Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (360)

Search Parameters:
Keywords = eHsp70

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 3421 KiB  
Article
Bisphenol E Neurotoxicity in Zebrafish Larvae: Effects and Underlying Mechanisms
by Kaicheng Gu, Lindong Yang, Yi Jiang, Zhiqiang Wang and Jiannan Chen
Biology 2025, 14(8), 992; https://doi.org/10.3390/biology14080992 (registering DOI) - 4 Aug 2025
Abstract
As typical environmental hormones, endocrine-disrupting chemicals (EDCs) have become a global environmental health issue of high concern due to their property of interfering with the endocrine systems of organisms. As a commonly used substitute for bisphenol A (BPA), bisphenol E (BPE) has been [...] Read more.
As typical environmental hormones, endocrine-disrupting chemicals (EDCs) have become a global environmental health issue of high concern due to their property of interfering with the endocrine systems of organisms. As a commonly used substitute for bisphenol A (BPA), bisphenol E (BPE) has been frequently detected in environmental matrices such as soil and water in recent years. Existing research has unveiled the developmental and reproductive toxicity of BPE; however, only one in vitro cellular experiment has preliminarily indicated potential neurotoxic risks, with its underlying mechanisms remaining largely unelucidated in the current literature. Potential toxic mechanisms and action targets of BPE were predicted using the zebrafish model via network toxicology and molecular docking, with RT-qPCRs being simultaneously applied to uncover neurotoxic effects and associated mechanisms of BPE. A significant decrease (p < 0.05) in the frequency of embryonic spontaneous movements was observed in zebrafish at exposure concentrations ≥ 0.01 mg/L. At 72 hpf and 144 hpf, the larval body length began to shorten significantly from 0.1 mg/L to 1 mg/L, respectively (p < 0.01), accompanied by a reduced neuronal fluorescence intensity and a shortened neural axon length (p < 0.01). By 144 hpf, the motor behavior in zebrafish larvae was inhibited. Through network toxicology and molecular docking, HSP90AB1 was identified as the core target, with the cGMP/PKG signaling pathway determined to be the primary route through which BPE induces neurotoxicity in zebrafish larvae. BPE induces neuronal apoptosis and disrupts neurodevelopment by inhibiting the cGMP/PKG signaling pathway, ultimately suppressing the larval motor behavior. To further validate the experimental outcomes, we measured the expression levels of genes associated with neurodevelopment (elavl3, mbp, gap43, syn2a), serotonergic synaptic signaling (5-ht1ar, 5-ht2ar), the cGMP/PKG pathway (nos3), and apoptosis (caspase-3, caspase-9). These results offer crucial theoretical underpinnings for evaluating the ecological risks of BPE and developing environmental management plans, as well as crucial evidence for a thorough comprehension of the toxic effects and mechanisms of BPE on neurodevelopment in zebrafish larvae. Full article
(This article belongs to the Special Issue Advances in Aquatic Ecological Disasters and Toxicology)
Show Figures

Graphical abstract

24 pages, 9486 KiB  
Article
StMAPKK1 Enhances Thermotolerance in Potato (Solanum tuberosum L.) by Enhancing Antioxidant Defense and Photosynthetic Efficiency Under Heat Stress
by Xi Zhu, Yasir Majeed, Kaitong Wang, Xiaoqin Duan, Nengkang Guan, Junfu Luo, Haifei Zheng, Huafen Zou, Hui Jin, Zhuo Chen and Yu Zhang
Plants 2025, 14(15), 2289; https://doi.org/10.3390/plants14152289 - 24 Jul 2025
Viewed by 281
Abstract
The functional role of MAPKK genes in potato (Solanum tuberosum L.) under high-temperature stress remains unexplored, despite their critical importance in stress signaling and yield protection. We characterized StMAPKK1, a novel group D MAPKK localized to plasma membrane/cytoplasm. Quantitative real-time polymerase chain [...] Read more.
The functional role of MAPKK genes in potato (Solanum tuberosum L.) under high-temperature stress remains unexplored, despite their critical importance in stress signaling and yield protection. We characterized StMAPKK1, a novel group D MAPKK localized to plasma membrane/cytoplasm. Quantitative real-time polymerase chain reaction (qRT-PCR) revealed cultivar-specific upregulation in potato (‘Atlantic’ and ‘Desiree’) leaves under heat stress (25 °C, 30 °C, and 35 °C). Transgenic lines overexpressing (OE) StMAPKK1 exhibited elevated antioxidant enzyme activity, including ascorbate peroxidase (APX), catalase (CAT), superoxide dismutase (SOD), and peroxidase (POD), mitigating oxidative damage. Increased proline and chlorophyll accumulation and reduced oxidative stress markers, hydrogen peroxide (H2O2) and malondialdehyde (MDA), indicate improved cellular redox homeostasis. The upregulation of key antioxidant and heat stress-responsive genes (StAPX, StCAT1/2, StPOD12/47, StFeSOD2/3, StMnSOD, StCuZnSOD1/2, StHSFA3 and StHSP20/70/90) strengthened the enzymatic defense system, enhanced thermotolerance, and improved photosynthetic efficiency, with significant improvements in net photosynthetic rate (Pn), transpiration rate (E), and stomatal conductance (Gs) under heat stress (35 °C) in StMAPKK1-OE plants. Superior growth and biomass (plant height, plant and its root fresh and dry weights, and tuber yield) accumulation, confirming the positive role of StMAPKK1 in thermotolerance. Conversely, RNA interference (RNAi)-mediated suppression of StMAPKK1 led to a reduction in enzymatic activity, proline content, and chlorophyll levels, exacerbating oxidative stress. Downregulation of antioxidant-related genes impaired ROS scavenging capacity and declines in photosynthetic efficiency, growth, and biomass, accompanied by elevated H2O2 and MDA accumulation, highlighting the essential role of StMAPKK1 in heat stress adaptation. These findings highlight StMAPKK1’s potential as a key genetic target for breeding heat-tolerant potato varieties, offering a foundation for improving crop resilience in warming climates. Full article
(This article belongs to the Special Issue Cell Physiology and Stress Adaptation of Crops)
Show Figures

