Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (124)

Search Parameters:
Keywords = dumping solid waste

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 1915 KB  
Article
Institutional and Policy Barriers to GIS-Based Waste Management: Evidence from Rural Municipalities in Vhembe District, South Africa
by Aifani Confidence Tahulela and Shervin Hashemi
Environments 2026, 13(1), 51; https://doi.org/10.3390/environments13010051 - 14 Jan 2026
Viewed by 218
Abstract
Municipal solid waste management (MSWM) remains a critical environmental governance challenge in rural and peri-urban regions of the Global South, where service delivery gaps exacerbate illegal dumping and public health risks. Geographic Information Systems (GIS) are increasingly promoted as decision-support tools to improve [...] Read more.
Municipal solid waste management (MSWM) remains a critical environmental governance challenge in rural and peri-urban regions of the Global South, where service delivery gaps exacerbate illegal dumping and public health risks. Geographic Information Systems (GIS) are increasingly promoted as decision-support tools to improve waste collection efficiency and environmental monitoring; however, their adoption in resource-constrained municipalities remains limited. This study investigates the institutional and policy barriers shaping GIS readiness in four rural municipalities within South Africa’s Vhembe District. Using a qualitative case-study design, semi-structured interviews were conducted with 29 municipal officials across managerial and operational levels, complemented by 399 community responses to an open-ended survey question. Thematic analysis, guided by Institutional Theory and the Technology Acceptance Model (TAM), identified five interrelated themes: waste production and disposal behaviours, collection and infrastructure constraints, institutional and operational challenges, policy and standardisation gaps, and technology readiness. The findings reveal that weak service reliability, fragmented governance structures, limited human and financial capacity, and inconsistent policy enforcement collectively undermine GIS adoption, despite its high perceived usefulness among officials. The study demonstrates that the effectiveness of GIS as an environmental management tool is contingent on institutional readiness rather than technological availability alone and highlights the need for integrated reforms in service delivery, institutional capacity, and policy implementation to enable GIS-supported sustainable waste management. Full article
Show Figures

Figure 1

19 pages, 2492 KB  
Article
Integrating Remote Sensing, GIS, and Citizen Science to Map Illegal Waste Dumping Susceptibility in Dakar, Senegal
by Norma Scharf, Bénédicte Ducry, Bocar Sy, Abdoulaye Djim and Pierre Lacroix
Sustainability 2025, 17(24), 11137; https://doi.org/10.3390/su172411137 - 12 Dec 2025
Viewed by 683
Abstract
Solid waste management remains a critical challenge in rapidly urbanizing regions of the Global South, where limited infrastructure and informal disposal practices compromise environmental and public health. This study addresses the issue of illegal waste dumping in Dakar, Senegal, by integrating remote sensing, [...] Read more.
Solid waste management remains a critical challenge in rapidly urbanizing regions of the Global South, where limited infrastructure and informal disposal practices compromise environmental and public health. This study addresses the issue of illegal waste dumping in Dakar, Senegal, by integrating remote sensing, geographic information systems, and citizen science into a multi-criteria framework to identify areas most susceptible to dumping. Using Landsat 8 and Sentinel-2 imagery, indicators such as land surface temperature, vegetation, soil, and water indices were combined with demographic and infrastructural data. A citizen survey involving local university students provided social perception scores and criterion weights through the Analytic Hierarchy Process. The resulting susceptibility maps revealed that high and very high dumping probabilities are concentrated around the Mbeubeuss landfill and densely populated areas of Keur Massar, while Malika showed lower susceptibility. Sensitivity analysis confirmed the model’s robustness but highlighted the influence of thermal and social perception variables. The results show that 28–35% of the study area falls under high or very high susceptibility, with hotspots concentrated near wetlands, informal settlements, and poorly serviced road networks. The weighted model demonstrates stronger spatial coherence compared to the unweighted version, offering improved interpretability for waste monitoring. These findings provide actionable insights for the Société Nationale de Gestion Intégrée des Déchets (SONAGED) and for municipal planners to prioritize interventions in high-susceptibility zones. Rather than being entirely novel, this study builds on existing remote sensing, geographic information systems and citizen science approaches by integrating them within a multi-criteria framework specifically adapted to a West African context. Full article
Show Figures

