Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (18)

Search Parameters:
Keywords = dual-impeller

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 1816 KiB  
Article
Rethinking Infrared and Visible Image Fusion from a Heterogeneous Content Synergistic Perception Perspective
by Minxian Shen, Gongrui Huang, Mingye Ju and Kai-Kuang Ma
Sensors 2025, 25(15), 4658; https://doi.org/10.3390/s25154658 - 27 Jul 2025
Viewed by 233
Abstract
Infrared and visible image fusion (IVIF) endeavors to amalgamate the thermal radiation characteristics from infrared images with the fine-grained texture details from visible images, aiming to produce fused outputs that are more robust and information-rich. Among the existing methodologies, those based on generative [...] Read more.
Infrared and visible image fusion (IVIF) endeavors to amalgamate the thermal radiation characteristics from infrared images with the fine-grained texture details from visible images, aiming to produce fused outputs that are more robust and information-rich. Among the existing methodologies, those based on generative adversarial networks (GANs) have demonstrated considerable promise. However, such approaches are frequently constrained by their reliance on homogeneous discriminators possessing identical architectures, a limitation that can precipitate the emergence of undesirable artifacts in the resultant fused images. To surmount this challenge, this paper introduces HCSPNet, a novel GAN-based framework. HCSPNet distinctively incorporates heterogeneous dual discriminators, meticulously engineered for the fusion of disparate source images inherent in the IVIF task. This architectural design ensures the steadfast preservation of critical information from the source inputs, even when faced with scenarios of image degradation. Specifically, the two structurally distinct discriminators within HCSPNet are augmented with adaptive salient information distillation (ASID) modules, each uniquely structured to align with the intrinsic properties of infrared and visible images. This mechanism impels the discriminators to concentrate on pivotal components during their assessment of whether the fused image has proficiently inherited significant information from the source modalities—namely, the salient thermal signatures from infrared imagery and the detailed textural content from visible imagery—thereby markedly diminishing the occurrence of unwanted artifacts. Comprehensive experimentation conducted across multiple publicly available datasets substantiates the preeminence and generalization capabilities of HCSPNet, underscoring its significant potential for practical deployment. Additionally, we also prove that our proposed heterogeneous dual discriminators can serve as a plug-and-play structure to improve the performance of existing GAN-based methods. Full article
(This article belongs to the Section Sensing and Imaging)
Show Figures

Figure 1

16 pages, 12973 KiB  
Article
Study of Inlet Vortex Behavior in Dual-Pump Systems and Its Influence on Pump Operational Instability
by Wei Song, Jilong Lin, Yonggang Lu, Yun Zhao and Zhengwei Wang
Water 2025, 17(12), 1784; https://doi.org/10.3390/w17121784 - 14 Jun 2025
Viewed by 472
Abstract
This study addresses inlet flow distribution and pressure pulsation-induced vibration in LNG dual-pump parallel systems. We investigate an LNG dual-submerged pump tower system. Our approach combines computational fluid dynamics with vortex dynamics theory. We examine inlet flow characteristics under different flow conditions. Pressure [...] Read more.
This study addresses inlet flow distribution and pressure pulsation-induced vibration in LNG dual-pump parallel systems. We investigate an LNG dual-submerged pump tower system. Our approach combines computational fluid dynamics with vortex dynamics theory. We examine inlet flow characteristics under different flow conditions. Pressure pulsation propagation patterns are analyzed. System stability mechanisms are investigated. A 3D model incorporates inducers, impellers, guide vanes, outlet sections, and base structures. The SST k-ω turbulence model and Q-criterion vortex identification reveal key features. Results show minimal head differences during parallel operation. The inlet flow field remains uniform without significant vortices. However, local low-velocity zones beneath the base may cause flow separation at low flows. Pressure pulsations are governed by guide vane rotor–stator interactions. These disturbances propagate backward to impellers and inducers. Outlet sections show asymmetric pressure fluctuations. This asymmetry results from spatial positioning differences. Complex base geometries generate low-intensity vortices. Vortex intensity stabilizes at higher flows. These findings provide theoretical foundations for vibration suppression. Full article
(This article belongs to the Special Issue Hydrodynamics Science Experiments and Simulations, 2nd Edition)
Show Figures

