Thermoelectric Properties of Tetrahedrites Produced from Mixtures of Natural and Synthetic Materials
Abstract
:1. Introduction
2. Materials and Methods
2.1. Material Preparation
2.2. Characterization Methods
3. Results and Discussion
3.1. Structural and Microstructural Characterization
3.2. Thermoelectric Properties
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ravindra, N.M.; Jariwala, B.; Bañobre, A.; Maske, A. Thermoelectrics: Fundamentals, Materials Selection, Properties, and Performance; Springer: Berlin/Heidelberg, Germany, 2019; ISBN 978-3-319-96339-6. [Google Scholar]
- Sharp, J. Thermoelectric Energy Conversion Devices. In Reference Module in Materials Science and Materials Engineering; Elsevier Inc.: Amsterdam, The Netherlands, 2016; pp. 1–8. [Google Scholar] [CrossRef]
- Twaha, S.; Zhu, J.; Yan, Y.; Li, B. A Comprehensive Review of Thermoelectric Technology: Materials, Applications, Modelling and Performance Improvement. Renew. Sustain. Energy Rev. 2016, 65, 698–726. [Google Scholar] [CrossRef]
- Zoui, M.A.; Bentouba, S.; Stocholm, J.G.; Bourouis, M. A Review on Thermoelectric Generators: Progress and Applications. Energies 2020, 13, 3606. [Google Scholar] [CrossRef]
- Ismail, B.I.; Ahmed, W.H. Thermoelectric Power Generation Using Waste-Heat Energy as an Alternative Green Technology. Recent Patents Electr. Eng. 2009, 2, 27–39. [Google Scholar] [CrossRef]
- Uher, C. (Ed.) Materials Aspect of Thermoelectricity; CRC Press (Taylor & Francis Group): Boca Raton, FL, USA, 2017; ISBN 9781498754903. [Google Scholar]
- He, J.; Tritt, T.M. Advances in Thermoelectric Materials Research: Looking Back and Moving Forward. Science 2017, 357, eaak9997. [Google Scholar] [CrossRef]
- Morrison, K.; Kidane Dejene, F. Thermal Imaging of the Thomson Effect. Physics 2020, 13, 137. [Google Scholar] [CrossRef]
- Tritt, T.M. Thermoelectric Materials: Principles, Structure, Properties, and Applications. In Encyclopedia of Materials: Science and Technology, 2nd ed.; Elsevier: Amsterdam, The Netherlands, 2002; pp. 1–11. [Google Scholar]
- Levinsky, P.; Vaney, J.B.; Candolfi, C.; Dauscher, A.; Lenoir, B.; Hejtmánek, J. Electrical, Thermal, and Magnetic Characterization of Natural Tetrahedrites–Tennantites of Different Origin. J. Electron. Mater. 2016, 45, 1351–1357. [Google Scholar] [CrossRef]
- Chetty, R.; Bali, A.; Mallik, R.C. Tetrahedrites as Thermoelectric Materials: An Overview. J. Mater. Chem. C 2015, 3, 12364–12378. [Google Scholar] [CrossRef]
- Lu, X.; Morelli, D.T.; Xia, Y.; Zhou, F.; Ozolins, V.; Chi, H.; Zhou, X.; Uher, C. High Performance Thermoelectricity in Earth-Abundant Compounds Based on Natural Mineral Tetrahedrites. Adv. Energy Mater. 2013, 3, 342–348. [Google Scholar] [CrossRef]