Figure 1

30 pages, 1171 KB  
Review
Circular Transitions in Island Regions: Overcoming Waste Management Challenges Through Community-Driven Solutions
by Maria Flouri, Konstantinos Alexakis, Panagiotis Kokkinakos, Maria Bafaloukou and Dimitris Askounis
Sustainability 2025, 17(23), 10457; https://doi.org/10.3390/su172310457 - 21 Nov 2025
Viewed by 875
Abstract
Island ecosystems, are characterized by isolation, limited land, and tourism-driven economies, face persistent waste management challenges. Spatial constraints and inadequate infrastructure often limit the development of waste recovery and recycling systems, leading to practices such as open dumping or burning that pose serious [...] Read more.
Island ecosystems, are characterized by isolation, limited land, and tourism-driven economies, face persistent waste management challenges. Spatial constraints and inadequate infrastructure often limit the development of waste recovery and recycling systems, leading to practices such as open dumping or burning that pose serious environmental and health risks. This paper examines how circular economy (CE) principles, reduce, reuse, recycle, can transform waste into a resource and enhance local resilience. A refined definition of “small islands” is introduced, combining UN criteria with a tourism-intensity filter to capture the strong link between visitor flows and solid waste generation. Barriers to CE adoption are classified into institutional, technical, geographical, financial, and social dimensions, and connected to enabling practices in four thematic areas: multi-stakeholder partnerships, recycling and composting innovations, policy and regulatory tools, and community engagement. Comparative case studies from Europe, Asia, Africa, and the Pacific reveal that integrated approaches are more durable than isolated efforts. Successful initiatives blend technology with governance, education, financial mechanisms, and community participation. The analysis highlights that no single model fits all islands; strategies must be locally adapted to be effective and transferable. Overall, the study shows that circular transitions are both feasible and necessary, offering environmental gains, economic value, and alignment with the EU Green Deal and global sustainability goals. Full article
(This article belongs to the Section Energy Sustainability)
Show Figures

Figure 1

22 pages, 1117 KB  
Review
Lessons Learned from Air Quality Assessments in Communities Living near Municipal Solid Waste Landfills
by Custodio Muianga, John Wilhelmi, Jennifer Przybyla, Melissa Smith and Gregory M. Zarus
Int. J. Environ. Res. Public Health 2025, 22(11), 1732; https://doi.org/10.3390/ijerph22111732 - 15 Nov 2025
Viewed by 588
Abstract
Over 292 million tons of municipal solid waste (MSW) are generated annually in the United States, with more than half disposed of in landfills. Municipal solid waste landfills (MSWLFs) are stationary sources of air pollution and potential health risks for nearby communities. The [...] Read more.
Over 292 million tons of municipal solid waste (MSW) are generated annually in the United States, with more than half disposed of in landfills. Municipal solid waste landfills (MSWLFs) are stationary sources of air pollution and potential health risks for nearby communities. The Agency for Toxic Substances and Disease Registry (ATSDR) has completed over 300 public health assessments (PHAs) and related investigations at MSWLFs and open dumps since the 1980s. This paper reviews the ATSDR’s evaluations of air pathway concerns at 125 MSWLF sites assessed between 1988 and early 2025, with many being evaluated during the 1990s. Most sites were located in the Midwest and Northeast, and only 25% remained active. The ATSDR found no air-related public health hazard at 86% of sites. At sites where hazards were identified, common issues included elevated outdoor or indoor toxicants (e.g., hydrogen sulfide, benzene, trichloroethylene, and mercury) and unsafe methane accumulations. Contributing factors included older site designs, inadequate gas-collection, subsurface fires, and distance from nearby residences. Corrective actions effectively reduced exposures at the affected sites. Results suggest that well-located and maintained landfills minimize public health hazards, while aging or poorly managed sites pose risks. Continued monitoring and research are warranted as waste management shifts toward reducing, reusing, recycling, composting, and energy-recovery technologies to improve efficiency, advance technologies, and address systemic public health challenges. Full article
Show Figures

