A New Conservative Approach for Statistical Data Analysis in Surveying for Trace Elements in Solid Waste Ponds
Abstract
:1. Introduction
2. Materials and Methods
2.1. Derivation of the pdfs Assigned to Aliquot Mass and to Analyte Mass
2.2. Derivation of the pdf Assigned to True Analyte Concentration in the Aliquot
2.3. Derivation of the Analyte Concentration with Laboratory Constraints
2.4. Sample Preparation and Characterization
3. Results and Discussion
Assessment of the Tailings’ Heterogeneity at the Micro Scale
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- GACERE. Circular Economy and Solid Waste—Working Paper. 2024. Available online: https://www.unido.org/sites/default/files/unido-publications/2024-06/Working%20Paper_Circular%20Economy%20and%20Solid%20Waste.pdf (accessed on 20 January 2024).
- European Commission DG ENV. E3 Project ENV.E.3/ETU/2000/0058 Heavy Metals in Waste Final Report February 2002. Available online: https://cordis.europa.eu/article/id/15254-heavy-metals-in-waste (accessed on 20 January 2024).
- Document Number C (2009, 3013), (2009/360/EC), Commission Decision, 30 April 2009, Completing the Technical Requirements for Waste Characterisation Laid Down by Directive 2006/21/EC of the European Parliament and of the Council on the Management of Waste from Extractive Industries. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:32009D0360 (accessed on 3 March 2024).
- Onwualu-John, J.N.; Uzoegbu, M.U. Physicochemical Characteristics and Heavy Metals Level in Groundwater and Leachate around Solid Waste Dumpsite at Mbodo, Rivers State Nigeria. J. Appl. Sci. Environ. Manag. 2022, 26, 2107–2112. [Google Scholar] [CrossRef]
- Simon, F.G.; Scholz, P. Assessment of the Long-Term Leaching Behavior of Incineration Bottom Ash: A Study of Two Waste Incinerators in Germany. Appl. Sci. 2023, 13, 13228. [Google Scholar] [CrossRef]
- Das, S.; Galgo, S.J.; Aam, M.A.; Lee, J.G.; Hwang, H.Y.; Lee, C.H.; Kim, P.J. Recycling of ferrous slag in agriculture: Potentials and challenges. Crit. Rev. Environ. Sci. Technol. 2020, 52, 1–35. [Google Scholar] [CrossRef]
- United States Department of Agriculture Natural Resources Conservation Service Soil Quality Institute 411, S. Donahue Dr. Auburn, AL 36832 334-844-4741 X-177 Urban Technical Note No. 3 September, 2000. Available online: https://semspub.epa.gov/work/03/2227185.pdf (accessed on 3 March 2024).
- Regulation (EU) 2024/1252 of the European Parliament and of the Council of 11 April 2024 Establishing a Framework for Ensuring a Secure and Sustainable Supply of Critical Raw Materials and Amending Regulations (EU) No 168/2013, (EU) 2018/858, (EU) 2018/1724 and (EU) 2019/1020. Available online: https://eur-lex.europa.eu/eli/reg/2024/1252/oj (accessed on 8 July 2024).
- Dino, G.A.; Rossetti, P.; Perotti, L.; Alberto, W.; Sarkka, H.; Coulon, F.; Wagland, S.; Griffiths, Z.; Rodeghiero, F. Landfill mining from extractive waste facilities: The importance of a correct site characterisation and evaluation of the potentialities. A case study from Italy. Resour. Policy 2018, 59, 50–61. [Google Scholar] [CrossRef]
- Analytical Methods Committee AMCTB No. 92. The edge of reason: Reporting and inference near the detection limit. AMC Technical Brief. Anal. Methods 2020, 12, 401–403. [CrossRef]
- Thompson, M.; Ellison, S.L.R. Towards an uncertainty paradigm of detection capability. Anal. Methods 2013, 5, 5857–5861. [Google Scholar] [CrossRef]
- Wikipedia, Abundance of elements in Earth’s Crust. Available online: https://en.wikipedia.org/wiki/Abundance_of_elements_in_Earth%27s_crust (accessed on 30 March 2024).