Figure 1

23 pages, 9933 KiB  
Article
Transport of a Mixture of Sand and Water Through a Pump Characterized by Dual Inlets and a Double-Layered Impeller
by Can Kang, Yuhang Zhang, Yang Zhu, Hassan Waqas and Changjiang Li
Appl. Sci. 2024, 14(22), 10101; https://doi.org/10.3390/app142210101 - 5 Nov 2024
Cited by 1 | Viewed by 1026
Abstract
A centrifugal pump incorporating two inlets and a double-layered impeller is proposed for transporting a mixture of sand and water. The double-layered impeller (primary impeller) encircles a secondary impeller. To reveal the operating and flow characteristics of such a pump, numerical work is [...] Read more.
A centrifugal pump incorporating two inlets and a double-layered impeller is proposed for transporting a mixture of sand and water. The double-layered impeller (primary impeller) encircles a secondary impeller. To reveal the operating and flow characteristics of such a pump, numerical work is conducted with a validated numerical method. The effects of the feed rate of sand and the rotational speed of the impeller are investigated. The results show that the pump efficiency is not monotonically related to the solid volume fraction. At a feed rate of sand of 2.10 m3/min and a rotational speed of 950 rpm, the lowest pump efficiency is reached. In the volute chamber, vortices of various sizes are evidenced. With increasing rotational speed, the overall solid volume fraction in the pump decreases. Meanwhile, when the solid volume fraction attains 0.28, sand particles tend to accumulate near the outer rim of the volute chamber. The axial force acting on the primary impeller increases with the rotational speed. Under different operating conditions, the radial forces point unanimously toward the third and fourth quadrants. Full article
(This article belongs to the Section Fluid Science and Technology)
Show Figures

Figure 1

21 pages, 9968 KiB  
Article
Experimental and CFD Analysis of Hydrodynamics in Dual-Impeller Crystallizer at Different Off-Bottom Clearances
by Antonija Čelan, Marija Ćosić, Željko Penga and Nenad Kuzmanić
Processes 2024, 12(10), 2183; https://doi.org/10.3390/pr12102183 - 8 Oct 2024
Viewed by 1509
Abstract
Producing tailor-made crystals demands knowledge of the influence of hydrodynamics and nucleation kinetics. In this paper, the hydrodynamic conditions in a dual-impeller crystallizer and their influence on the key nucleation parameters of the batch cooling crystallization of borax at different impeller off-bottom clearances [...] Read more.
Producing tailor-made crystals demands knowledge of the influence of hydrodynamics and nucleation kinetics. In this paper, the hydrodynamic conditions in a dual-impeller crystallizer and their influence on the key nucleation parameters of the batch cooling crystallization of borax at different impeller off-bottom clearances were investigated. Two different impeller configurations were used—a dual pitched-blade turbine (2 PBT) and a dual straight-blade turbine (2 SBT). Hydrodynamics was analyzed in depth based on the developed computational fluid dynamics model. The experimental results on mixing time and power input were used to validate the numerical model. The results show that the properties of the final product are affected by the impeller position in both dual-impeller configurations. An increase in the impeller off-bottom clearance in both systems results in a decrease in the mean crystal size. The hydrodynamic conditions generated at C/D = 1 in the 2 PBT impeller system and at C/D = 0.6 in the 2 SBT impeller system favored an earlier onset of nucleation compared to other impeller positions. It was found that the eddy dissipation rate and the Kolmogorov length scale correlate highly with the mean crystal size, suggesting that the size is affected by the shear stress in the vessel, rather than the overall convective flow. Full article
Show Figures