- Heo, J.; Ravichandran, R.; Reidy, C.F.; Tate, J.; Wager, J.F.; Keszler, D.A. Design Meets Nature: Tetrahedrite Solar Absorbers. Adv. Energy Mater. 2015, 5, 1401506. [Google Scholar] [CrossRef]
- Levinský, P.; Ventrapati, P.K.; Dauscher, A.; Hejtmánek, J.; Candolfi, C.; Lenoir, P.B. Achieving High Thermoelectric Performance in Mixed Natural-Synthetic Tetrahedrites. ChemNanoMat 2022, 8, e202200364. [Google Scholar] [CrossRef]
- Lu, X.; Morelli, D.T. Natural Mineral Tetrahedrite as a Direct Source of Thermoelectric Materials. Phys. Chem. Chem. Phys. 2013, 15, 5762–5766. [Google Scholar] [CrossRef]
- Lu, X.; Morelli, D.T. Rapid Synthesis of High-Performance Thermoelectric Materials Directly from Natural Mineral Tetrahedrite. MRS Commun. 2013, 3, 129–133. [Google Scholar] [CrossRef]
- Reiser, F.K.M.; Rosa, D.R.N.; Pinto, Á.M.M.; Carvalho, J.R.S.; Matos, J.X.; Guimarães, F.M.G.; Alves, L.C.; De Oliveira, D.P.S. Mineralogy and Geochemistry of Tin- and Germanium-Bearing Copper Ore, Barrigao Re-Mobilized Vein Deposit, Iberian Pyrite Belt, Portugal. Int. Geol. Rev. 2011, 53, 1212–1238. [Google Scholar] [CrossRef]
- De Oliveira, D.; Salgueiro, R.; Silva, T.P.; Reiser, F.; Guimarães, F.; Neves, F. The Barrigão Copper Deposit: Tennantite-Tetrahedrite for Thermoelectric and High-Technology Applications. In Proceedings of the CIG 2019, XII Congresso Ibérico de Geoquímica/XX Semana da Geoquímica, Evora, Portugal, 22–26 September 2019; pp. 255–258. [Google Scholar]
- Neves, F.; Esperto, L.; Figueira, I.; Mascarenhas, J.; Salgueiro, R.; Silva, T.P.; Correia, J.B.; Carvalho, P.A.; de Oliveira, D. Mechanochemical Synthesis of Tetrahedrite Materials Using Mixtures of Synthetic and Ore Samples Collected in the Portuguese Zone of the Iberian Pyrite Belt. Miner. Eng. 2021, 164, 106833. [Google Scholar] [CrossRef]
- Graulis, S.; Chateigner, D.; Downs, R.T.; Yokochi, A.F.T.; Quirós, M.; Lutterotti, L.; Manakova, E.; Butkus, J.; Moeck, P.; Le Bail, A. Crystallography Open Database—An Open-Access Collection of Crystal Structures. J. Appl. Crystallogr. 2009, 42, 726–729. [Google Scholar] [CrossRef]
- Chaikin, P.M.; Kwak, J.F. Apparatus for Thermopower Measurements on Organic Conductors. Rev. Sci. Instrum. 1975, 46, 218–220. [Google Scholar] [CrossRef]
- Webster, J.G. Electrical Measurement, Signal Processing, and Displays; CRC Press (Taylor & Francis Group): Boca Raton, FL, USA, 2003; ISBN 9780203009406. [Google Scholar]
- Kim, S.Y.; Kwak, S.G.; Pi, J.H.; Lee, G.E.; Kim, I.H. Preparation of Tetrahedrite Cu12Sb4S13 by Mechanical Alloying and Hot Pressing. J. Electron. Mater. 2019, 48, 1857–1863. [Google Scholar] [CrossRef]
- Crystallography Open Database (COD)—ID#9004148. Available online: http://www.crystallography.net/cod/9004148.html (accessed on 9 July 2024).
