Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (595)

Search Parameters:
Keywords = dynamic footprint

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
26 pages, 5460 KiB  
Article
Spaceborne LiDAR Reveals Anthropogenic and Biophysical Drivers Shaping the Spatial Distribution of Forest Aboveground Biomass in Eastern Himalayas
by Abhilash Dutta Roy, Abraham Ranglong, Sandeep Timilsina, Sumit Kumar Das, Michael S. Watt, Sergio de-Miguel, Sourabh Deb, Uttam Kumar Sahoo and Midhun Mohan
Land 2025, 14(8), 1540; https://doi.org/10.3390/land14081540 - 27 Jul 2025
Abstract
The distribution of forest aboveground biomass density (AGBD) is a key indicator of carbon stock and ecosystem health in the Eastern Himalayas, which represents a global biodiversity hotspot that sustains diverse forest types across an elevation gradient from lowland rainforests to alpine meadows [...] Read more.
The distribution of forest aboveground biomass density (AGBD) is a key indicator of carbon stock and ecosystem health in the Eastern Himalayas, which represents a global biodiversity hotspot that sustains diverse forest types across an elevation gradient from lowland rainforests to alpine meadows and contributes to the livelihoods of more than 200 distinct indigenous communities. This study aimed to identify the key factors influencing forest AGBD across this region by analyzing the underlying biophysical and anthropogenic drivers through machine learning (random forest). We processed AGBD data from the Global Ecosystem Dynamics Investigation (GEDI) spaceborne LiDAR and applied filtering to retain 30,257 high-quality footprints across ten ecoregions. We then analyzed the relationship between AGBD and 17 climatic, topographic, soil, and anthropogenic variables using random forest regression models. The results revealed significant spatial variability in AGBD (149.6 ± 79.5 Mg ha−1) across the region. State-wise, Sikkim recorded the highest mean AGBD (218 Mg ha−1) and Manipur the lowest (102.8 Mg ha−1). Within individual ecoregions, the Himalayan subtropical pine forests exhibited the highest mean AGBD (245.5 Mg ha−1). Topographic factors, particularly elevation and latitude, were strong determinants of biomass distribution, with AGBD increasing up to elevations of 2000 m before declining. Protected areas (PAs) consistently showed higher AGBD than unprotected forests for all ecoregions, while proximity to urban and agricultural areas resulted in lower AGBD, pointing towards negative anthropogenic impacts. Our full model explained 41% of AGBD variance across the Eastern Himalayas, with better performance in individual ecoregions like the Northeast India-Myanmar pine forests (R2 = 0.59). While limited by the absence of regionally explicit stand-level forest structure data (age, stand density, species composition), our results provide valuable evidence for conservation policy development, including expansion of PAs, compensating avoided deforestation and modifications in shifting cultivation. Future research should integrate field measurements with remote sensing and use high-resolution LiDAR with locally derived allometric models to enhance biomass estimation and GEDI data validation. Full article
Show Figures

Figure 1

23 pages, 3863 KiB  
Review
Memristor-Based Spiking Neuromorphic Systems Toward Brain-Inspired Perception and Computing
by Xiangjing Wang, Yixin Zhu, Zili Zhou, Xin Chen and Xiaojun Jia
Nanomaterials 2025, 15(14), 1130; https://doi.org/10.3390/nano15141130 - 21 Jul 2025
Viewed by 395
Abstract
Threshold-switching memristors (TSMs) are emerging as key enablers for hardware spiking neural networks, offering intrinsic spiking dynamics, sub-pJ energy consumption, and nanoscale footprints ideal for brain-inspired computing at the edge. This review provides a comprehensive examination of how TSMs emulate diverse spiking behaviors—including [...] Read more.
Threshold-switching memristors (TSMs) are emerging as key enablers for hardware spiking neural networks, offering intrinsic spiking dynamics, sub-pJ energy consumption, and nanoscale footprints ideal for brain-inspired computing at the edge. This review provides a comprehensive examination of how TSMs emulate diverse spiking behaviors—including oscillatory, leaky integrate-and-fire (LIF), Hodgkin–Huxley (H-H), and stochastic dynamics—and how these features enable compact, energy-efficient neuromorphic systems. We analyze the physical switching mechanisms of redox and Mott-type TSMs, discuss their voltage-dependent dynamics, and assess their suitability for spike generation. We review memristor-based neuron circuits regarding architectures, materials, and key performance metrics. At the system level, we summarize bio-inspired neuromorphic platforms integrating TSM neurons with visual, tactile, thermal, and olfactory sensors, achieving real-time edge computation with high accuracy and low power. Finally, we critically examine key challenges—such as stochastic switching origins, device variability, and endurance limits—and propose future directions toward reconfigurable, robust, and scalable memristive neuromorphic architectures. Full article
(This article belongs to the Special Issue Neuromorphic Devices: Materials, Structures and Bionic Applications)
Show Figures