Figure 1

21 pages, 12098 KiB  
Article
Genome-Wide Identification and Expression Analysis of Hsp70 Gene Family of Procambarus clarkii Reveals Its Immune Role in Response to Bacterial Challenge After Non-Lethal Heat Shock
by Xin Zhang, Xiuhong Cai, Shirui Yue, Zhangxuan Chen, Yulong Sun, Lei Cheng, Yewen Xi and Shunchang Wang
Animals 2025, 15(14), 2150; https://doi.org/10.3390/ani15142150 - 21 Jul 2025
Viewed by 291
Abstract
Water temperature significantly affects the physiological balance of aquatic organisms like crustaceans, and heat shock proteins (HSPs) are crucial for stress resistance and pathogen defense. This study conducted a genome-wide analysis to explore the functional characteristics of the Hsp70 gene family in Procambarus [...] Read more.
Water temperature significantly affects the physiological balance of aquatic organisms like crustaceans, and heat shock proteins (HSPs) are crucial for stress resistance and pathogen defense. This study conducted a genome-wide analysis to explore the functional characteristics of the Hsp70 gene family in Procambarus clarkii. Fifteen Hsp70 family members were identified, with several genes showing upregulation under non-lethal heat shock (NLHS) and pathogen challenges. RNA-Seq and qPCR analyses confirmed increased expression of certain PcHsp70s during NLHS, indicating NLHS activation of the Hsp70 family to enhance immune regulation. dsRNA-mediated silencing of Hsp70 led to downregulation of TLR pathway genes (e.g., TLR1, TLR6), suggesting Hsp70 regulates the TLR signaling pathway for immune responses. These findings reveal that NLHS-induced Hsp70 upregulation improves pathogen resistance, offering insights for addressing temperature fluctuations and disease outbreaks in aquaculture to optimize management practices. Full article
Show Figures