Figure 1

23 pages, 4871 KB  
Article
Characterization and Modelling of Environmental Crime: A Case Study Applied to the Canary Islands (Spain)
by Lorenzo Carlos Quesada-Ruiz, Nicolás Ferrer-Valero and Leví García-Romero
ISPRS Int. J. Geo-Inf. 2025, 14(11), 410; https://doi.org/10.3390/ijgi14110410 - 22 Oct 2025
Viewed by 1353
Abstract
The escalating environmental crisis and the threat posed by environmental crime demand more effective prevention strategies. The predictive mapping of environmental crimes can address this challenge by improving monitoring and response. This study proposes an analysis and modelling of the occurrence of environmental [...] Read more.
The escalating environmental crisis and the threat posed by environmental crime demand more effective prevention strategies. The predictive mapping of environmental crimes can address this challenge by improving monitoring and response. This study proposes an analysis and modelling of the occurrence of environmental crimes in the Canary Islands, a territory of exceptional ecological value and strong tourism and urban sprawl pressures. Four types of illegal activity were examined: buildings and constructions, mining and tilling, solid waste dumping, and liquid waste discharging. A predictive modelling framework based on Random Forest (RF) machine learning algorithms was applied to identify spatial patterns and environmental crime potential. A colour-based environmental crime potential map was generated for each island, showing the likelihood of 0, 1, 2, 3, or all 4 types of environmental crime. Findings reveal that 43.2% of the surface area of the islands could potentially be affected by at least one crime type. Potential occurrences are lower in protected natural areas, in islands with lower population densities and in inland areas compared to coastal regions. The methodology provides a foundation for future research which could assist policymakers and environmental protectors in combating and preventing environmental crimes more effectively and contribute to the preservation of their ecosystems. Full article
Show Figures

Graphical abstract

14 pages, 5404 KB  
Article
Emission Characteristics During the Co-Firing of Fine Coal and Refuse-Derived Fuel from Municipal Waste
by Zbigniew Jelonek and Przemysław Rompalski
Energies 2025, 18(20), 5414; https://doi.org/10.3390/en18205414 - 14 Oct 2025
Viewed by 672
Abstract
The co-firing of coal and refuse-derived fuel (RDF) from municipal solid waste recycling is gaining support in countries in which energy production is based on solid fuels. It is the result of the rising priority given to renewable energy sources, the circular economy, [...] Read more.
The co-firing of coal and refuse-derived fuel (RDF) from municipal solid waste recycling is gaining support in countries in which energy production is based on solid fuels. It is the result of the rising priority given to renewable energy sources, the circular economy, and effective waste management through sorting, recycling, and thermal conversion. Despite the increasing efficiency of recycling and the ever-lower quantities of waste delivered to waste dumps, the problem of the residual fraction remains unsolved. The portion of mixed municipal waste that cannot be recycled exhibits a high energy value. For this reason, it should be neither stored nor burnt in household boiler rooms, as doing so would constitute an environmental hazard. However, the waste can be used as an additive to fine coal in power boilers, provided that they are equipped with flue gas monitoring and purification systems. Tests involving proportionally prepared compositions of fine coal and refuse-derived fuel burnt in a laboratory boiler revealed a major variability in the flue gas parameters (physicochemical), depending on the applied proportions of the individual components. For instance, when burning a composition of 50% fine coal and 50% refuse-derived fuel, a reduction in CO2 emissions by about 12% was noted compared with that when burning fine coal exclusively. Furthermore, when burning refuse-derived fuel, an addition of 20% fine coal is enough to produce a 2.8% reduction in CO emission. Meanwhile, a composition of 80% fine coal and 20% refuse-derived fuel would reduce the emissions by 393 ppm. During the measurements, it was also noted that most of the measured parameters indicated a decrease in individual gas contents relative to the emissions obtained when burning fine coal or refuse-derived fuel exclusively. These relationships can be applied to prepare fuel compositions based on refuse-derived fuel and fine coal, depending on the power and flue gas purification capabilities of individual cogeneration systems. Full article
(This article belongs to the Special Issue Advanced Clean Coal Technology)
Show Figures