- Baldassarre, G.; Fiorucci, A.; Marini, P. Recovery of Critical Raw Materials from Abandoned Mine Wastes: Some Potential Case Studies in Northwest Italy. Mater. Proc. 2023, 15, 77. [Google Scholar] [CrossRef]
- Pencea, I.; Turcu, R.N.; Popescu-Arges, A.C.; Timis, A.L.; Priceputu, A.; Ungureanu, C.; Matei, E.; Nedelcu, L.; Petrescu, M.I.; Niculescu, F. An improved balanced replicated sampling design for preliminary screening of the tailings ponds aiming at zero-waste valorization. A Romanian case study. J. Environ. Manag. 2023, 331, 117260. [Google Scholar] [CrossRef]
- Pitard, F.F. Theoretical, practical, and economic difficulties in sampling for trace constituents. J. S. Afr. Inst. Min. Metall. 2010, 110, 313–321. Available online: https://www.saimm.co.za/Journal/v110n06p313.pdf (accessed on 15 January 2025).
- Araya, N.; Ramirez, Y.; Kraslawski, A.; Cisternas, L.A. Feasibility of re-processing mine tailings to obtain critical raw materials using real options analysis. J. Environ. Manag. 2021, 284, 112060. [Google Scholar] [CrossRef]
- Sarker, S.K.; Haque, N.; Bhuiyan, M.; Bruckard, W.; Pramanik, B.K. Recovery of strategically important critical minerals from mine tailings. J. Environ. Chem. Eng. 2022, 10, 107622. [Google Scholar] [CrossRef]
- Pitard, F.R. Pierre Gy’s Sampling Theory and Sampling Practice: Heterogeneity, Sampling Correctness, and Statistical Process Control, 2nd ed.; CRC Press: Boca Raton, FL, USA, 1993. [Google Scholar]
- Minkkinen, P.O.; Esbensen, K.H. Sampling of particulate materials with significant spatial heterogeneity—Theoretical modification of grouping and segregation factors involved with correct sampling errors: Fundamental Sampling Error and Grouping and Segregation Error. Anal. Chim. Acta 2019, 1049, 47–64. [Google Scholar] [CrossRef] [PubMed]
- Hennebert, P. The sorting of waste for a circular economy: Sampling when (very) few particles have (very) high concentrations of contaminant or valuable element. In Proceedings of the 17th International Waste Management and Landfill Symposium, Santa Margherita di Pula, CA, USA, 30 September–4 October 2019; Italy in Proceedings SARDINIA2019. CISA Publisher: Padova, Italy, 2019. Available online: www.cisapublisher.com (accessed on 17 February 2024).
- Hennebert, P.; Beggio, G. Sampling representative waste samples based on particles size. Detritus 2022, 18, 3–11. [Google Scholar]
- Hennebert, P.; Beggio, G. Sampling and sub-sampling of granular waste: Size of a representative sample in terms of number of particles. Detritus 2021, 17, 30–41. [Google Scholar] [CrossRef]
- Ladenberger, A.; Arvanitidis, N.; Jonsson, E.; Arvidsson, R.; Casanovas, S.; Lauri, L. Identification and Quantification of Secondary CRM Resources in Europe, SCRREEN—Contract Number: 730227. Available online: https://scrreen.eu/wp-content/uploads/2018/03/SCRREEN-D3.2-Identification-and-quantification-of-secondary-CRM-resources-in-Europe.pdf (accessed on 19 February 2024).
- Gerlach, R.W.; Nocerino, J.M. Guidance for Obtaining Representative Laboratory Analytical Subsamples from Particulate Laboratory Samples. EPA/600/R-03/027 November 2003, ID: 75176. Available online: https://www.researchgate.net/publication/242671015_Guidance_for_Obtaining_Representative_Laboratory_Analytical_Subsamples_from_Particulate_Laboratory_Samples (accessed on 20 December 2024).
- ISO/IEC 98-3; Uncertainty of Measurement—Part 3: Guide to the Expression of Uncertainty in Measurement (GUM:1995). ISO: Geneva, Switzerland, 2008.