Figure 1

22 pages, 4484 KiB  
Article
Automated Parcel Locker Configuration Using Discrete Event Simulation
by Eugen Rosca, Floriana Cristina Oprea, Anamaria Ilie, Stefan Burciu and Florin Rusca
Systems 2025, 13(7), 613; https://doi.org/10.3390/systems13070613 - 20 Jul 2025
Viewed by 431
Abstract
Automated parcel lockers (APLs) are transforming urban last-mile delivery by reducing failed distributions, decoupling delivery from recipient availability, optimizing carrier routes, reducing carbon foot-print and mitigating traffic congestion. The paper investigates the optimal design of APLs systems under stochastic demand and operational constraints, [...] Read more.
Automated parcel lockers (APLs) are transforming urban last-mile delivery by reducing failed distributions, decoupling delivery from recipient availability, optimizing carrier routes, reducing carbon foot-print and mitigating traffic congestion. The paper investigates the optimal design of APLs systems under stochastic demand and operational constraints, formulating the problem as a resource allocation optimization with service-level guarantees. We proposed a data-driven discrete-event simulation (DES) model implemented in ARENA to (i) determine optimal locker configurations that ensure customer satisfaction under stochastic parcel arrivals and dwell times, (ii) examine utilization patterns and spatial allocation to enhance system operational efficiency, and (iii) characterize inventory dynamics of undelivered parcels and evaluate system resilience. The results show that the configuration of locker types significantly influences the system’s ability to maintain high customers service levels. While flexibility in locker allocation helps manage excess demand in some configurations, it may also create resource competition among parcel types. The heterogeneity of locker utilization gradients underscores that optimal APLs configurations must balance locker units with their size-dependent functional interdependencies. The Dickey–Fuller GLS test further validates that postponed parcels exhibit stationary inventory dynamics, ensuring scalability for logistics operators. As a theoretical contribution, the paper demonstrates how DES combined with time-series econometrics can address APLs capacity planning in city logistics. For practitioners, the study provides a decision-support framework for locker sizing, emphasizing cost–service trade-offs. Full article
(This article belongs to the Special Issue Modelling and Simulation of Transportation Systems)
Show Figures

Figure 1

22 pages, 2112 KiB  
Article
Cultural Diversity and the Operational Performance of Airport Security Checkpoints: An Analysis of Energy Consumption and Passenger Flow
by Jacek Ryczyński, Artur Kierzkowski, Marta Nowakowska and Piotr Uchroński
Energies 2025, 18(14), 3853; https://doi.org/10.3390/en18143853 - 20 Jul 2025
Viewed by 257
Abstract
This paper examines the operational consequences and energy demands associated with the growing cultural diversity of air travellers at airport security checkpoints. The analysis focuses on how an increasing proportion of passengers requiring enhanced security screening, due to cultural, religious, or linguistic factors, [...] Read more.
This paper examines the operational consequences and energy demands associated with the growing cultural diversity of air travellers at airport security checkpoints. The analysis focuses on how an increasing proportion of passengers requiring enhanced security screening, due to cultural, religious, or linguistic factors, affects both system throughput and energy consumption. The methodology integrates synchronised measurement of passenger flow with real-time monitoring of electricity usage. Four operational scenarios, representing incremental shares (0–15%) of passengers subject to extended screening, were modelled. The findings indicate that a 15% increase in this passenger group leads to a statistically significant rise in average power consumption per device (3.5%), a total energy usage increase exceeding 4%, and an extension of average service time by 0.6%—the cumulative effect results in a substantial annual contribution to the airport’s carbon footprint. The results also reveal a higher frequency and intensity of power consumption peaks, emphasising the need for advanced infrastructure management. The study emphasises the significance of predictive analytics, dynamic resource allocation, and the implementation of energy-efficient technologies. Furthermore, systematic intercultural competency training is recommended for security staff. These insights provide a scientific basis for optimising airport security operations amid increasing passenger heterogeneity. Full article
Show Figures