Figure 1

19 pages, 2160 KB  
Article
Genetic Diversity and Phylogenetic Analysis Among Multidrug-Resistant Pseudomonas spp. Isolated from Solid Waste Dump Sites and Dairy Farms
by Tuhina Das, Arkaprava Das, Neha Das, Rittika Mukherjee, Mousumi Saha, Dipanwita Das and Agniswar Sarkar
Acta Microbiol. Hell. 2025, 70(3), 30; https://doi.org/10.3390/amh70030030 - 16 Jul 2025
Viewed by 1283
Abstract
The excessive use of antimicrobials drives the emergence of multidrug resistance (MDR) in bacterial strains, which harbor resistance genes to survive under diverse drug pressures. Such resistance can result in life-threatening infections. The predominance of MDR Pseudomonas spp. poses significant challenges to public [...] Read more.
The excessive use of antimicrobials drives the emergence of multidrug resistance (MDR) in bacterial strains, which harbor resistance genes to survive under diverse drug pressures. Such resistance can result in life-threatening infections. The predominance of MDR Pseudomonas spp. poses significant challenges to public health and environmental sustainability, particularly in ecosystems affected by human activities. Characterizing MDR Pseudomonas spp. is crucial for developing effective diagnostic tools and biosecurity protocols, with broader implications for managing other pathogenic bacteria. Strains were diagnosed through 16S rRNA PCR and sequencing, complemented by phylogenetic analysis to evaluate local and global evolutionary connections. Antibiotic susceptibility tests revealed extensive resistance across multiple classes, with MIC values surpassing clinical breakpoints. This study examined the genetic diversity, resistance potential, and phylogenetic relationships among Pseudomonas aeruginosa strain DG2 and Pseudomonas fluorescens strain FM3, which were isolated from solid waste dump sites (n = 30) and dairy farms (n = 22) in West Bengal, India. Phylogenetic analysis reveals distinct clusters that highlight significant geographic linkages and genetic variability among the strains. Significant biofilm production under antibiotic exposure markedly increased resistance levels. RAPD-PCR profiling revealed substantial genetic diversity among the isolates, indicating variations in their genetic makeup. In contrast, SDS-PAGE analysis provided insights into the protein expression patterns that are activated by stress, which are closely linked to MDR. This dual approach offers a clearer perspective on their adaptive responses to environmental stressors. This study underscores the need for vigilant monitoring of MDR Pseudomonas spp. in anthropogenically impacted environments to mitigate risks to human and animal health. Surveillance strategies combining phenotypic and molecular approaches are essential to assess the risks posed by resilient pathogens. Solid waste and dairy farm ecosystems emerge as critical reservoirs for the evolution and dissemination of MDR Pseudomonas spp. Full article
Show Figures

Figure 1

14 pages, 698 KB  
Article
Exergy Analysis of a Biogas Plant for Municipal Solid Waste Treatment and Energy Cogeneration
by Joana Prisco Pinheiro, Priscila Rosseto Camiloti, Ildo Luis Sauer and Carlos Eduardo Keutenedjian Mady
Energies 2025, 18(11), 2804; https://doi.org/10.3390/en18112804 - 28 May 2025
Cited by 1 | Viewed by 1208
Abstract
The amount of municipal solid waste (MSW) produced has increased with population growth and consumption patterns. Currently, most waste goes to dumps, although the Brazilian law requires the final destination to be landfills. The latter does not consider the energy lost by these [...] Read more.
The amount of municipal solid waste (MSW) produced has increased with population growth and consumption patterns. Currently, most waste goes to dumps, although the Brazilian law requires the final destination to be landfills. The latter does not consider the energy lost by these solutions and the carbon footprint that better destinations could avoid. However, not treating the waste correctly aggravates land availability problems, especially in large cities such as São Paulo. Anaerobic digestion is an alternative to traditional waste management, and in addition to treating residues, it generates energy and recovers the nutrients present in MSW. Thermodynamic analyses are still scarce in the literature despite being a known process. This study performed an exergy analysis of an existing biogas plant at the Institute of Energy and Environment of the University of São Paulo with a processing capacity of 20 tons of MSW per day composed of three reactors (430 m3 each) and one internal combustion engine (ICE) of 75 kW. The plant uses MSW as the substrate for anaerobic digestion and generates electrical energy, biogas, and fertilizer for agriculture (digestate). Additionally, the plant operates in cogeneration, as the anaerobic digestion reactor uses the heat produced to generate electrical energy. The results showed that the exergy present in the substrate is 67,320 MJ/day. The products’ exergy flows and the processes’ efficiencies show that the exergy flow of the biogas (44,488 MJ/day) is significantly higher than the exergy flow of the digestate (1455 MJ/day). When considering the cogeneration process, the exergy flow was similar for heat and electric energy as the final products, with 10,987 MJ/day for electric energy and 5215 MJ/day for electric energy. The exergy efficiency of the digestion process was 68.25%, while that of cogeneration (digestate, heat and electric energy) was 26.23%. These results can help identify inefficiencies and optimize processes in an anaerobic digestion plant. Furthermore, thermodynamic analyses of anaerobic digestion found in the literature are mostly based on theoretical models. Thus, this study fills a gap regarding exergy analysis of actual biogas plants. Full article
(This article belongs to the Section B: Energy and Environment)
Show Figures