Figure 1

14 pages, 1607 KiB  
Article
Characterization and Expression Analysis of the Sterol C-5 Desaturase Gene PcERG3 in the Mycobiont of the Lichen Peltigera canina Under Abiotic Stresses
by Moatasem A. Swid, Milana V. Koulintchenko, Alfred O. Onele, Ilya Y. Leksin, Daniya F. Rakhmatullina, Ekaterina I. Galeeva, Julia N. Valitova, Farida V. Minibayeva and Richard P. Beckett
Microbiol. Res. 2025, 16(7), 139; https://doi.org/10.3390/microbiolres16070139 - 1 Jul 2025
Viewed by 284
Abstract
Lichens, symbiotic organisms with a high tolerance to harsh environments, possess a greater diversity of sterols than other organisms. Sterols are involved in maintaining membrane integrity, hormone biosynthesis, and signal transduction. (1) Background: A characteristic feature of lichen sterols is a high degree [...] Read more.
Lichens, symbiotic organisms with a high tolerance to harsh environments, possess a greater diversity of sterols than other organisms. Sterols are involved in maintaining membrane integrity, hormone biosynthesis, and signal transduction. (1) Background: A characteristic feature of lichen sterols is a high degree of unsaturation, which influences membrane properties. Desaturases play an important role in the synthesis of unsaturated sterols, in particular, sterol C-5 desaturase (ERG3), which controls the conversion of episterol to ergosterol. Earlier, we demonstrated that the treatment of the lichen Peltigera canina with low and elevated temperatures results in changes in the levels of episterol and ergosterol. (2) Methods: Here, for the first time, we identified ERG3 in P. canina and, using an in silico analysis, we showed that PcERG3 belongs to the superfamily of fatty acid hydrolyases. A phylogenetic analysis was conducted to determine the evolutionary relationships of PcERG3. (3) Results: A phylogenetic analysis showed that PcERG3 clusters with ERG3 from other Peltigeralian and non-Peltigeralian lichens and also with ERG3 from free-living fungi. This suggests that PcERG3 has an ancient evolutionary origin and is related to fungi with lichenized ancestors, e.g., Penicillium. The differential expression of PcERG3 in response to temperature stress, a dehydration/rehydration cycle, and heavy metal exposure suggests that it plays a crucial role in maintaining the balance between more and less saturated sterols and, more generally, in membrane functioning. The multifaceted response of P. canina to abiotic stresses was documented by simultaneously measuring changes in the expression of PcERG3, as well as the genes encoding the heat shock proteins, PcHSP20 and PcHSP98, and PcSOD1, which encodes the antioxidant enzyme superoxide dismutase. (4) Conclusions: These findings suggest that PcERG3 is similar to the sterol C-5 desaturases from related and free-living fungi and plays important roles in the molecular mechanisms underlying the tolerance of lichens to environmental stress. Full article
Show Figures

Figure 1

21 pages, 10268 KiB  
Article
Identification and Bioinformatics Analysis of the HSP20 Family in the Peony
by Haoran Ma, Heling Yuan, Wenxuan Bu, Minhuan Zhang, Yu Huang, Jian Hu and Jiwu Cao
Genes 2025, 16(7), 742; https://doi.org/10.3390/genes16070742 - 26 Jun 2025
Viewed by 359
Abstract
Background: The peony (Paeonia suffruticosa Andr.), a globally valued woody ornamental species, suffers severe heat-induced floral damage that compromises its horticultural value. While the HSP20 proteins are critical for plant thermotolerance, their genomic organization and regulatory dynamics remain uncharacterized in the peony. [...] Read more.
Background: The peony (Paeonia suffruticosa Andr.), a globally valued woody ornamental species, suffers severe heat-induced floral damage that compromises its horticultural value. While the HSP20 proteins are critical for plant thermotolerance, their genomic organization and regulatory dynamics remain uncharacterized in the peony. This study aims to systematically identify the PsHSP20 genes, resolve their molecular features, and elucidate their heat-responsive expression patterns to enable targeted thermotolerance breeding. Methods: The genome-wide identification employed HMMER and BLASTP searches against the peony genome. The physicochemical properties and protein structures of the gene family were analyzed using online websites, such as Expasy, Plant-mPLoc, and SOPMA. The cis-regulatory elements were predicted using PlantCARE. Expression profiles under different times of 40 °C heat stress were validated by qRT-PCR (p < 0.05). Results: We identified 58 PsHSP20 genes, classified into 11 subfamilies. All members retain the conserved α-crystallin domain, and exhibit predominant nuclear/cytoplasmic localization. Chromosomal mapping revealed uneven distribution without lineage-specific duplications. The promoters were enriched in stress-responsive elements (e.g., HSE, ABRE) and in 24 TF families. The protein networks linked 13 PsHSP20s to co-expressed partners in heat response (GO:0009408) and ER protein processing (KEGG:04141). Transcriptomics demonstrated rapid upregulation of 48 PsHSP20s within 2 h of heat exposure, with PsHSP20-12, -34, and -51 showing the highest induction (>15-fold) at 6 h/24 h. Conclusions: This first genome-wide study resolves the architecture and heat-responsive dynamics of the PsHSP20 family. The discovery of early-induced genes (PsHSP20-12/-34/-51) provides candidates for thermotolerance enhancement. These findings establish a foundation for molecular breeding in the peony. Full article
(This article belongs to the Section Plant Genetics and Genomics)
Show Figures