- Tippireddy, S.; Chetty, R.; Naik, M.H.; Jain, M.; Chattopadhyay, K.; Mallik, R.C. Electronic and Thermoelectric Properties of Transition Metal Substituted Tetrahedrites. J. Phys. Chem. C 2018, 122, 8735–8749. [Google Scholar] [CrossRef]
- Baláž, P.; Guilmeau, E.; Daneu, N.; Dobrozhan, O.; Baláž, M.; Hegedus, M.; Barbier, T.; Achimovičová, M.; Kaňuchová, M.; Briančin, J. Tetrahedrites Synthesized via Scalable Mechanochemical Process and Spark Plasma Sintering. J. Eur. Ceram. Soc. 2020, 40, 1922–1930. [Google Scholar] [CrossRef]
- Vaney, J.B.; Piarristeguy, A.; Ohorodniichuck, V.; Ferry, O.; Pradel, A.; Alleno, E.; Monnier, J.; Lopes, E.B.; Gonçalves, A.P.; Delaizir, G.; et al. Effective Medium Theory Based Modeling of the Thermoelectric Properties of Composites: Comparison between Predictions and Experiments in the Glass-Crystal Composite System Si10As15Te75-Bi0.4Sb1.6Te3. J. Mater. Chem. C 2015, 3, 11090–11098. [Google Scholar] [CrossRef]
- Snyder, G.J.; Toberer, E.S. Complex Thermoelectric Materials. Nat. Mater. 2008, 7, 105–114. [Google Scholar] [CrossRef]
- Jia, N.; Cao, J.; Tan, X.Y.; Dong, J.; Liu, H.; Tan, C.K.I.; Xu, J.; Yan, Q.; Loh, X.J.; Suwardi, A. Thermoelectric Materials and Transport Physics. Mater. Today Phys. 2021, 21, 100519. [Google Scholar] [CrossRef]
- Zhao, L.; Ye, H.; Wu, X.; Yang, J.; Yu, L.; Shi, Z.; Hussain, S.; Qiao, G.; Xu, J.; Ge, B.; et al. Enhanced Figure of Merit for Famatinite Cu3SbSe4 via Band Structure Tuning and Hierarchical Architecture. J. Mater. 2023, 9, 1263–1272. [Google Scholar] [CrossRef]
- Goldsmid, H.J. Introduction to Thermoelectricity, 2nd ed. Springer: Berlin/Heidelberg, Germany, 2016; Volume 121, ISBN 9783662492550.
- Levinsky, P.; Candolfi, C.; Dauscher, A.; Tobola, J.; Hejtmánek, J.; Lenoir, B. Thermoelectric Properties of the Tetrahedrite-Tennantite Solid Solutions Cu12Sb4-: XAsxS13 and Cu10Co2Sb4-YAsyS13 (0 ≤ x, y ≤ 4). Phys. Chem. Chem. Phys. 2019, 21, 4547–4555. [Google Scholar] [CrossRef]
- Garvie, L.A.J.; Rez, P.; Alvarez, J.R.; Buseck, P.R.; Craven, A.J.; Brydson, R. Bonding in Alpha-Quartz (SiO2): A View of the Unoccupied States. Am. Mineral. 2000, 85, 732–738. [Google Scholar] [CrossRef]
- Fortulan, R.; Yamini, S.A. Recent Progress in Multiphase Thermoelectric Materials. Materials 2021, 14, 6059. [Google Scholar] [CrossRef]
- Kim, E.B.; Dharmaiah, P.; Lee, K.H.; Lee, C.H.; Lee, J.H.; Yang, J.K.; Jang, D.H.; Kim, D.S.; Hong, S.J. Enhanced Thermoelectric Properties of Bi0.5Sb1.5Te3 Composites with in-Situ Formed Senarmontite Sb2O3 Nanophase. J. Alloys Compd. 2019, 777, 703–711. [Google Scholar] [CrossRef]
- Xie, H.; Su, X.; Bailey, T.P.; Zhang, C.; Liu, W.; Uher, C.; Tang, X.; Kanatzidis, M.G. Anomalously Large Seebeck Coefficient of CuFeS2 Derives from Large Asymmetry in the Energy Dependence of Carrier Relaxation Time. Chem. Mater. 2020, 32, 2639–2646. [Google Scholar] [CrossRef]