Figure 1

20 pages, 3109 KB  
Article
A New Conservative Approach for Statistical Data Analysis in Surveying for Trace Elements in Solid Waste Ponds
by Andrei-Lucian Timiş, Ion Pencea, Adrian Priceputu, Constantin Ungureanu, Zbynek Karas, Florentina Niculescu, Ramona-Nicoleta Turcu, Gheorghe Iacob, Dragoș Florin Marcu and Alexandru Constantin Macovei
Appl. Sci. 2025, 15(8), 4246; https://doi.org/10.3390/app15084246 - 11 Apr 2025
Cited by 1 | Viewed by 583
Abstract
Solid waste treatment and resourceization critically depend on waste characterization. Heavy metals and critical raw materials are found as trace elements in solid waste dumps, and their reliable quantification plays a critical role for decision risk regarding effective waste management. The reliable quantification [...] Read more.
Solid waste treatment and resourceization critically depend on waste characterization. Heavy metals and critical raw materials are found as trace elements in solid waste dumps, and their reliable quantification plays a critical role for decision risk regarding effective waste management. The reliable quantification of trace elements is a very challenging issue. Hence, in this study, a new conservative approach for data analysis in screening for trace elements in waste dumps is presented. We propose a theoretical model for statistical data interpretation to overcome the drawbacks of conventional approaches based on unproven hypotheses, such as binomial, Poisson, or Gaussian distributions of the particles carrying the analyte. Our model addresses concentration values close to the limit of quantification (LOQ) of an analytical method. This model fills the gap of data analysis when a set of analytical results are uniformly distributed. Our approach deals with results reported as being lower than the LOQ. The model was applied on XRFS results from studies carried out on tailings to emphasize the differences among classic, robust, and conservative data analyses. Classical analyses overestimate the concentration values and underestimate the associated uncertainties increasing the decision risk. This study demonstrates that a conservative approach is mandatory when screening for trace elements if the concentration values are uniformly distributed. The proposed model can be applied to any solid waste dump, regardless of the analytical method used for trace element screening. Full article
(This article belongs to the Special Issue Advances in Solid Waste Treatment and Recycling)
Show Figures

Figure 1

13 pages, 3791 KB  
Article
Thermoelectric Properties of Tetrahedrites Produced from Mixtures of Natural and Synthetic Materials
by Beatriz A. Santos, Luís Esperto, Isabel Figueira, João Mascarenhas, Elsa B. Lopes, Rute Salgueiro, Teresa P. Silva, José B. Correia, Daniel de Oliveira, António P. Gonçalves and Filipe Neves
Materials 2025, 18(6), 1375; https://doi.org/10.3390/ma18061375 - 20 Mar 2025
Cited by 1 | Viewed by 855
Abstract
Thermoelectric materials have considerable potential in the mitigation of the global energy crisis, through their ability to convert heat into electricity. This study aims to valorize natural resources, and potentially reduce production costs, by incorporating tetrahedrite–tennantite (td) ores from the Portuguese Iberian Pyrite [...] Read more.
Thermoelectric materials have considerable potential in the mitigation of the global energy crisis, through their ability to convert heat into electricity. This study aims to valorize natural resources, and potentially reduce production costs, by incorporating tetrahedrite–tennantite (td) ores from the Portuguese Iberian Pyrite Belt into synthetic samples. The ore samples were collected in a mine waste at Barrigão and as “dirty-copper” pockets of ore from the Neves Corvo mine. Subsequently, high-energy ball milling and hot pressing were employed in the production of thermoelectric materials. These are characterized by XRD, SEM/EDS, and thermoelectrical properties. The complete dissolution of the dump material sulfides with the synthetic tetrahedrite constituents led to an increase in the amount of the tetrahedrite–tennantite phase, which was made up of a tetrahedrite–tennantite–(Fe) solid solution. The thermoelectric characterization of these materials is provided, revealing that most of the combined synthetic ore samples displayed better results than the pristine tetrahedrite, mostly due to higher Seebeck coefficient values. Furthermore, the best thermoelectric performance is achieved with 10% of ore, where a power factor of 268 µW.K−2.m−1 is reached at room temperature. Full article
(This article belongs to the Section Energy Materials)
Show Figures