Figure 1

26 pages, 935 KiB  
Review
Modulation of Heat Shock Proteins Levels in Health and Disease: An Integrated Perspective in Diagnostics and Therapy
by Elena Mikhailova, Alexandra Sokolenko, Stephanie E. Combs and Maxim Shevtsov
Cells 2025, 14(13), 979; https://doi.org/10.3390/cells14130979 - 25 Jun 2025
Viewed by 883
Abstract
Heat shock proteins belong to a highly conserved family of chaperone proteins, and in addition to their participation in the regulation of cellular proteostasis (folding of polypeptides and proteins, disaggregation of incorrectly folded peptides, and participation in autophagy processes), also play a significant [...] Read more.
Heat shock proteins belong to a highly conserved family of chaperone proteins, and in addition to their participation in the regulation of cellular proteostasis (folding of polypeptides and proteins, disaggregation of incorrectly folded peptides, and participation in autophagy processes), also play a significant immunomodulatory role in both innate and adaptive immunity. Changes in the HSP level, both downwards (e.g., in neurodegenerative diseases) and upwards (e.g., autoimmune, oncological diseases), underlie the pathogenesis of many somatic and oncological pathologies. In this review, we consider the main physiological mechanisms of HSP level regulation and also analyze pharmacological, genetically engineered methods of modulating the chaperone level, citing the advantages and disadvantages of a particular method of influence. In conclusion, modulation of the HSP level, according to numerous preclinical studies, can have a significant impact on the course of various pathological conditions, which, in turn, can be used to develop new therapeutic approaches, when the effect on the level of chaperones can be used as monotherapy or as an adjuvant method of action. Full article
(This article belongs to the Special Issue Heat Shock Proteins and Human Cancers)
Show Figures

Graphical abstract

15 pages, 1870 KiB  
Article
Transcriptome Analyses Reveal the Molecular Response of Juvenile Greater Amberjack (Seriola dumerili) to Marine Heatwaves
by Yali Tian, Liancheng Li, Hongzhao Long, Dongying Zhang, Chen Wang, Ruijuan Hao, Hang Li, Xiaoying Ru, Qiuxia Deng, Qin Hu, Yang Huang and Chunhua Zhu
Animals 2025, 15(13), 1871; https://doi.org/10.3390/ani15131871 - 24 Jun 2025
Viewed by 422
Abstract
Marine heatwaves (MHWs) have recently become more frequent, intense, and prolonged, posing significant threats to marine life and fisheries. In this study, transcriptomic analysis was employed to investigate the genes and pathways in Seriola dumerili that respond to MHW-induced stress at 28 °C [...] Read more.
Marine heatwaves (MHWs) have recently become more frequent, intense, and prolonged, posing significant threats to marine life and fisheries. In this study, transcriptomic analysis was employed to investigate the genes and pathways in Seriola dumerili that respond to MHW-induced stress at 28 °C (T28) and 32 °C (T32), using 24 °C (T24) as the control. Transcriptome sequencing revealed that 17 differentially expressed genes (DEGs) belonging to the heat shock protein (HSP) families—HSP30, HSP40, HSP70, and HSP90—were significantly upregulated under short-lasting MHW stress in the T24-4d vs. T32-4d comparison. Additionally, genes related to oxidative stress (e.g., protein disulfide isomerase family A member 6 [pdia6]), immune responses (e.g., interferon regulatory factor 5 [irf5]), and energy metabolism (e.g., hexokinase-1 [hk1]) were also identified. Enrichment analysis of DEGs in the T24-4d vs. T32-4d group revealed that S. dumerili exhibited adaptive responses to MHWs through the upregulation of HSPs and the activation of antioxidant, energy metabolism, and immune response pathways. However, in the T24-13d vs. T32-13d group, DEGs associated with these pathways were either not significantly expressed or were downregulated. These findings indicate that S. dumerili is unable to sustain its adaptive responses under repeated, intense MHW exposure, resulting in the disorder of its antioxidant defense system, immune suppression, and metabolic dysfunction. This study provides valuable insights into the molecular responses of S. dumerili to MHWs and supports the selection for thermal resistance in this species. Full article
(This article belongs to the Special Issue Omics in Economic Aquatic Animals)
Show Figures