- Coskun, A.; Oosterhuis, W. Statistical distributions commonly used in measurement uncertainty in laboratory medicine. Biochem. Medica 2020, 30, 010101. [Google Scholar] [CrossRef]
- Terzano, R.; Denecke, M.; Falkenberg, G.; Miller, B.; Paterson, D.; Janssens, K. Recent advances in analysis of trace elements in environmental samples by X-ray based techniques (IUPAC Technical Report). Pure Appl. Chem. 2019, 91, 1029–1063. [Google Scholar] [CrossRef]
- Allegretta, I.; Bilo, F.; Marguí, E.; Pashkova, G.V.; Terzano, R. Development and Application of X-rays in Metal Analysis of Soil and Plants. Agronomy 2023, 13, 114. [Google Scholar] [CrossRef]
- ISO 13528:2015; Statistical Methods for Use in Proficiency Testing by Interlaboratory Comparison, 2nd ed. ISO: Geneva, Switzerland, 2015; pp. 10–12, 32–33, 44–51, 52–62.
- ISO/IEC 17025:2017; General Requirements for the Competence of Testing and Calibration Laboratories. ISO: Geneva, Switzerland, 2017.
- Pencea, I. Multiconvolutional Approach to Treat the Main Probability Distribution Functions Used to Assess the Uncertainties of Metallurgical Tests; InTech, Ed.; Chapter 6 in Metallurgy—Advances in Materials and Processes; IntechOpen: London, UK, 2012; p. 186. ISBN 978-953-51-0736-1. [Google Scholar] [CrossRef]
- Kadachia, A.N.; Al-Eshaikhb, M.A. Limits of detection in XRF spectroscopy. X-Ray Spectrom. 2012, 41, 350–354. [Google Scholar] [CrossRef]
- Badla, C.; Wewers, F. Optimization of X-ray Fluorescence Calibration through the Introduction of Synthetic Standards for the Determination of Mineral Sands Oxides. S. Afr. J. Chem. 2020, 73, 92–102. [Google Scholar] [CrossRef]
- Wikipedia, Truncated Normal Distribution. Available online: https://en.wikipedia.org/wiki/Truncated_normal_distribution (accessed on 25 March 2024).
- Wikipedia, Characteristic Function (Probability Theory). Available online: https://en.wikipedia.org/wiki/Characteristic_function_(probability_theory) (accessed on 25 March 2024).
- Rousseau, R.M. Detection Limit and Estimate of Uncertainty of Analytical XRF Results. Rigaku J. 2001, 18, 33–47. Available online: https://www.researchgate.net/publication/228687395_Detection_limit_and_estimate_of_uncertainty_of_analytical_XRF_results (accessed on 15 January 2025).
- Moran-Palacios, H.; Ortega-Fernandez, F.; Lopez-Castaño, R.; Alvarez-Cabal, J.V. The Potential of Iron Ore Tailings as Secondary Deposits of Rare Earths. Appl. Sci. 2019, 9, 2913. [Google Scholar] [CrossRef]
- Blannin, R.; Frenzel, M.; Tolosana-Delgado, R.; Gutzmer, J. Towards a sampling protocol for the resource assessment of critical raw materials in tailings storage facilities. J. Geochem. Explor. 2022, 236, 106974. [Google Scholar] [CrossRef]
- ISO 5725-5:1998; Accuracy (Trueness and Precision) of Measurement Methods and Results—Part 5: Alternative Methods for the Determination of the Precision of a Standard Measurement Method, 1st ed. ISO: Geneva, Switzerland, 1998; pp. 35–36.