Graphical abstract

15 pages, 3454 KB  
Article
Landscape, Environmental, and Socioeconomic Impacts of an Invasive Bird Species: The Yellow-Legged Gull (Larus michahellis) in the Natural Park Salinas de San Pedro del Pinatar (Murcia, Southeastern Spain)
by Gustavo Ballesteros-Pelegrín, Miguel Ángel Sánchez-Sánchez and Alfonso Albacete
Life 2025, 15(3), 361; https://doi.org/10.3390/life15030361 - 25 Feb 2025
Viewed by 1309
Abstract
The yellow-legged gull (Larus michahellis) increased its population throughout the 20th century in its worldwide distribution area. In the Salinas de San Pedro del Pinatar, the population increased from having two breeding pairs in 1993 to 676 pairs in 2010 and [...] Read more.
The yellow-legged gull (Larus michahellis) increased its population throughout the 20th century in its worldwide distribution area. In the Salinas de San Pedro del Pinatar, the population increased from having two breeding pairs in 1993 to 676 pairs in 2010 and from a wintering population of approximately 100–200 individuals in the 1980s to 1500–2000 individuals recorded in the 2010s, which has led to changes in habitats due to guano deposition, bird predation, incidents involving workers, and salt production. The objective of this study is to analyze the impacts of L. michahellis on the landscape, habitats, waterfowl, salt production, and workers, as well as to evaluate the effectiveness of control activities. Censuses of wintering L. michahellis have been carried out between 1990 and 2021, of nesting aquatic birds between 1994 and 2021, and nests and eggs of L. michahellis have been eliminated between 2000 and 2021. The result has been a decrease in pairs of L. michahellis, recovery of waterfowl populations, colonization of new bird species, absence of incidents with workers, and reduction in damage to salt production. Importantly, to reach a definitive solution, measures should be adopted to prevent L. michahellis from accessing the main sources of human food: urban solid waste dumps, aquaculture farms, and fish discards. Full article
(This article belongs to the Section Animal Science)
Show Figures

Figure 1

25 pages, 2679 KB  
Article
Behavioural Systems Mapping of Solid Waste Management in Kisumu, Kenya, to Understand the Role of Behaviour in a Health and Sustainability Problem
by Joanna Davan Wetton, Micaela Santilli, Hellen Gitau, Kanyiva Muindi, Nici Zimmermann, Susan Michie and Michael Davies
Behav. Sci. 2025, 15(2), 133; https://doi.org/10.3390/bs15020133 - 26 Jan 2025
Cited by 4 | Viewed by 3949
Abstract
Poor solid waste management in Kisumu, Kenya, contributes to adverse health, social, and environmental outcomes as a result of open burning, illegal dumping, and reliance on landfills. Taking Kisumu as a case study, we use behavioural systems mapping (BSM) for the purpose of [...] Read more.
Poor solid waste management in Kisumu, Kenya, contributes to adverse health, social, and environmental outcomes as a result of open burning, illegal dumping, and reliance on landfills. Taking Kisumu as a case study, we use behavioural systems mapping (BSM) for the purpose of understanding the role of behaviour in this complex problem. We qualitatively analysed transcripts from focus groups and interviews with 45 stakeholders in Kisumu to construct a BSM of the perceived actors, behaviours, and behavioural influences affecting waste management, as well as causal links. Influences were analysed using the capability, opportunity, and motivation model of behaviour (COM-B). The resulting BSM connects 24 behaviours by 12 different actors and 49 unique influences (30 related to opportunity, 16 to motivation, and 3 to capability). It reflects three sub-systems: policy-making, public waste management, and the policy–public interface. Six key feedback loops are described, which suggest that cycles of underfunding are interlinked with problematic practices around the build-up, handling, and segregation of waste and conflicting public and political views around responsibility. We demonstrate how the BSM method can be used with transcript data and provide steps that others can follow to inform the design of systemic behaviour change interventions. Further research to validate and adapt this approach may extend the learnings to other countries and health and sustainability challenges. Full article
(This article belongs to the Special Issue Promoting Behavioral Change to Improve Health Outcomes)
Show Figures