Figure 1

19 pages, 894 KiB  
Article
Serum IgE and IgA Levels in Pediatric Henoch–Schönlein Purpura: Clinical Characteristics and Immunological Correlations in the Context of Infectious Diseases—A Five-Year Retrospective Analysis
by Sînziana Oprițescu, Gabriela Viorela Nițescu, Mihaela Golumbeanu, Dora Boghițoiu, Elena Iuliana Ioniță, Monica Licu, Larisa-Marina-Elisabeth Chirigiu, Violeta Popovici, Loredana-Maria Marin and Elena Moroșan
Int. J. Mol. Sci. 2025, 26(13), 6053; https://doi.org/10.3390/ijms26136053 - 24 Jun 2025
Viewed by 490
Abstract
Immunoglobulin A vasculitis (IgAV), previously known as Henoch–Schönlein purpura (HSP), is a type of non-thrombocytopenic small-vessel vasculitis. HSP is the most common systemic vasculitis in pediatric patients, and it is characterized by purpura, arthritis or arthralgia, gastrointestinal pain, and renal dysfunction. This retrospective [...] Read more.
Immunoglobulin A vasculitis (IgAV), previously known as Henoch–Schönlein purpura (HSP), is a type of non-thrombocytopenic small-vessel vasculitis. HSP is the most common systemic vasculitis in pediatric patients, and it is characterized by purpura, arthritis or arthralgia, gastrointestinal pain, and renal dysfunction. This retrospective analysis also examines a range of demographic factors, including sex, geographic and environmental influences, age, and medication, to evaluate their potential effects on the pediatric population affected by HSP. The five-year hospital-based retrospective analysis included 138 hospitalized children diagnosed with HSP during hospitalization. Blood sample analysis was conducted to assess various immunological parameters, including levels of immunoglobulins (IgA and IgE), complement components (C3 and C4), C-reactive protein, fibrinogen, the erythrocyte sedimentation rate (ESR), and allergen panels. Elevated IgE levels and normal IgA serum concentrations were found to be strongly associated with infectious diseases in pediatric HSP patients. Patients with recurrent infectious diseases consistently exhibited elevated IgE levels and normal IgA levels during treatment despite no identified allergens, alongside an increased risk of disease recurrence. Full article
(This article belongs to the Special Issue Molecular Mechanisms of Allergy and Asthma: 3rd Edition)
Show Figures

Figure 1

16 pages, 1963 KiB  
Article
Characterization and Functional Analysis of Small Heat Shock Protein Genes (Hsp22.2 and Hsp26.7) in Sitodiplosis mosellana Diapause
by Qitong Huang, Qian Ma, Xiaobin Liu, Keyan Zhu-Salzman and Weining Cheng
Insects 2025, 16(7), 649; https://doi.org/10.3390/insects16070649 - 20 Jun 2025
Viewed by 571
Abstract
Small heat shock proteins (sHsps) play crucial roles in organismal adaptation to stress tolerance. Sitodiplosis mosellana, a devastating insect wheat pest, undergoes long obligatory larval diapause to survive temperature extremes during summer and winter. To elucidate the function of sHsps in this [...] Read more.
Small heat shock proteins (sHsps) play crucial roles in organismal adaptation to stress tolerance. Sitodiplosis mosellana, a devastating insect wheat pest, undergoes long obligatory larval diapause to survive temperature extremes during summer and winter. To elucidate the function of sHsps in this process, two sHsp-encoding genes (SmHsp22.2 and SmHsp26.7) were characterized from S. mosellana, and their responsiveness to diapause and thermal stress, as well as their roles in cold stress, was analyzed. Both SmHsp22.2 and SmHsp26.7 possessed the canonical α-crystallin domain and lacked introns. Quantitative PCR indicated significant upregulation of SmHsp22.2 and SmHsp26.7 during diapause, especially in summer and winter. Notably, SmHsp22.2 exhibited higher expression in summer relative to winter, whereas SmHsp26.7 showed the opposite profile. Moreover, short-term heat shock (≥35 °C) in over-summering larvae or cold shock (≤−10 °C) in over-wintering larvae was found to trigger transcriptional upregulation of both genes, while prolonged temperature extremes (i.e., 45–50 °C or −15 °C) did not elicit a comparable response. RNA interference-mediated knockdown of both genes significantly increased the mortality of S. mosellana larvae under cold stress. These findings indicate the importance of both SmHsps in diapause and environmental adaptation in S. mosellana. Full article
(This article belongs to the Special Issue RNAi in Insect Physiology)
Show Figures