Figure 1

19 pages, 5693 KiB  
Article
Analyzing Local Shear Rate Distribution in a Dual Coaxial Mixing Bioreactor Handling Herschel–Bulkley Biopolymer Solutions through Computational Fluid Dynamics
by Forough Sharifi, Ehsan Behzadfar and Farhad Ein-Mozaffari
Processes 2023, 11(12), 3387; https://doi.org/10.3390/pr11123387 - 7 Dec 2023
Cited by 4 | Viewed by 1945
Abstract
For the aeration of highly viscous non-Newtonian fluids, prior studies have demonstrated the improved efficacy of dual coaxial mixing bioreactors fitted with two central impellers and a close clearance anchor. Evaluating the effectiveness of these bioreactors involves considering various mixing characteristics, with a [...] Read more.
For the aeration of highly viscous non-Newtonian fluids, prior studies have demonstrated the improved efficacy of dual coaxial mixing bioreactors fitted with two central impellers and a close clearance anchor. Evaluating the effectiveness of these bioreactors involves considering various mixing characteristics, with a specific emphasis on shear rate distribution. The study of shear rate distribution is critical due to its significant impact on the mixing performance, gas dispersion, and homogeneity in aerated mixing systems comprising shear-thinning fluids. Although yield-pseudoplastic fluids are commonly employed in various industries, there is a research gap when it comes to evaluating shear rate distribution in aerated mixing bioreactors that utilize this fluid type. This study aims to investigate shear rate distribution in an aerated double coaxial bioreactor that handles a 1 wt% xanthan gum solution, known as a Herschel–Bulkley fluid. To achieve this goal, we employed an experimentally validated computational fluid dynamics (CFD) model to assess the effect of different mixing configurations, including down-pumping and co-rotating (Down-Co), up-pumping and co-rotating (Up-Co), down-pumping and counter-rotating (Down-Counter), and up-pumping and counter-rotating (Up-Counter) modes, on the shear rate distribution within the coaxial mixing bioreactor. Our findings revealed that the Up-Co system led to a more uniform local shear distribution and improved mixing performance. Full article
Show Figures

Figure 1

20 pages, 16348 KiB  
Article
Analysis of the Hydrodynamics Behavior Inside a Stirred Reactor for Lead Recycling
by Adan Ramirez-Lopez
Fluids 2023, 8(10), 268; https://doi.org/10.3390/fluids8100268 - 28 Sep 2023
Cited by 4 | Viewed by 1771
Abstract
This work focuses on an analysis of hydrodynamics to improve the efficiency in a batch reactor for lead recycling. The study is based on computational fluid dynamics (CFD) methods, which are used to solve Navier–Stokes and Fick’s equations (continuity and momentum equations for [...] Read more.
This work focuses on an analysis of hydrodynamics to improve the efficiency in a batch reactor for lead recycling. The study is based on computational fluid dynamics (CFD) methods, which are used to solve Navier–Stokes and Fick’s equations (continuity and momentum equations for understanding hydrodynamics and concentration for understanding distribution). The reactor analyzed is a tank with a dual geometry with a cylindrical body and a hemisphere for the bottom. This reactor is symmetrical vertically, and a shaft with four blades is used as an impeller for providing motion to the resident fluid. The initial resident fluid is static, and a tracer is defined in a volume inside to measure mixing efficiency, as is conducted in laboratory and industrial practices. Then, an evaluation of the mixing is performed by studying the tracer concentration curves at different evolution times. In order to understand the fluid flow hydrodynamics behavior with the purpose of identifying zones with rich and poor tracer concentrations, the tracer’s concentration was measured at monitoring points placed all around in a defined control plane of the tank. Moreover, this study is repeated independently to evaluate different injection points to determine the best one. Finally, it is proved that the selection of an appropriate injection point can reduce working times for mixing, which is an economically attractive motivation to provide proposals for improving industrial practices. Full article
(This article belongs to the Special Issue Industrial CFD and Fluid Modelling in Engineering)
Show Figures