Figure 1

23 pages, 6199 KiB  
Article
PDAA: An End-to-End Polygon Dynamic Adjustment Algorithm for Building Footprint Extraction
by Longjie Luo, Jiangchen Cai, Bin Feng and Liufeng Tao
Remote Sens. 2025, 17(14), 2495; https://doi.org/10.3390/rs17142495 - 17 Jul 2025
Viewed by 174
Abstract
Buildings are a significant component of urban space and are essential to smart cities, catastrophe monitoring, and land use planning. However, precisely extracting building polygons from remote sensing images remains difficult because of the variety of building designs and intricate backgrounds. This paper [...] Read more.
Buildings are a significant component of urban space and are essential to smart cities, catastrophe monitoring, and land use planning. However, precisely extracting building polygons from remote sensing images remains difficult because of the variety of building designs and intricate backgrounds. This paper proposes an end-to-end polygon dynamic adjustment algorithm (PDAA) to improve the accuracy and geometric consistency of building contour extraction by dynamically generating and optimizing polygon vertices. The method first locates building instances through the region of interest (RoI) to generate initial polygons, and then uses four core modules for collaborative optimization: (1) the feature enhancement module captures local detail features to improve the robustness of vertex positioning; (2) the contour vertex tuning module fine-tunes vertex coordinates through displacement prediction to enhance geometric accuracy; (3) the learnable redundant vertex removal module screens key vertices based on a classification mechanism to eliminate redundancy; and (4) the missing vertex completion module iteratively restores missed vertices to ensure the integrity of complex contours. PDAA dynamically adjusts the number of vertices to adapt to the geometric characteristics of different buildings, while simplifying the prediction process and reducing computational complexity. Experiments on public datasets such as WHU, Vaihingen, and Inria show that PDAA significantly outperforms existing methods in terms of average precision (AP) and polygon similarity (PolySim). It is at least 2% higher than existing methods in terms of average precision (AP), and the generated polygonal contours are closer to the real building geometry. Values of 75.4% AP and 84.9% PolySim were achieved on the WHU dataset, effectively solving the problems of redundant vertices and contour smoothing, and providing high-precision building vector data support for scenarios such as smart cities and emergency response. Full article
Show Figures

Figure 1

37 pages, 3624 KiB  
Article
Modelling a Lab-Scale Continuous Flow Aerobic Granular Sludge Reactor: Optimisation Pathways for Scale-Up
by Melissa Siney, Reza Salehi, Mohamed G. Hassan, Rania Hamza and Ihab M. T. A. Shigidi
Water 2025, 17(14), 2131; https://doi.org/10.3390/w17142131 - 17 Jul 2025
Viewed by 574
Abstract
Wastewater treatment plants (WWTPs) face increasing pressure to handle higher volumes of water due to climate change causing storm surges, which current infrastructure cannot handle. Aerobic granular sludge (AGS) is a promising alternative to activated sludge systems due to their improved settleability property, [...] Read more.
Wastewater treatment plants (WWTPs) face increasing pressure to handle higher volumes of water due to climate change causing storm surges, which current infrastructure cannot handle. Aerobic granular sludge (AGS) is a promising alternative to activated sludge systems due to their improved settleability property, lowering the land footprint and improving efficiency. This research investigates the optimisation of a lab-scale sequencing batch reactor (SBR) into a continuous flow reactor through mathematical modelling, sensitivity analysis, and a computational fluid dynamic model. This is all applied for the future goal of scaling up the model designed to a full-scale continuous flow reactor. The mathematical model developed analyses microbial kinetics, COD degradation, and mixing flows using Reynolds and Froude numbers. To perform a sensitivity analysis, a Python code was developed to investigate the stability when influent concentrations and flow rates vary. Finally, CFD simulations on ANSYS Fluent evaluated the mixing within the reactor. An 82% COD removal efficiency was derived from the model and validated against the SBR data and other configurations. The sensitivity analysis highlighted the reactor’s inefficiency in handling high-concentration influents and fast flow rates. CFD simulations revealed good mixing within the reactor; however, they did show issues where biomass washout would be highly likely if applied in continuous flow operation. All of these results were taken under deep consideration to provide a new reactor configuration to be studied that may resolve all these downfalls. Full article
(This article belongs to the Special Issue Novel Methods in Wastewater and Stormwater Treatment)
Show Figures