Graphical abstract

31 pages, 5067 KiB  
Article
Computational Insights into the Polypharmacological Landscape of BCR-ABL Inhibitors: Emphasis on Imatinib and Nilotinib
by Rima Hajjo, Dima A. Sabbah, Raghad Alhaded, Aye Alquabe’h and Sanaa K. Bardaweel
Pharmaceuticals 2025, 18(7), 936; https://doi.org/10.3390/ph18070936 - 20 Jun 2025
Viewed by 445
Abstract
Background: BCR-ABL inhibitors such as imatinib and nilotinib exhibit multi-kinase activity that extends beyond oncology, offering significant potential for drug repurposing. Objectives: This study aims to systematically evaluate and prioritize the repurposing potential of BCR-ABL inhibitors, particularly imatinib and nilotinib. Methods: An integrated [...] Read more.
Background: BCR-ABL inhibitors such as imatinib and nilotinib exhibit multi-kinase activity that extends beyond oncology, offering significant potential for drug repurposing. Objectives: This study aims to systematically evaluate and prioritize the repurposing potential of BCR-ABL inhibitors, particularly imatinib and nilotinib. Methods: An integrated pharmacoinformatics framework was applied to analyze seven BCR-ABL inhibitors. Structural clustering, cheminformatics analysis, and transcriptomic profiling using the Connectivity Map were employed to evaluate structural relationships, target profiles, and gene expression signatures associated with non-oncology indications. Results: Structurally, imatinib and nilotinib clustered closely, while HY-11007 exhibited distinct features. Nilotinib’s high selectivity correlated with strong transcriptional effects in neurodegeneration-related pathways (e.g., HSP90 and LYN), whereas imatinib’s broader kinase profile (PDGFR and c-KIT) was linked to fibrosis and metabolic regulation. Connectivity Map analysis identified more than 30 non-cancer indications, including known off-target uses (e.g., imatinib for pulmonary hypertension) and novel hypotheses (e.g., nilotinib for Alzheimer’s via HSPA5 modulation). A substantial portion of these predictions aligned with the existing literature, underscoring the translational relevance of the approach. Conclusions: These findings highlight the importance of integrating structure–activity relationships and transcriptomic signatures to guide rational repurposing. We propose prioritizing nilotinib for CNS disorders and imatinib for systemic fibrotic diseases, supporting their advancement into preclinical and clinical evaluation. More broadly, this framework offers a versatile platform for uncovering hidden therapeutic potential across other drug classes with complex polypharmacology. Full article
Show Figures

Figure 1

63 pages, 3732 KiB  
Review
TrypPROTACs Unlocking New Therapeutic Strategies for Chagas Disease
by Ana Luísa Rodriguez Gini, Pamela Souza Tada da Cunha, Emílio Emílio João, Chung Man Chin, Jean Leandro dos Santos, Esteban Carlos Serra and Cauê Benito Scarim
Pharmaceuticals 2025, 18(6), 919; https://doi.org/10.3390/ph18060919 - 19 Jun 2025
Viewed by 1370
Abstract
Chagas disease, caused by the protozoan parasite Trypanosoma cruzi (T. cruzi), continues to pose significant public health challenges due to the toxicity, poor tolerability, and limited efficacy of current treatments. Targeted protein degradation (TPD) using proteolysis-targeting chimeras (PROTACs) represents a novel [...] Read more.
Chagas disease, caused by the protozoan parasite Trypanosoma cruzi (T. cruzi), continues to pose significant public health challenges due to the toxicity, poor tolerability, and limited efficacy of current treatments. Targeted protein degradation (TPD) using proteolysis-targeting chimeras (PROTACs) represents a novel therapeutic avenue by leveraging the ubiquitin–proteasome system to selectively degrade essential parasite proteins. This review introduces the conceptual framework of “TrypPROTACs” as a prospective strategy for T. cruzi, integrating a comprehensive analysis of druggable targets across critical biological pathways, including ergosterol biosynthesis, redox metabolism, glycolysis, nucleotide synthesis, protein kinases, molecular chaperones such as heat shock protein 90 (Hsp90), and epigenetic regulators such as T. cruzi bromodomain factor 3 (TcBDF3). It is important to note that no TrypPROTAC compound has yet been synthesized or experimentally validated in T. cruzi; the approach discussed herein remains theoretical and forward-looking. Representative inhibitors for each target class are compiled, highlighting potency, selectivity, and structural features relevant to ligand design. We also examine the parasite’s ubiquitination machinery and compare it to the human system to identify putative E3 ubiquitin ligases. Key aspects of linker engineering and ternary complex stabilization are discussed, alongside potential validation techniques such as the cellular thermal shift assay (CETSA) and bioluminescence resonance energy transfer (NanoBRET). Collectively, these insights outline a roadmap for the rational design of TrypPROTACs and support the feasibility of expanding targeted protein degradation strategies to neglected tropical diseases. Full article
Show Figures