Figure 1

15 pages, 3028 KB  
Article
Effects of Illegal Solid Waste Dumping on the Structure of Soil Bacterial Communities: A Case Study in China
by Jialiang Chen, Lulu Zhang, Lang Song, Mai Ye, Lin Wang, Bin Fan, Bin Li, Zetao Yang, Rongzhou Jin and Pu Jia
Toxics 2025, 13(1), 20; https://doi.org/10.3390/toxics13010020 - 27 Dec 2024
Cited by 2 | Viewed by 2394
Abstract
Illegal solid waste dumping is a significant factor contributing to environmental damage. In this study, 16S rRNA gene sequencing technology was used for the identification and assessment of environmental damage in an illegal dumping area in China, with the aim of confirming environmental [...] Read more.
Illegal solid waste dumping is a significant factor contributing to environmental damage. In this study, 16S rRNA gene sequencing technology was used for the identification and assessment of environmental damage in an illegal dumping area in China, with the aim of confirming environmental damage through analyzing changes in the soil bacterial communities across slag, sewage sludge, and non-contaminated areas. The results indicate that the diversity of soil bacteria decreases with an increase in the degree of pollution. The illegal dumping of slag resulted in an increase in the relative abundance of Firmicutes and a decrease in the relative abundance of Acidobacteriota. Additionally, illegal dumping of sewage sludge resulted in an increase in the relative abundance of Proteobacteria and a decrease in the relative abundance of Acidobacteriota. The contents of Ni and Be in slag and Cu, Pb, and Cd in sewage sludge were key factors affecting bacterial community composition. The results reveal the effects of heavy metal pollution on the soil bacterial community structure and its environmental driving factors, thus expanding understanding in the context of management of the environmental damage caused by illegal dumping, as well as providing a perspective on the changes in the soil bacterial community, allowing for environmental damage confirmation. Full article
Show Figures