Figure 1

27 pages, 68526 KiB  
Article
Design and Evaluation of a Novel Actuated End Effector for Selective Broccoli Harvesting in Dense Planting Conditions
by Zhiyu Zuo, Yue Xue, Sheng Gao, Shenghe Zhang, Qingqing Dai, Guoxin Ma and Hanping Mao
Agriculture 2025, 15(14), 1537; https://doi.org/10.3390/agriculture15141537 - 16 Jul 2025
Viewed by 264
Abstract
The commercialization of selective broccoli harvesters, a critical response to agricultural labor shortages, is hampered by end effectors with large operational envelopes and poor adaptability to complex field conditions. To address these limitations, this study developed and evaluated a novel end-effector with an [...] Read more.
The commercialization of selective broccoli harvesters, a critical response to agricultural labor shortages, is hampered by end effectors with large operational envelopes and poor adaptability to complex field conditions. To address these limitations, this study developed and evaluated a novel end-effector with an integrated transverse cutting mechanism and a foldable grasping cavity. Unlike conventional fixed cylindrical cavities, our design utilizes actuated grasping arms and a mechanical linkage system to significantly reduce the operational footprint and enhance maneuverability. Key design parameters were optimized based on broccoli morphological data and experimental measurements of the maximum stem cutting force. Furthermore, dynamic simulations were employed to validate the operational trajectory and ensure interference-free motion. Field tests demonstrated an operational success rate of 93.33% and a cutting success rate of 92.86%. The end effector successfully operated in dense planting environments, effectively avoiding interference with adjacent broccoli heads. This research provides a robust and promising solution that advances the automation of broccoli harvesting, paving the way for the commercial adoption of robotic harvesting technologies. Full article
Show Figures

Figure 1

18 pages, 522 KiB  
Article
Rural Entrepreneurs and Forest Futures: Pathways to Emission Reduction and Sustainable Energy
by Ephraim Daka
Sustainability 2025, 17(14), 6526; https://doi.org/10.3390/su17146526 - 16 Jul 2025
Viewed by 218
Abstract
Rural areas around the world are increasingly dealing with energy and environmental challenges. These challenges are particularly acute in developing countries, where persistent reliance on traditional energy sources—such as wood fuel—intersects with concerns about forest conservation and energy sustainability. While wood fuel use [...] Read more.
Rural areas around the world are increasingly dealing with energy and environmental challenges. These challenges are particularly acute in developing countries, where persistent reliance on traditional energy sources—such as wood fuel—intersects with concerns about forest conservation and energy sustainability. While wood fuel use is often portrayed as unsustainable, it is important to acknowledge that much of it remains ecologically viable and socially embedded. This study explores the role of rural entrepreneurs in shaping low-carbon transitions at the intersection of household energy practices and environmental stewardship. Fieldwork was carried out in four rural Zambian communities in 2016 and complemented by 2024 follow-up reports. It examines the connections between household energy choices, greenhouse gas emissions, and forest resource dynamics. Findings reveal that over 60% of rural households rely on charcoal for cooking, with associated emissions estimated between 80 and 150 kg CO2 per household per month. Although this is significantly lower than the average per capita carbon footprint in industrialized countries, such emissions are primarily biogenic in nature. While rural communities contribute minimally to global climate change, their practices have significant local environmental consequences. This study draws attention to the structural constraints as well as emerging opportunities within Zambia’s rural energy economy. It positions rural entrepreneurs not merely as policy recipients but as active agents of innovation, environmental monitoring, and participatory resource governance. A model is proposed to support sustainable rural energy transitions by aligning forest management with context-sensitive emissions strategies. Full article
Show Figures