Description Method: TurboQuant Pellets | |||||
---|---|---|---|---|---|
Aliquot No. 1 | Aliquot No. 22 | ||||
Z | Symbol | Concentration [%wt.] | * SD [%wt.] | Concentration [%wt.] | SD [%wt.] |
11 | Na2O | 0.804056 | 0.024000 | 1.794032 | 0.023658 |
12 | MgO | 1.344708 | 0.009000 | 1.358216 | 0.007707 |
13 | Al2O3 | 9.817325 | 0.010000 | 9.686015 | 0.009131 |
14 | SiO2 | 52.68028 | 0.0300 | 49.572850 | 0.032995 |
15 | P2O5 | 0.642814 | 0.001700 | 0.642621 | 0.001823 |
16 | SO3 | 2.324803 | 0.000900 | 3.449874 | 0.000920 |
17 | Cl | 0.014883 | 0.000070 | 0.014575 | 7.19 × 10−5 |
19 | K2O | 2.030205 | 0.006000 | 2.188351 | 0.005578 |
20 | CaO | 11.38931 | 0.00900 | 14.88444 | 0.008529 |
22 | TiO2 ** | 0.855457 | 0.004500 | 0.812547 | 0.004797 |
23 | V2O5 | 0.01414 | 0.00130 | 0.013785 | 0.001213 |
24 | Cr2O3 | 0.025996 | 0.000460 | 0.024948 | 0.000407 |
25 | MnO | 0.11524 | 0.00070 | 0.113313 | 0.000781 |
26 | Fe2O3 | 15.62105 | 0.00400 | 13.89942 | 0.003672 |
27 | CoO | 0.001607 | 0.000230 | 0.001600 | 0.000234 |
28 | NiO | 0.006846 | 0.000100 | 0.006134 | 0.00011 |
29 | CuO | 0.025287 | 0.000150 | 0.026669 | 0.000158 |
30 | ZnO | 0.125794 | 0.000300 | 0.120923 | 0.000281 |
31 | Ga | 0.001243 | 0.000040 | 0.001316 | 3.63 ×10−5 |
32 | Ge | 0.000461 | 0.000040 | 0.000172 | 0.000040 |
33 | As2O3 | 0.000866 | 0.000090 | 0.000789 | 9.10 × 10−5 |
34 | Se | 5.06 × 10−5 | 0.00002 | 0.00005 | 2.05 × 10−5 |
35 | Br | 0.001244 | 0.000020 | 0.00134 | 2.03 × 10−5 |
37 | Rb2O | 0.00869 | 0.00003 | 0.007784 | 3.21 × 10−5 |
38 | SrO | 0.016866 | 0.000040 | 0.018128 | 3.56 × 10−5 |
39 | Y | 0.002172 | 0.000030 | 0.001990 | 3.20 × 10−5 |
40 | ZrO2 | 0.029554 | 0.000240 | 0.028678 | 0.000240 |
41 | Nb2O5 | 0.001186 | 0.000070 | 0.00122 | 6.65 × 10−5 |
42 | Mo | 0.000831 | 0.000060 | 0.00081 | 6.38 × 10−5 |
47 | Ag | 0.000535 | 0.000160 | 0.000530 | 0.000152 |
48 | Cd | 0.000398 | 0.000060 | 0.000410 | 5.50 × 10−5 |
50 | SnO2 | 0.002718 | 0.000130 | 0.002817 | 0.000137 |
51 | Sb2O5 | 0.000882 | 0.000110 | 0.000900 | 0.000118 |
52 | Te | <0.00030 | - | <0.00030 | - |
53 | I | <0.00030 | - | <0.00030 | - |
55 | Cs | 0.000953 | 0.000590 | 0.000950 | 0.000532 |
56 | Ba | 0.069997 | 0.001000 | 0.062817 | 0.000879 |
57 | La | <0.00020 | - | <0.00020 | - |
58 | Ce | 0.003449 | 0.000760 | 0.003740 | 0.000840 |
72 | Hf | 0.00055 | 0.00007 | 0.000531 | 6.85 × 10−5 |
73 | Ta2O5 | <0.00063 | - | <0.00063 | - |
74 | WO3 | 0.001896 | 0.000140 | 0.001834 | 0.000129 |