Figure 1

31 pages, 18235 KB  
Article
Geospatial Analysis of Malaria and Typhoid Prevalence Due to Waste Dumpsite Exposure in Kinshasa Districts with and Without Waste Services: A Case Study of Bandalungwa and Bumbu, Democratic Republic of Congo
by Yllah Kang Okin, Helmut Yabar, Karume Lubula Kevin, Takeshi Mizunoya and Yoshiro Higano
Int. J. Environ. Res. Public Health 2024, 21(11), 1495; https://doi.org/10.3390/ijerph21111495 - 11 Nov 2024
Cited by 4 | Viewed by 3586
Abstract
Municipal solid waste (MSW) management poses substantial challenges in rapidly urbanizing areas, with implications for both the environment and public health. This study focuses on the city of Kinshasa in the Democratic Republic of Congo, investigating whether the presence or absence of solid [...] Read more.
Municipal solid waste (MSW) management poses substantial challenges in rapidly urbanizing areas, with implications for both the environment and public health. This study focuses on the city of Kinshasa in the Democratic Republic of Congo, investigating whether the presence or absence of solid waste collection services results in varying health and economic impacts, and additionally, seeking to establish a correlation between residing in proximity to dumpsites and the prevalence of diseases like malaria and typhoid, thereby providing a comprehensive understanding of the health implications tied to waste exposure. Health data were collected through survey questionnaires, and the geospatial distribution of 19 dumpsites was analyzed using Google Earth Pro 7.3.1 for satellite imagery and GIS software 10.3.1 to map dumpsites and define 1 km buffer zones around the largest dumpsites for household sampling. Statistical analyses were conducted using R Version 4.2.3, employing Chi-square tests for disease prevalence and logistic regression to assess associations between waste management practices and health outcomes. A multivariate regression was used to evaluate correlations between discomfort symptoms (e.g., nasal and eye irritation) and waste activities. The geospatial analysis revealed significant variation in dumpsite size and location, with larger dumpsites near water bodies and flood-prone areas. The study contributes valuable insights into waste-related health risks, emphasizing the need for improved waste management policies in rapidly urbanizing areas like Kinshasa. The socio-demographic analysis reveals distinct traits within the surveyed populations of two communes, Bandalungwa (Bandal) and Bumbu. Bumbu, characterized by larger open dumpsites and limited waste collection services, exhibits a higher prevalence of certain diseases, particularly typhoid fever, and malaria. This discrepancy is statistically significant (p < 2.2 × 10−16), suggesting a potential link between waste exposure and disease prevalence. In Bandal, self-waste collection is a high risk of exposure to typhoid (OR = 4.834 and p = 0.00001), but the implementation of a waste collection service shows protective effect (OR = 0.206 and p = 0.00001). The lack of waste collection services in Bumbu increases the risk of exposure, although not significantly (OR = 2.268 and p = 0.08). Key findings indicate that waste disposal methods significantly differ between Bandal and Bumbu. Bumbu’s reliance on burning and dumping creates environments conducive to disease vectors, contributing to elevated disease transmission risks. However, an in-depth correlation analysis reveals that specific waste management practices, such as burning, burying, and open dumping, do not exhibit statistically significant associations with disease prevalence, underlining the complexity of disease dynamics. This study contributes valuable insights into the importance for urban public health, particularly in rapidly urbanizing cities like Kinshasa, where inadequate waste management exacerbates health risks. By investigating the correlation between proximity to unregulated dumpsites and the prevalence of diseases such as malaria and typhoid fever, the research underscores the urgent need for targeted waste management policies. The stark health disparities between Bandal, with better waste services, and Bumbu, where services are lacking, highlight the protective effect of organized waste collection. These findings suggest that expanding public waste services and enforcing stricter regulations on waste disposal could reduce disease prevalence in vulnerable areas. Additionally, the study supports integrating waste management into urban planning as a critical public health measure. Its evidence-based approach offers valuable insights for policymakers in Kinshasa and other cities facing similar challenges, emphasizing the broader health implications of environmental governance in urban settings. Full article
(This article belongs to the Collection Environmental Risk Assessment)
Show Figures

Figure 1

20 pages, 3269 KB  
Article
Evaluation of Energetic Potential of Slaughterhouse Waste and Its Press Water Obtained by Pressure-Induced Separation via Anaerobic Digestion
by Joseph Yankyera Kusi, Florian Empl, Ralf Müller, Stefan Pelz, Jens Poetsch, Gregor Sailer, Rainer Kirchhof, Nana Sarfo Agyemang Derkyi, Francis Attiogbe and Sarah Elikplim Siabi
Energies 2024, 17(22), 5522; https://doi.org/10.3390/en17225522 - 5 Nov 2024
Cited by 4 | Viewed by 2334
Abstract
Anaerobic digestion has the potential to convert organic waste materials into valuable energy. At the same time, using press water from biomass materials for energy generation while taking advantage of the resulting cake for other purposes is an emerging approach. Therefore, this study [...] Read more.
Anaerobic digestion has the potential to convert organic waste materials into valuable energy. At the same time, using press water from biomass materials for energy generation while taking advantage of the resulting cake for other purposes is an emerging approach. Therefore, this study aimed to investigate the residual potential expected from a typical biogas feedstock after it has been mechanically separated into liquid and solid phases. Hence, in this study, the rumen contents of ruminants (cow, goat, and sheep) and their proportionate ratios were obtained from an abattoir in Ghana. Resource characterization of the waste samples was carried out in the central laboratory of the HFR, Germany. Anaerobic batch tests for biogas (biomethane) yield determination were set up using the Hohenheim Biogas Yield Test (HBT). The inoculum used was obtained from an inoculum production unit at the Hohenheim University biogas laboratory. The trial involved two different forms of the sample: mixture of rumen contents, press water, and inoculum, each in four (4) replicates. The trial was carried out at a mesophilic temperature of 37 °C. Results obtained over a seventy (70) day period were transformed into biogas yields. Overall, the results show that the current contents are suitable for biogas generation as an option as opposed to the current form of disposal at a refuse dump. However, using these mixtures in their original forms is more technically viable than using press water without further treatment. Full article
Show Figures

Figure 1

Back to TopTop