Figure 1

20 pages, 3567 KiB  
Article
Cycle-Informed Triaxial Sensor for Smart and Sustainable Manufacturing
by Parisa Esmaili, Luca Martiri, Parvaneh Esmaili and Loredana Cristaldi
Sensors 2025, 25(14), 4431; https://doi.org/10.3390/s25144431 - 16 Jul 2025
Viewed by 198
Abstract
Advances in Industry 4.0 and the emergence of Industry 5.0 are driving the development of intelligent, sustainable manufacturing systems, where embedded sensing and real-time health diagnostics play a critical role. However, implementing robust predictive maintenance in production environments remains challenging due to the [...] Read more.
Advances in Industry 4.0 and the emergence of Industry 5.0 are driving the development of intelligent, sustainable manufacturing systems, where embedded sensing and real-time health diagnostics play a critical role. However, implementing robust predictive maintenance in production environments remains challenging due to the variability in machine operations and the lack of access to internal control data. This paper introduces a lightweight, embedded-compatible framework for health status signature extraction based on empirical mode decomposition (EMD), leveraging only data from a single triaxial accelerometer. The core of the proposed method is a cycle-synchronized segmentation strategy that uses accelerometer-derived velocity profiles and cross-correlation to align signals with machining cycles, eliminating the need for controller or encoder access. This ensures process-aware decomposition that preserves the operational context across diverse and dynamic machining conditions to address the inadequate segmentation of unstable process data that often fails to capture the full scope of the process, resulting in misinterpretation. The performance is evaluated on a challenging real-world manufacturing benchmark where the extracted intrinsic mode functions (IMFs) are analyzed in the frequency domain, including quantitative evaluation. As results show, the proposed method shows its effectiveness in detecting subtle degradations, following a low computational footprint, and its suitability for deployment in embedded predictive maintenance systems on brownfield or controller-limited machinery. Full article
Show Figures

Figure 1

35 pages, 8222 KiB  
Article
Application of Dynamic Time Warping (DTW) in Comparing MRT Signals of Steel Ropes
by Justyna Tomaszewska, Mirosław Witoś and Jerzy Kwaśniewski
Appl. Sci. 2025, 15(14), 7924; https://doi.org/10.3390/app15147924 - 16 Jul 2025
Viewed by 234
Abstract
Steel wire ropes used in transport and aerospace applications are critical components whose failure can lead to significant safety, operational, and environmental consequences. Current diagnostic practices based on magnetic rope testing (MRT) often suffer from signal misalignment and subjective interpretation, particularly under varying [...] Read more.
Steel wire ropes used in transport and aerospace applications are critical components whose failure can lead to significant safety, operational, and environmental consequences. Current diagnostic practices based on magnetic rope testing (MRT) often suffer from signal misalignment and subjective interpretation, particularly under varying operational conditions or in polymer-impregnated ropes with delayed damage indicators. This study explores the application of the Dynamic Time Warping (DTW) algorithm to enhance the reliability of MRT diagnostics. The research involved analyzing long-term MRT recordings of wire ropes used in mining operations, including different scanning resolutions and signal acquisition methods. A mathematical formulation of DTW is provided along with its implementation code in R and Python. The DTW algorithm was applied to synchronize diagnostic signals with their baseline recordings, as recommended by ISO 4309:2017 and EN 12927:2019 standards. Results show that DTW enables robust alignment of time series with slowly varying spectra, thereby improving the comparability and interpretation of MRT data. This approach reduces the risk of unnecessary rope discard and increases the effectiveness of degradation monitoring. The findings suggest that integrating DTW into existing diagnostic protocols can contribute to safer operation, lower maintenance costs, and reduced environmental impact. Full article
(This article belongs to the Section Aerospace Science and Engineering)
Show Figures

Figure 1

14 pages, 2149 KiB  
Article
Gain Characteristics of Hybrid Waveguide Amplifiers in SiN Photonics Integration with Er-Yb:Al2O3 Thin Film
by Ziming Dong, Guoqing Sun, Yuqing Zhao, Yaxin Wang, Lei Ding, Liqin Tang and Yigang Li
Photonics 2025, 12(7), 718; https://doi.org/10.3390/photonics12070718 - 16 Jul 2025
Viewed by 241
Abstract
Integrated optical waveguide amplifiers, with their compact footprint, low power consumption, and scalability, are the basis for optical communications. The realization of high gain in such integrated devices is made more challenging by the tight optical constraints. In this work, we present efficient [...] Read more.
Integrated optical waveguide amplifiers, with their compact footprint, low power consumption, and scalability, are the basis for optical communications. The realization of high gain in such integrated devices is made more challenging by the tight optical constraints. In this work, we present efficient amplification in an erbium–ytterbium-based hybrid slot waveguide consisting of a silicon nitride waveguide and a thin-film active layer/electron-beam resist. The electron-beam resist as the upper cladding layer not only possesses the role of protecting the waveguide but also has tighter optical confinement in the vertical cross-section direction. On this basis, an accurate and comprehensive dynamic model of an erbium–ytterbium co-doped amplifier is realized by introducing quenched ions. A modal gain of above 20 dB is achieved at the signal wavelength of 1530 nm in a 1.4 cm long hybrid slot waveguide, with fractions of quenched ions fq = 30%. In addition, the proposed hybrid waveguide amplifiers exhibit higher modal gain than conventional air-clad amplifiers under the same conditions. Endowing silicon nitride photonic integrated circuits with efficient amplification enriches the integration of various active functionalities on silicon. Full article
Show Figures