- Suekuni, K.; Tsuruta, K.; Ariga, T.; Koyano, M. Thermoelectric Properties of Mineral Tetrahedrites Cu10Tr2Sb4S13 with Low Thermal Conductivity. Appl. Phys. Express 2012, 5, 051201. [Google Scholar] [CrossRef]
- Sun, F.H.; Wu, C.F.; Li, Z.; Pan, Y.; Asfandiyar; Dong, J.; Li, J.F. Powder Metallurgically Synthesized Cu12Sb4S13 Tetrahedrites: Phase Transition and High Thermoelectricity. RSC Adv. 2017, 7, 18909–18916. [Google Scholar] [CrossRef]
- Gonçalves, A.P.; Lopes, E.B.; Montemor, M.F.; Monnier, J.; Lenoir, B. Oxidation Studies of Cu12Sb3.9Bi0.1S10Se3 Tetrahedrite. J. Electron. Mater. 2018, 47, 2880–2889. [Google Scholar] [CrossRef]
- Coelho, R.; Casi, Á.; Araiz, M.; Astrain, D.; Branco Lopes, E.; Brito, F.P.; Gonçalves, A.P. Computer Simulations of Silicide-Tetrahedrite Thermoelectric Generators. Micromachines 2022, 13, 1915. [Google Scholar] [CrossRef] [PubMed]
- Bouyrie, Y.; Candolfi, C.; Ohorodniichuk, V.; Malaman, B.; Dauscher, A.; Tobola, J.; Lenoir, B. Crystal Structure, Electronic Band Structure and High-Temperature Thermoelectric Properties of Te-Substituted Tetrahedrites Cu12Sb4−XTexS13 (0.5 ≤ x ≤ 2.0). J. Mater. Chem. C 2015, 3, 10476–10487. [Google Scholar] [CrossRef]
Sample ID | ρ (μΩ.m) | S (μV.K−1) | PF (μW.K−2.m−1) |
---|---|---|---|
syn-td_HP | 53.6 | 31 | 18 |
BO/syn-td_10/90% | 21 | 75 | 268 |
BO/syn-td_20/80% | 99 | 90 | 84 |
BO/syn-td_10/90%_HT | 33 | 96 | 125 |
BO/syn-td_20/80%_HT | 84 | 137 | 190 |
BO/syn-td_50%50 | 1929 | 37 | 0.7 |
NCO/syn-td_20/80% | 3412 | 121 | 4 |
NCO/syn-td_50/50% | 3628 | 116 | 3.7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Santos, B.A.; Esperto, L.; Figueira, I.; Mascarenhas, J.; Lopes, E.B.; Salgueiro, R.; Silva, T.P.; Correia, J.B.; de Oliveira, D.; Gonçalves, A.P.; et al. Thermoelectric Properties of Tetrahedrites Produced from Mixtures of Natural and Synthetic Materials. Materials 2025, 18, 1375. https://doi.org/10.3390/ma18061375
Santos BA, Esperto L, Figueira I, Mascarenhas J, Lopes EB, Salgueiro R, Silva TP, Correia JB, de Oliveira D, Gonçalves AP, et al. Thermoelectric Properties of Tetrahedrites Produced from Mixtures of Natural and Synthetic Materials. Materials. 2025; 18(6):1375. https://doi.org/10.3390/ma18061375
Chicago/Turabian StyleSantos, Beatriz A., Luís Esperto, Isabel Figueira, João Mascarenhas, Elsa B. Lopes, Rute Salgueiro, Teresa P. Silva, José B. Correia, Daniel de Oliveira, António P. Gonçalves, and et al. 2025. "Thermoelectric Properties of Tetrahedrites Produced from Mixtures of Natural and Synthetic Materials" Materials 18, no. 6: 1375. https://doi.org/10.3390/ma18061375
APA StyleSantos, B. A., Esperto, L., Figueira, I., Mascarenhas, J., Lopes, E. B., Salgueiro, R., Silva, T. P., Correia, J. B., de Oliveira, D., Gonçalves, A. P., & Neves, F. (2025). Thermoelectric Properties of Tetrahedrites Produced from Mixtures of Natural and Synthetic Materials. Materials, 18(6), 1375. https://doi.org/10.3390/ma18061375