Figure 1

18 pages, 632 KiB  
Article
Innovation-Driven Policy and Low-Carbon Technology Innovation: Research Driven by the Impetus of National Innovative City Pilot Policy in China
by Zhengjun Hu and Shanshan Li
Sustainability 2023, 15(11), 8723; https://doi.org/10.3390/su15118723 - 29 May 2023
Cited by 6 | Viewed by 2212
Abstract
Since 2008, China has established innovative pilot cities in batches, with green and low-carbon principles and objectives as the core of the NICP policy. Therefore, it is of great significance to accurately evaluate the driving effect of the NICP policy on low-carbon technology [...] Read more.
Since 2008, China has established innovative pilot cities in batches, with green and low-carbon principles and objectives as the core of the NICP policy. Therefore, it is of great significance to accurately evaluate the driving effect of the NICP policy on low-carbon technology innovation, to expand the coverage of pilot cities in a prudent and orderly manner. The research focuses on the economic and environmental potential of the national innovative city pilot (NICP) policy. However, the relationship between the NICP policy and low-carbon technology innovation remains to be examined. This article employs a sample of 274 prefecture-level cities in China spanning the years 2003 to 2020 for research purposes, and uses a series of methods such as time-varying DID and intermediary effect models to examine the impelling impact and intricate workings of the NICP policy on low-carbon technology innovation. The study found that: (i) The NICP policy possesses the potential to impel innovation in low-carbon technology, and the impact of the policy exhibits a fluctuating yet upward trajectory over time. (ii) The NICP policy promotes low-carbon technology innovation through financial technology investment, population aggregation, and digital construction. (iii) The innovation effect of the NICP policy is significantly influenced by resource endowment and the disclosure of environmental information. The impact of the NICP policy on innovation in low-carbon technology is more pronounced in resource-based cities than non-resource-based cities, and it is particularly noteworthy in well-established resource-based cities with abundant resource endowments. The impetus generated by the NICP policy towards the innovation of low-carbon technology is notably more substantial for cities that exhibit elevated levels of environmental information disclosure. Local governments should implement active environmental information disclosure at the city level. This paper not only enriches the relevant research on low-carbon technology innovation but also provides empirical evidence for promoting the NICP policy nationwide. Additionally, it serves as a policy reference for creating innovative characteristic cities under the “dual carbon” goal. Full article
(This article belongs to the Special Issue Innovations in Business Models and Environmental Sustainability)
Show Figures

Figure 1

19 pages, 7119 KiB  
Article
Numerical Simulation of Flow-Induced Noise in Horizontal Axial Flow Pumps in Forward and Reverse Conditions
by Donglei Wu and Yalei Bai
Water 2023, 15(2), 322; https://doi.org/10.3390/w15020322 - 12 Jan 2023
Cited by 6 | Viewed by 2420
Abstract
This paper investigates the influence of pressure pulsation and flow-induced noise using a two-way dual-purpose pump. The pressure pulsation signal is obtained from the Detached Eddy Simulation (DES) turbulent model calculation as the fan sound source, and the noise sound field distribution in [...] Read more.
This paper investigates the influence of pressure pulsation and flow-induced noise using a two-way dual-purpose pump. The pressure pulsation signal is obtained from the Detached Eddy Simulation (DES) turbulent model calculation as the fan sound source, and the noise sound field distribution in the impeller is calculated. The numerical results show that the external characteristics and pressure pulsation obtained from the simulation correlate well with the experimental values. Under different working conditions, the pressure pulsation decreases with the increase in the flow rate; no evident dominant frequency occurs in the frequency spectrum at a low flow rate, and many spurious frequencies occur. The primary frequency in the runner chamber is the leaf frequency, and that in the nonblade area is the rotating frequency. The sound field distribution of the flow-induced noise has dipole characteristics, and its directivity distribution and sound pressure radiation level can reflect the pressure pulsation characteristics. It is primarily affected by the blade frequency, and the distribution with the flow rate is consistent with the pressure pulsation. Avoiding a low flow and operating in a reasonable flow area can effectively reduce pressure pulsation and flow-induced noise and ensure the stability of unit operation. Full article
(This article belongs to the Section Hydraulics and Hydrodynamics)
Show Figures

Figure 1

14 pages, 37197 KiB  
Article
Gas Hold-Up in Vessel with Dual Impellers and Different Baffles
by Marta Major-Godlewska and Magdalena Cudak
Energies 2022, 15(22), 8685; https://doi.org/10.3390/en15228685 - 18 Nov 2022
Cited by 3 | Viewed by 1539
Abstract
The influence of impellers system, baffles system and type of liquid on gas hold-up in a vessel has been presented in this paper. The analysis of gas hold-up was conducted on the basis of the data obtained in the vessel. The vessel used [...] Read more.
The influence of impellers system, baffles system and type of liquid on gas hold-up in a vessel has been presented in this paper. The analysis of gas hold-up was conducted on the basis of the data obtained in the vessel. The vessel used in the study was of inner diameter D = 0.288 m, and it was filled with liquid up to a height of H = 0.576 m. The vessel used in the study was equipped in four planar standard baffles or 24 vertical tubular baffles located on the circuit. A high-speed impellers system, consisting of two impellers located on the shaft, was used to agitate the liquid. The six gas–liquid systems were tested. The gas used in the study was air. The liquids were distilled water, aqueous solutions of NaCl (concentration c = 0.4 kmol/m3 or 0.8 kmol/m3), aqueous solution of sucrose (concentration c = 2.5% mass., 5% mass.), 5% mass. aqueous solution of sucrose and yeast suspension concentration ys = 1% mass. The obtained set of over 1600 experimental points allowed to derive the equations describing the effect of gas flow number Kg, Weber number We and parameter Y (for air–water and air–aqueous solution of NaCl) and Kg, We, c and ys (for air–water, air–aqueous solution of sucrose and air–yeast suspension–aqueous solution of sucrose) on gas hold-up. These equations do not have equivalents in the literature. Full article
(This article belongs to the Special Issue Practical and Scientific Aspects of Multiphase Systems)
Show Figures