Figure 1

20 pages, 19341 KiB  
Article
Human Activities Dominantly Driven the Greening of China During 2001 to 2020
by Xueli Chang, Zhangzhi Tian, Yepei Chen, Ting Bai, Zhina Song and Kaimin Sun
Remote Sens. 2025, 17(14), 2446; https://doi.org/10.3390/rs17142446 - 15 Jul 2025
Viewed by 256
Abstract
Vegetation is a fundamental component of terrestrial ecosystems. Understanding how vegetation changes and what drives these evolutions is crucial for developing a high-quality ecological environment and addressing global climate change. Extensive evidence has shown that China has undergone substantial vegetation changes, characterized primarily [...] Read more.
Vegetation is a fundamental component of terrestrial ecosystems. Understanding how vegetation changes and what drives these evolutions is crucial for developing a high-quality ecological environment and addressing global climate change. Extensive evidence has shown that China has undergone substantial vegetation changes, characterized primarily by greening. To quantify vegetation dynamics in China and assess the contributions of various drivers, we explored the spatiotemporal variations in the kernel Normalized Difference Vegetation Index (kNDVI) from 2001 to 2020, and quantitatively separated the influences of climate and human factors. The kNDVI time series were generated from the MCD19A1 v061 dataset based on the Google Earth Engine (GEE) platform. We employed the Theil-Sen trend analysis, the Mann-Kendall test, and the Hurst index to analyze the historical patterns and future trajectories of kNDVI. Residual analysis was then applied to determine the relative contributions of climate change and human activities to vegetation dynamics across China. The results show that from 2001 to 2020, vegetation in China showed a fluctuating but predominantly increasing trend, with a significant annual kNDVI growth rate of 0.002. The significant greening pattern was observed in over 48% of vegetated areas, exhibiting a clear spatial gradient with lower increases in the northwest and higher amplitudes in the southeast. Moreover, more than 60% of vegetation areas are projected to experience a sustained increase in the future. Residual analysis reveals that climate change contributed 21.89% to vegetation changes, while human activities accounted for 78.11%, being the dominant drivers of vegetation variation. This finding is further supported by partial correlation analysis between kNDVI and temperature, precipitation, and the human footprint. Vegetation dynamics were found to respond more strongly to human influences than to climate drivers, underscoring the leading role of human activities. Further analysis of tree cover fraction and cropping intensity data indicates that the greening in forests and croplands is primarily attributable to large-scale afforestation efforts and improved agricultural management. Full article
Show Figures

Graphical abstract

60 pages, 3843 KiB  
Review
Energy-Efficient Near-Field Integrated Sensing and Communication: A Comprehensive Review
by Mahnoor Anjum, Muhammad Abdullah Khan, Deepak Mishra, Haejoon Jung and Aruna Seneviratne
Energies 2025, 18(14), 3682; https://doi.org/10.3390/en18143682 - 12 Jul 2025
Viewed by 474
Abstract
The pervasive scale of networks brought about by smart city applications has created infeasible energy footprints and necessitates the inclusion of sensing sustained operations with minimal human intervention. Consequently, integrated sensing and communication (ISAC) is emerging as a key technology for 6G systems. [...] Read more.
The pervasive scale of networks brought about by smart city applications has created infeasible energy footprints and necessitates the inclusion of sensing sustained operations with minimal human intervention. Consequently, integrated sensing and communication (ISAC) is emerging as a key technology for 6G systems. ISAC systems realize dual functions using shared spectrum, which complicates interference management. This motivates the development of advanced signal processing and multiplexing techniques. In this context, extremely large antenna arrays (ELAAs) have emerged as a promising solution. ELAAs offer substantial gains in spatial resolution, enabling precise beamforming and higher multiplexing gains by operating in the near-field (NF) region. Despite these advantages, the use of ELAAs increases energy consumption and exacerbates carbon emissions. To address this, NF multiple-input multiple-output (NF-MIMO) systems must incorporate sustainable architectures and scalable solutions. This paper provides a comprehensive review of the various methodologies utilized in the design of energy-efficient NF-MIMO-based ISAC systems. It introduces the foundational principles of the latest research while identifying the strengths and limitations of green NF-MIMO-based ISAC systems. Furthermore, this work provides an in-depth analysis of the open challenges associated with these systems. Finally, it offers a detailed overview of emerging opportunities for sustainable designs, encompassing backscatter communication, dynamic spectrum access, fluid antenna systems, reconfigurable intelligent surfaces, and energy harvesting technologies. Full article
Show Figures