79 | Au | 0.000131 | 0.000060 | - | - |
80 | Hg | <0.00010 | - | <0.00010 | - |
81 | Tl | 0.000117 | 0.000020 | 0.00012 | 2.16 × 10−5 |
82 | PbO | 0.021109 | 0.000100 | 0.0233090 | 0.000108 |
83 | Bi | 0.000172 | 0.000060 | <0.00010 | - |
90 | Th | 0.000883 | 0.000040 | 0.000888 | 3.81 × 10−5 |
92 | U | 6.94 × 10−5 | 0.00001 | 6.51 × 10−5 | 8.92 × 10−6 |
Total | 99.21829 | 98.7713 |
Sample No. | Y | Ce | Ge | Bi | ||||
---|---|---|---|---|---|---|---|---|
C | SD | C | SD | C | SD | C | SD | |
1 | 21.70 | 0.30 | 34.50 | 7.60 | 4.60 | 0.41 | 1.70 | 0.70 |
2 | 21.50 | 0.30 | 32.10 | 8.00 | 5.10 | 0.40 | 0.00 | 0.00 |
3 | 26.20 | 0.30 | 30.00 | 8.00 | 2.60 | 0.40 | 2.60 | 0.70 |
4 | 25.40 | 0.30 | 30.00 | 7.00 | 2.20 | 0.40 | 3.10 | 0.60 |
5 | 21.55 | 0.30 | 34.39 | 7.60 | 0.00 | 0.00 | 4.40 | 0.60 |
6 | 21.88 | 0.30 | 33.98 | 7.53 | 0.80 | 0.41 | 4.05 | 0.60 |
7 | 21.32 | 0.30 | 33.30 | 7.51 | 1.70 | 0.40 | 0.00 | 0.00 |
8 | 22.30 | 0.30 | 35.00 | 7.67 | 1.80 | 0.40 | 1.80 | 0.60 |
9 | 21.55 | 0.30 | 34.39 | 7.60 | 3.55 | 0.40 | 3.21 | 0.60 |
10 | 21.88 | 0.30 | 33.30 | 7.51 | 3.20 | 0.40 | 4.22 | 0.60 |
11 | 21.32 | 0.30 | 33.98 | 7.53 | 3.60 | 0.40 | 5.40 | 0.60 |
12 | 22.30 | 0.30 | 32.50 | 7.67 | 2.63 | 0.40 | 5.60 | 0.60 |
13 | 21.00 | 0.30 | 35.00 | 8.60 | 1.30 | 0.40 | 3.80 | 0.60 |
14 | 21.88 | 0.30 | 33.98 | 7.53 | 4.10 | 0.40 | 3.20 | 0.60 |
15 | 21.00 | 0.30 | 32.50 | 8.60 | 3.20 | 0.40 | 0.00 | 0.00 |
16 | 21.00 | 0.30 | 35.00 | 8.30 | 2.12 | 0.40 | 4.50 | 0.60 |
17 | 21.18 | 0.33 | 34.50 | 8.60 | 4.10 | 0.42 | 3.40 | 0.60 |
18 | 21.18 | 0.31 | 34.50 | 8.05 | 3.35 | 0.45 | 4.10 | 0.60 |
19 | 21.18 | 0.36 | 34.50 | 7.60 | 5.54 | 0.42 | 2.30 | 0.60 |
20 | 21.18 | 0.33 | 34.50 | 8.42 | 5.74 | 0.42 | 0.00 | 0.00 |
21 | 19.50 | 0.32 | 30.30 | 8.25 | 5.10 | 0.42 | 1.40 | 0.80 |
22 | 19.90 | 0.32 | 37.40 | 8.39 | 0.91 | 0.42 | 0.00 | 0.00 |
23 | 18.80 | 0.29 | 31.60 | 7.54 | 0.00 | 0.00 | 5.20 | 0.56 |
24 | 23.60 | 0.30 | 38.00 | 8.24 | 1.09 | 0.42 | 5.10 | 0.80 |
25 | 18.70 | 0.32 | 39.10 | 8.49 | 2.40 | 0.42 | 2.10 | 0.50 |
26 | 17.70 | 0.30 | 39.70 | 7.60 | 0.87 | 0.42 | 1.90 | 0.50 |
27 | 20.20 | 0.31 | 36.50 | 7.76 | 0.76 | 0.42 | 3.80 | 0.60 |
28 | 20.00 | 0.33 | 35.40 | 8.39 | 2.63 | 0.42 | 3.60 | 0.60 |
29 | 16.19 | 0.40 | 30.40 | 8.05 | 4.50 | 0.42 | 2.30 | 0.40 |
30 | 20.50 | 0.30 | 34.40 | 8.40 | 1.07 | 0.42 | 4.50 | 0.60 |
31 | 23.60 | 0.30 | 33.90 | 7.91 | 1.25 | 0.42 | 0.00 | 0.00 |
32 | 20.40 | 0.29 | 35.80 | 7.79 | 0.00 | 0.00 | 6.50 | 0.70 |