Graphical abstract

24 pages, 1874 KiB  
Article
Application of Hansen Solubility Parameters in the Aqueous-Ethanol Extraction of Genistein-7-O-[α-rhamnopyranosyl-(1→6)]-β-glucopyranoside from Derris scandens and Its Molecular Orbital Study on Antioxidant Activity
by Thitiporn Tantinithiphong, Wanna Eiamart, Sarin Tadtong, Suwanna Vorarat and Weerasak Samee
Int. J. Mol. Sci. 2025, 26(12), 5740; https://doi.org/10.3390/ijms26125740 - 15 Jun 2025
Viewed by 484
Abstract
This study explored the extraction of genistein-7-O-[α-rhamnopyranosyl-(1→6)]-β-glucopyranoside (GTG) from Derris scandens using an aqueous-ethanol solvent system, aiming to optimize yield and antioxidant activity. Hansen solubility parameters (HSP) were employed to determine the optimal solvent composition, with the highest GTG yield (6.83 ± 0.06 [...] Read more.
This study explored the extraction of genistein-7-O-[α-rhamnopyranosyl-(1→6)]-β-glucopyranoside (GTG) from Derris scandens using an aqueous-ethanol solvent system, aiming to optimize yield and antioxidant activity. Hansen solubility parameters (HSP) were employed to determine the optimal solvent composition, with the highest GTG yield (6.83 ± 0.06 mg/g dried weight) obtained from 50% ethanol—correlating well with HSP predictions. Ultrasonic extraction was most effective with solvents having a dielectric constant between 50 and 60. The antioxidant potential of isolated GTG was evaluated using the DPPH assay, which yielded an IC50 of 87.86 ± 1.85 μM, and the FRAP assay, with a value of 34.23 ± 2.75 mg FeSO4 equivalents. Molecular orbital analysis revealed HOMO and LUMO energy gaps (ΔE = 10.6715 eV) similar to known antioxidants such as gallic acid, ascorbic acid, Trolox, and quercetin. These findings demonstrate that HSP effectively guided solvent selection for ultrasound-assisted extraction of GTG. The antioxidant activity is attributed to GTG’s capacity to donate electrons and stabilize radicals via extended charge delocalization within the aglycone structure, confirming its potential as a natural antioxidant agent. Full article
Show Figures

Figure 1

25 pages, 2455 KiB  
Article
The Administration of Heat Shock Protein-70 Bacterial Homolog (DnaK) Improves the Cumulative Survival and the Expression of Immune-Related Genes in Gnotobiotic Full-Sibling Sea Bass Larvae Challenged with Vibrio anguillarum
by Eva Vallejos-Vidal, Camino Fierro-Castro, María Jesús Santillán-Araneda, Merari Goldstein, Sebastián Reyes-Cerpa, Joan Carles Balasch, Ali Reza Khansari, Kristof Dierckens, Peter Bossier, Lluis Tort and Felipe E. Reyes-López
Animals 2025, 15(11), 1655; https://doi.org/10.3390/ani15111655 - 4 Jun 2025
Cited by 1 | Viewed by 605
Abstract
Heat shock proteins (HSPs), particularly HSP70, play a vital role in fish immune defense against pathogens. The administration of DnaK (bacterial homolog of HSP70) may be a strategy to potentiate the immune response and survival of aquatic organisms. This study evaluates the effect [...] Read more.
Heat shock proteins (HSPs), particularly HSP70, play a vital role in fish immune defense against pathogens. The administration of DnaK (bacterial homolog of HSP70) may be a strategy to potentiate the immune response and survival of aquatic organisms. This study evaluates the effect of cells overexpressing DnaK on mortality and immune-related gene expression in gnotobiotic sea bass larvae challenged with Vibrio anguillarum. Larvae were subjected to different treatments: NB (no bacteria), YS0 (E. coli with no plasmid), YS1 (E. coli expressing truncated DnaK), and YS2 (E. coli expressing DnaK), and then infected with V. anguillarum at 7 days post-hatching (dph). Mortality was monitored, and RT-qPCR was used to evaluate immune gene expression at 0, 18, 24, 36, and 120 hpc. While no significant variations were recorded in the non-challenged larvae, constant and sustained mortality was observed in challenged larvae from 60 to 120 hpc. However, lower mortality was observed in the larvae treated with DnaK. DnaK treatment promoted the expression of antimicrobial (hepcidin, transferrin) and chemotaxis genes (ccl4), which was further enhanced after a challenge with V. anguillarum, in conjunction with the modulation of il1β and il-8 at 120 hpc. These findings suggest that DnaK induces a potent innate immune response, improving survival against V. anguillarum and supporting its potential use as a disease-preventive strategy in aquaculture. Full article
(This article belongs to the Special Issue The Innate Immune Responses of Fish to Infectious Diseases)
Show Figures