Graphical abstract

16 pages, 9273 KiB  
Article
Energy Characteristics and Internal Flow Field Analysis of Centrifugal Prefabricated Pumping Station with Two Pumps in Operation
by Chuanliu Xie, Zhenyang Yuan, Andong Feng, Zhaojun Wang and Liming Wu
Water 2022, 14(17), 2705; https://doi.org/10.3390/w14172705 - 30 Aug 2022
Cited by 3 | Viewed by 2385
Abstract
In order to study the hydraulic performance and internal flow field of dual pumps in centrifugal prefabricated pumping station under operation conditions, this paper carried out a numerical calculation based on CFD software for dual pumps in a centrifugal prefabricated pumping station under [...] Read more.
In order to study the hydraulic performance and internal flow field of dual pumps in centrifugal prefabricated pumping station under operation conditions, this paper carried out a numerical calculation based on CFD software for dual pumps in a centrifugal prefabricated pumping station under different flow conditions and verified the internal flow field through test. The results show that the efficiency of centrifugal prefabricated pumping station under design conditions (Qd = 33.93 m3/h) is 63.96%, the head is 8.66 m, the head at the starting point of the saddle area is 10.50 m, which is 1.21 times of the designed head. The efficiency of the high-efficiency zone of the prefabricated pump station is 58.0~63.0%, and the corresponding flow range is 0.62Qd~1.41Qd (21.0~48.0 m3/h). The uniformity of the inlet flow rate of impeller of pump 1 is 74.70%, and that of pump 2 is 75.57%. The flow fields of water pumps on both sides are inconsistent. The results of the flow field indicate that there are severe back flow phenomena at the prefabricated bucket intake, more back flow in the bucket, and many eddies on the side wall. With the increase in flow rate, the eddy structure at the intake expands continuously and moves towards the center area, which has a negative impact on the flow field in the center area. The research results of this paper can provide a theoretical reference for the research and operation of the same type of prefabricated pumping stations. Full article
(This article belongs to the Special Issue Advancement in the Fluid Dynamics Research of Reversible Pump-Turbine)
Show Figures

Figure 1

13 pages, 2971 KiB  
Article
Kinetic Analysis of Methane Hydrate Formation with Butterfly Turbine Impellers
by Sotirios Nik. Longinos, Dionisia Dimitra Longinou, Nurbala Myrzakhmetova, Nazgul Akimbayeva, Mariamkul Zhursumbaeva, Kaldibek Abdiyev, Zhexenbek Toktarbay and Mahmut Parlaktuna
Molecules 2022, 27(14), 4388; https://doi.org/10.3390/molecules27144388 - 8 Jul 2022
Cited by 8 | Viewed by 1848
Abstract
Heat generation during gas hydrate formation is an important problem because it reduces the amount of water and gas that become gas hydrates. In this research work, we present a new design of an impeller to be used for hydrate formation and to [...] Read more.
Heat generation during gas hydrate formation is an important problem because it reduces the amount of water and gas that become gas hydrates. In this research work, we present a new design of an impeller to be used for hydrate formation and to overcome this concern by following the hydrodynamic literature. CH4 hydrate formation experiments were performed in a 5.7 L continuously stirred tank reactor using a butterfly turbine (BT) impeller with no baffle (NB), full baffle (FB), half baffle (HB), and surface baffle (SB) under mixed flow conditions. Four experiments were conducted separately using single and dual impellers. In addition to the estimated induction time, the rate of hydrate formation, hydrate productivity and hydrate formation rate, constant for a maximum of 3 h, were calculated. The induction time was less for both single and dual-impeller experiments that used full baffle for less than 3 min and more than 1 h for all other experiments. In an experiment with a single impeller, a surface baffle yielded higher hydrate growth with a value of 42 × 10−8 mol/s, while in an experiment with dual impellers, a half baffle generated higher hydrate growth with a value of 28.8 × 10−8 mol/s. Both single and dual impellers achieved the highest values for the hydrate formation rates that were constant in the full-baffle experiments. Full article
Show Figures