33 | 20.20 | 0.30 | 35.20 | 7.00 | 0.62 | 0.43 | 2.36 | 0.97 |
34 | 22.90 | 0.30 | 31.80 | 7.10 | 3.60 | 0.42 | 6.22 | 1.00 |
35 | 22.40 | 0.32 | 35.20 | 7.64 | 2.73 | 0.42 | 2.23 | 1.03 |
36 | 23.70 | 0.31 | 33.40 | 7.77 | 0.00 | 0.00 | 1.97 | 1.00 |
37 | 22.20 | 0.29 | 36.20 | 7.55 | 1.02 | 0.42 | 6.15 | 1.04 |
38 | 23.30 | 0.30 | 40.20 | 8.10 | 1.83 | 0.42 | 5.36 | 1.10 |
39 | 24.30 | 0.27 | 39.90 | 7.40 | 0.00 | 0.00 | 2.30 | 0.97 |
40 | 22.30 | 0.33 | 38.50 | 7.36 | 1.48 | 0.42 | 5.35 | 1.00 |
Statistical parameter | Y | Ce | Ge | Bi |
Classical statistical analysis of the data | ||||
Arithmetic mean [ppm] | 22.01 | 36.50 | 3.54 | 3.05 |
SD [ppm] | 1.85 | 2.62 | 1.97 | 1.82 |
RSD (%) | 8 | 7 | 56 | 60 |
Robust statistical analysis of the data | ||||
Median [ppm] | 21.41 | 34.50 | 3.31 | 2.88 |
SD * [ppm] | 0.89 | 2.97 | 2.69 | 2.32 |
RSD ** (%) | 4 | 9 | 81 | 81 |
Conservative data analysis | ||||
Mean [ppm] | 11.15 | 19.25 | 2.31 | 2.68 |
LOQ [ppm] | 0.50 | 1.00 | 0.50 | 1.00 |
Uncertainty [ppm] | 9.12 | 15.75 | 1.95 | 2.40 |
Relative uncertainty (%) | 82 | 82 | 84 | 90 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Timiş, A.-L.; Pencea, I.; Priceputu, A.; Ungureanu, C.; Karas, Z.; Niculescu, F.; Turcu, R.-N.; Iacob, G.; Marcu, D.F.; Macovei, A.C. A New Conservative Approach for Statistical Data Analysis in Surveying for Trace Elements in Solid Waste Ponds. Appl. Sci. 2025, 15, 4246. https://doi.org/10.3390/app15084246
Timiş A-L, Pencea I, Priceputu A, Ungureanu C, Karas Z, Niculescu F, Turcu R-N, Iacob G, Marcu DF, Macovei AC. A New Conservative Approach for Statistical Data Analysis in Surveying for Trace Elements in Solid Waste Ponds. Applied Sciences. 2025; 15(8):4246. https://doi.org/10.3390/app15084246
Chicago/Turabian StyleTimiş, Andrei-Lucian, Ion Pencea, Adrian Priceputu, Constantin Ungureanu, Zbynek Karas, Florentina Niculescu, Ramona-Nicoleta Turcu, Gheorghe Iacob, Dragoș Florin Marcu, and Alexandru Constantin Macovei. 2025. "A New Conservative Approach for Statistical Data Analysis in Surveying for Trace Elements in Solid Waste Ponds" Applied Sciences 15, no. 8: 4246. https://doi.org/10.3390/app15084246
APA StyleTimiş, A.-L., Pencea, I., Priceputu, A., Ungureanu, C., Karas, Z., Niculescu, F., Turcu, R.-N., Iacob, G., Marcu, D. F., & Macovei, A. C. (2025). A New Conservative Approach for Statistical Data Analysis in Surveying for Trace Elements in Solid Waste Ponds. Applied Sciences, 15(8), 4246. https://doi.org/10.3390/app15084246