv Jakab, Enikő Magyari, Benedek Jakab and Gábor Timár
Land 2025, 14(7), 1430; https://doi.org/10.3390/land14071430 - 8 Jul 2025
Cited by 1 | Viewed by 4254
Abstract
Landscape visualization plays a crucial role in various scientific and artistic fields, including geography, environmental sciences, and digital arts. Recent advancements in computer graphics have enabled more sophisticated approaches to landscape representation. The integration of artificial intelligence (AI) image generation has further improved [...] Read more.
Landscape visualization plays a crucial role in various scientific and artistic fields, including geography, environmental sciences, and digital arts. Recent advancements in computer graphics have enabled more sophisticated approaches to landscape representation. The integration of artificial intelligence (AI) image generation has further improved accessibility for researchers, allowing efficient creation of landscape visualizations. This study presents a comprehensive workflow for the rapid and cost-effective generation of photorealistic still images. The methodology combines AI applications, computational techniques, and photographic methods to reconstruct the historical landscapes of the Great Hungarian Plain, one of Europe’s most significantly altered regions. The most accurate and visually compelling results are achieved by using historical maps and drone imagery as compositional and stylistic references, alongside a suite of AI tools tailored to specific tasks. These high-quality landscape visualizations offer significant potential for scientific research and public communication, providing both aesthetic and informative value. The article, which primarily presents a methodological description, does not contain numerical results. To test the method, we applied a procedure: we ran the algorithm on a current topographic map of a sample area and compared the resulting image with the view model provided by Google Earth. Full article
(This article belongs to the Special Issue Integration of Remote Sensing and GIS for Land Use Change Assessment)
Show Figures

Figure 1

16 pages, 3817 KB  
Article
Machine Learning and Morphometric Analysis for Evaluating the Vulnerability of Tundra Landscapes to Thermokarst Hazards in the Lena Delta: A Case Study of Arga Island
by Andrei Kartoziia
GeoHazards 2025, 6(2), 31; https://doi.org/10.3390/geohazards6020031 - 13 Jun 2025
Cited by 1 | Viewed by 1229
Abstract
Analyses of thermokarst hazard risk are becoming increasingly crucial in the context of global warming. A significant aspect of thermokarst research is the mapping of landscapes based on their vulnerability to thermokarst processes. The exponential growth of remote sensing data and the advent [...] Read more.
Analyses of thermokarst hazard risk are becoming increasingly crucial in the context of global warming. A significant aspect of thermokarst research is the mapping of landscapes based on their vulnerability to thermokarst processes. The exponential growth of remote sensing data and the advent of novel techniques have paved the way for the creation of sophisticated techniques for the study of natural disasters, including thermokarst phenomena. This study applies machine learning techniques to assess the vulnerability of tundra landscapes to thermokarst by integrating supervised classification using random forest with morphometric analysis based on the Topography Position Index. We recognized that the thermokarst landscape with the greatest potential for future permafrost thawing occupies 20% of the study region. The thermokarst-affected terrains and water bodies located in the undegraded uplands account for 13% of the total area, while those in depressions and valleys account for 44%. A small part (6%) of the study region represents areas with stable terrains within depressions and valleys that underwent topographic alterations and are likely to maintain stability in the future. This approach enables big geodata-driven predictive modeling of permafrost hazards, improving thermokarst risk assessment. It highlights machine learning and Google Earth Engine’s potential for forecasting landscape transformations in vulnerable Arctic regions. Full article
Show Figures

Figure 1

24 pages, 11224 KB  
Article
Geographical Storytelling: Towards Digital Landscapes in the Footsteps of Cuchlaine King
by W. Brian Whalley
Geographies 2025, 5(2), 25; https://doi.org/10.3390/geographies5020025 - 12 Jun 2025
Cited by 1 | Viewed by 2109
Abstract
An information content approach is taken to producing a ‘digital description’ of a landscape utilising georeferencing within Digital Earth. A general view of the geomorphology of ‘northern England’ is used as a discussion area. Data points are geolocated using decimal latitude-longitude (dLL) that [...] Read more.
An information content approach is taken to producing a ‘digital description’ of a landscape utilising georeferencing within Digital Earth. A general view of the geomorphology of ‘northern England’ is used as a discussion area. Data points are geolocated using decimal latitude-longitude (dLL) that can be used as recording and search items in the literature, information landscapes, or ‘information fields’. Investigations, whether about landforms, events, sampling points, material properties, or dates, provide an ‘information set’ about geo-referenced points. Using the dLL format, such points also provide the basis for starts of transects and data points on topographic surfaces. The data sites provide an ‘information field’ about the area of interest and examples are given in the information landscape. The work of the late Cuchlaine King, physical geographer and geomorphologist, is used as examples of this information field approach by setting landforms and investigations into digitized physical landscapes. The paper also suggests ways of extending the information field idea to cover previous investigations and the possible implementation of Large Language Geographical Models in the employment of ‘big data’. The FAIR data principles of findability, accessibility, interoperability, and reusability are germane to the development of such models and their use. Full article
(This article belongs to the Special Issue Large Language Models in Geographic Information)
Show Figures