Figure 1

24 pages, 3076 KiB  
Article
Strong Hsp90α/β Protein Expression in Advanced Primary CRC Indicates Short Survival and Predicts Response to the Hsp90α/β-Specific Inhibitor Pimitespib
by Sebastian B. M. Schmitz, Jakob Gülden, Marlene Niederreiter, Cassandra Eichner, Jens Werner and Barbara Mayer
Cells 2025, 14(11), 836; https://doi.org/10.3390/cells14110836 - 3 Jun 2025
Cited by 2 | Viewed by 922
Abstract
The prognosis of advanced (UICC IIb-IV) primary colorectal cancer (pCRC) remains poor. More effective targeted therapies are needed. Heat shock protein 90 alpha/beta (Hsp90α/β) expression was immunohistologically quantified in 89 pCRCs and multivariately correlated with survival. Pimitespib (Pim, TAS-116), a Hsp90α/β-specific inhibitor, was [...] Read more.
The prognosis of advanced (UICC IIb-IV) primary colorectal cancer (pCRC) remains poor. More effective targeted therapies are needed. Heat shock protein 90 alpha/beta (Hsp90α/β) expression was immunohistologically quantified in 89 pCRCs and multivariately correlated with survival. Pimitespib (Pim, TAS-116), a Hsp90α/β-specific inhibitor, was tested in pCRC cell lines and patient-derived cancer spheroids (PDCS) and referenced to the pan-Hsp90 inhibitor ganetespib (Gan, STA-9090) and standard-of-care therapies. A total of 26.97% pCRCs showed strong tumoral Hsp90α/β expression (Hsp90α/β > 40%), which correlated with reduced PFS (HR: 3.785, 95%CI: 1.578–9.078, p = 0.003) and OS (HR: 3.502, 95%CI: 1.292–9.494, p = 0.014). Co-expression of Hsp90α/β > 40% with its clients BRAF-V600E and Her2/neu aggravated the prognosis (BRAF-V600E mutated: PFS, p = 0.002; OS, p = 0.012; Her2/neu score3: PFS, p = 0.029). The prognostic cut-off Hsp90α/β > 40% was also a predictor for response to Pim-based therapy. Pim efficacy was increased in combination with 5-FU, 5-FU + oxaliplatin, and 5-FU + irinotecan (all p < 0.001). Pim induced sensitization to all chemotherapies in HT-29 (p < 0.001), Caco-2 (p < 0.01), and HCT116 (p < 0.05) cells. Pim combined with encorafenib in HT-29 and with trastuzumab in Caco-2 cells was most effective in dual-target inhibition approaches (HT-29: p < 0.005; Caco-2: p < 0.05). The anti-cancer effect and chemosensitization of Pim-based therapy were prospectively confirmed in PDCS directly generated from Hsp90α/β > 40% pCRCs. Protein profiling combined with functional drug testing stratifies Hsp90α/β > 40% pCRC patients diagnosed with UICC IIb-IV for effective Pim-based therapy. Full article
(This article belongs to the Special Issue Heat Shock Proteins and Human Cancers)
Show Figures

Graphical abstract

32 pages, 10189 KiB  
Article
NSMO-Based Adaptive Finite-Time Command-Filtered Backstepping Speed Controller for New Energy Hybrid Ship PMSM Propulsion System
by Dan Zhang, Suijun Xiao, Hongfen Bai, Diju Gao and Baonan Wang
J. Mar. Sci. Eng. 2025, 13(5), 918; https://doi.org/10.3390/jmse13050918 - 7 May 2025
Viewed by 563
Abstract
In the context of the new energy hybrid ship propulsion system (NE-HSPS), the parameters of the rotor speed, torque, and current of the permanent magnet synchronous motor (PMSM) are susceptible to environmental variations and unmodeled disturbances. Conventional nonlinear controllers (e.g., backstepping, PI, and [...] Read more.
In the context of the new energy hybrid ship propulsion system (NE-HSPS), the parameters of the rotor speed, torque, and current of the permanent magnet synchronous motor (PMSM) are susceptible to environmental variations and unmodeled disturbances. Conventional nonlinear controllers (e.g., backstepping, PI, and sliding mode) encounter challenges related to response speed, interference immunity, and vibration jitter. These challenges stem from the inherent uncertainties in perturbations and the limitations of the traditional nonlinear controllers. In this paper, a novel Adaptive Finite-Time Command-Filtered Backstepping Controller (AFTCFBC) is proposed, featuring a faster response time and the elimination of overshoot. The proposed controller is a significant advancement in the field, addressing the computational complexity of backstepping control and reducing the maximum steady-state error of the control output. The novel controller incorporates a Nonlinear Finite-Time Command Filter (NFTCF) adapted to the variation in motor speed. Secondly, a novel Nonlinear Sliding Mode Observer (NSMO) is proposed based on the designed nonlinear sliding mode gain function (φ(Sw)) to estimate the load disturbance of the electric propulsion system. The Uncertainty Parameter-Adaptive law (UPAL) is designed based on Lyapunov theory to improve the robust performance of the system. The construction of a simulation model of a hybrid ship PMSM under four distinct working conditions, including constant speed and constant torque, the lifting and lowering of speed, loading and unloading, and white noise interference, is presented. The results of this study demonstrate a significant reduction in speed-tracking overshoot to zero, a substantial decrease in integral squared error by 90.15%, and a notable improvement in response time by 18.6%. Full article
Show Figures

Figure 1

Back to TopTop