Figure 1

17 pages, 3664 KiB  
Article
Improving the Estimates of County-Level Forest Attributes Using GEDI and Landsat-Derived Auxiliary Information in Fay–Herriot Models
by Okikiola M. Alegbeleye, Krishna P. Poudel, Curtis VanderSchaaf and Yun Yang
Remote Sens. 2025, 17(14), 2407; https://doi.org/10.3390/rs17142407 - 12 Jul 2025
Viewed by 257
Abstract
National-scale forest inventories such as the Forest Inventory and Analysis (FIA) program in the United States are designed to provide data and estimates that meet target precision at the national and state levels. However, such design-based direct estimates are often not accurate at [...] Read more.
National-scale forest inventories such as the Forest Inventory and Analysis (FIA) program in the United States are designed to provide data and estimates that meet target precision at the national and state levels. However, such design-based direct estimates are often not accurate at a smaller geographic scale due to the small sample size. Small area estimation (SAE) techniques provide precise estimates at small domains by borrowing strength from remotely sensed auxiliary information. This study combined the FIA direct estimates with gridded mean canopy heights derived from recently published Global Ecosystem Dynamics Investigation (GEDI) Level 3 data and Landsat data to improve county-level estimates of total and merchantable volume, aboveground biomass, and basal area in the states of Alabama and Mississippi, USA. Compared with the FIA direct estimates, the area-level SAE models reduced root mean square error for all variables of interest. The multi-state SAE models had a mean relative standard error of 0.67. In contrast, single-state models had relative standard errors of 0.54 and 0.59 for Alabama and Mississippi, respectively. Despite GEDI’s limited footprints, this study reveals its potential to reduce direct estimate errors at the sub-state level when combined with Landsat bands through the small area estimation technique. Full article
Show Figures

Figure 1

22 pages, 892 KiB  
Review
Membrane Technologies for Bioengineering Microalgae: Sustainable Applications in Biomass Production, Carbon Capture, and Industrial Wastewater Valorization
by Michele Greque Morais, Gabriel Martins Rosa, Luiza Moraes, Larissa Chivanski Lopes and Jorge Alberto Vieira Costa
Membranes 2025, 15(7), 205; https://doi.org/10.3390/membranes15070205 - 11 Jul 2025
Viewed by 469
Abstract
In accordance with growing environmental pressures and the demand for sustainable industrial practices, membrane technologies have emerged as key enablers for increasing efficiency, reducing emissions, and supporting circular processes across multiple sectors. This review focuses on the integration among microalgae-based systems, offering innovative [...] Read more.
In accordance with growing environmental pressures and the demand for sustainable industrial practices, membrane technologies have emerged as key enablers for increasing efficiency, reducing emissions, and supporting circular processes across multiple sectors. This review focuses on the integration among microalgae-based systems, offering innovative and sustainable solutions for biomass production, carbon capture, and industrial wastewater treatment. In cultivation, membrane photobioreactors (MPBRs) have demonstrated biomass productivity up to nine times greater than that of conventional systems and significant reductions in water (above 75%) and energy (approximately 0.75 kWh/m3) footprints. For carbon capture, hollow fiber membranes and hybrid configurations increase CO2 transfer rates by up to 300%, achieving utilization efficiencies above 85%. Coupling membrane systems with industrial effluents has enabled nutrient removal efficiencies of up to 97% for nitrogen and 93% for phosphorus, contributing to environmental remediation and resource recovery. This review also highlights recent innovations, such as self-forming dynamic membranes, magnetically induced vibration systems, antifouling surface modifications, and advanced control strategies that optimize process performance and energy use. These advancements position membrane-based microalgae systems as promising platforms for carbon-neutral biorefineries and sustainable industrial operations, particularly in the oil and gas, mining, and environmental technology sectors, which are aligned with global climate goals and the UN Sustainable Development Goals (SDGs). Full article
Show Figures

Figure 1

Back to TopTop