Figure 1

24 pages, 17549 KB  
Article
Rapid Large-Scale Monitoring of Pine Wilt Disease Using Sentinel-1/2 Images in GEE
by Junjun Zhi, Lin Li, Yifan Fang, Dandan Zhi, Yi Guang, Wangbin Liu, Lean Qu, Xinwu Fu and Haoshan Zhao
Forests 2025, 16(6), 981; https://doi.org/10.3390/f16060981 - 11 Jun 2025
Cited by 1 | Viewed by 648
Abstract
Pine wilt disease (PWD) is a severe forest disease caused by the infestation of pine wood nematodes. Due to its short disease cycle and strong transmission ability, it has caused significant damage to China’s forestry resources. To achieve large-scale monitoring of PWD, this [...] Read more.
Pine wilt disease (PWD) is a severe forest disease caused by the infestation of pine wood nematodes. Due to its short disease cycle and strong transmission ability, it has caused significant damage to China’s forestry resources. To achieve large-scale monitoring of PWD, this study utilized machine learning/deep learning algorithms with Sentinel-1/2 images in the Google Earth Engine cloud platform to implement province-wide PWD monitoring in Anhui Province, China. The study also analyzed the spatial distribution of PWD in Anhui Province from two perspectives—spatiotemporal patterns and influencing factors—aiming to investigate the spatiotemporal evolution patterns and the impact of influencing factors on the occurrence of PWD. The results show that (1) the random forest model exhibited the strongest performance, followed by the CNN model, while the DNN model performed the worst. Using the RF model to monitor PWD and calculate the affected area in Anhui Province from 2019 to 2024 yielded errors within 30% compared to official statistics. (2) PWD in Anhui Province showed a clear clustering trend, with global Moran’s indices all exceeding 0.79 from 2019 to 2024. The LISA map revealed a spread pattern from south to north and from west to east. (3) Topographic and temperature factors had the greatest influence on PWD distribution. SHAP analysis indicated that topographic and climatic factors were the primary drivers of PWD-affected areas, with slope and temperature being the two most significant contributing factors. This study helps to rapidly and accurately identify outbreak areas during epidemics and enables precise quarantine measures and targeted control efforts. Full article
(This article belongs to the Special Issue Advances in Pine Wilt Disease)
Show Figures

Figure 1

40 pages, 4088 KB  
Article
Multi-Sensor Fusion and Machine Learning for Forest Age Mapping in Southeastern Tibet
by Zelong Chi and Kaipeng Xu
Remote Sens. 2025, 17(11), 1926; https://doi.org/10.3390/rs17111926 - 1 Jun 2025
Cited by 2 | Viewed by 1221
Abstract
Forest age is a key factor in determining the carbon sequestration capacity and trends of forests. Based on the Google Earth Engine platform and using the topographically complex and climatically diverse Southeastern Tibet as the study area, we propose a new method for [...] Read more.
Forest age is a key factor in determining the carbon sequestration capacity and trends of forests. Based on the Google Earth Engine platform and using the topographically complex and climatically diverse Southeastern Tibet as the study area, we propose a new method for forest age estimation that integrates multi-source remote-sensing data with machine learning. The study employs the Continuous Degradation Detection (CODED) algorithm combined with spectral unmixing models and Normalized Difference Fraction Index (NDFI) time series analysis to update forest disturbance information and provide annual forest distribution, mapping young forest distribution. For undisturbed forests, we compared 12 machine-learning models and selected the Random Forest model for age prediction. The input variables include multiscale satellite spectral bands (Sentinel-2 MSI, Landsat series, PROBA-V, MOD09A1), vegetation parameter products (canopy height, productivity), data from the Global Ecosystem Dynamics Investigation (GEDI), multi-band SAR data (C/L), vegetation indices (e.g., NDVI, LAI, FPAR), and environmental factors (climate seasonality, topography). The results indicate that the forests in Southeastern Tibet are predominantly overmature (>120 years), accounting for 87% of the total forest cover, while mature (80–120 years), sub-mature (60–80 years), intermediate-aged (40–60 years), and young forests (< 40 years) represent relatively lower proportions at 9%, 1%, 2%, and 1%, respectively. Forest age exhibits a moderate positive correlation with stem biomass (r = 0.54) and leaf-area index (r = 0.53), but weakly negatively correlated with L-band radar backscatter (HV polarization, r = −0.18). Significant differences in reflectance among different age groups are observed in the 500–1000 nm spectral band, with 100 m resolution PROBA-V data being the most suitable for age prediction. The Random Forest model achieved an overall accuracy of 62% on the independent validation set, with canopy height, L-band radar data, and temperature seasonality being the most important predictors. Compared with 11 other machine-learning models, the Random Forest model demonstrated higher accuracy and stability in estimating forest age under complex terrain and cloudy conditions. This study provides an expandable technical framework for forest age estimation in complex terrain areas, which is of significant scientific and practical value for sustainable forest resource management and global forest resource monitoring. Full article
Show Figures

Figure 1

Back to TopTop