Figure 1

16 pages, 7008 KiB  
Article
Numerical Simulation of Dense Solid-Liquid Mixing in Stirred Vessel with Improved Dual Axial Impeller
by Xia Xiong, Zuohua Liu, Changyuan Tao, Yundong Wang and Fangqin Cheng
Separations 2022, 9(5), 122; https://doi.org/10.3390/separations9050122 - 16 May 2022
Cited by 5 | Viewed by 3772
Abstract
Computational fluid dynamics (CFDs) were adopted in order to investigate the solid suspending process in a dense solid–liquid system (with a solid volume fraction of 30%), agitated by a traditional dual axial impeller and a modified dual axial impeller, otherwise known as a [...] Read more.
Computational fluid dynamics (CFDs) were adopted in order to investigate the solid suspending process in a dense solid–liquid system (with a solid volume fraction of 30%), agitated by a traditional dual axial impeller and a modified dual axial impeller, otherwise known as a dual triple blade impeller (DTBI) and a dual rigid-flexible triple blade impeller (DRFTBI), respectively. The effects of rotational speed, connection strap length/width, and off-bottom clearance on the solid distribution were investigated. The results show that the proportion of solid concentration larger than 0.4 in the DTBI system was 26.56 times of that in the DRFTBI system. This indicates that the DRFTBI system can strengthen the solid suspension and decrease the solid accumulation in the bottom of the tank. Furthermore, the velocity and turbulent kinetic energy in the DRFTBI system were promoted. In addition, for an optimal selection, the optimum length of connection strap was 1.2 H1, the optimum range of connection strap width was D/7–D/8, and the off-bottom clearance selected as T/4 was better. Full article
(This article belongs to the Special Issue Advances in Separation Engineering)
Show Figures

Figure 1

13 pages, 1165 KiB  
Article
Residual Gas for Ethanol Production by Clostridium carboxidivorans in a Dual Impeller Stirred Tank Bioreactor (STBR)
by Carolina Benevenuti, Marcelle Branco, Mariana do Nascimento-Correa, Alanna Botelho, Tatiana Ferreira and Priscilla Amaral
Fermentation 2021, 7(3), 199; https://doi.org/10.3390/fermentation7030199 - 21 Sep 2021
Cited by 12 | Viewed by 4368
Abstract
Recycling residual industrial gases and residual biomass as substrates to biofuel production by fermentation is an important alternative to reduce organic wastes and greenhouse gases emission. Clostridium carboxidivorans can metabolize gaseous substrates as CO and CO2 to produce ethanol and higher alcohols [...] Read more.
Recycling residual industrial gases and residual biomass as substrates to biofuel production by fermentation is an important alternative to reduce organic wastes and greenhouse gases emission. Clostridium carboxidivorans can metabolize gaseous substrates as CO and CO2 to produce ethanol and higher alcohols through the Wood-Ljungdahl pathway. However, the syngas fermentation is limited by low mass transfer rates. In this work, a syngas fermentation was carried out in serum glass bottles adding different concentrations of Tween® 80 in ATCC® 2713 culture medium to improve gas-liquid mass transfer. We observed a 200% increase in ethanol production by adding 0.15% (v/v) of the surfactant in the culture medium and a 15% increase in biomass production by adding 0.3% (v/v) of the surfactant in the culture medium. The process was reproduced in stirred tank bioreactor with continuous syngas low flow, and a maximum ethanol productivity of 0.050 g/L.h was achieved. Full article
(This article belongs to the Special Issue Biofuels Production and Processing Technology)
Show Figures

Figure 1

17 pages, 11004 KiB  
Article
The Effect of Experimental Conditions on Methane (95%)–Propane (5%) Hydrate Formation
by Sotirios Nik. Longinos and Mahmut Parlaktuna
Energies 2020, 13(24), 6710; https://doi.org/10.3390/en13246710 - 19 Dec 2020
Cited by 22 | Viewed by 2343
Abstract
In the present study, the effect of different kinds of impellers with different baffles or no baffle was investigated. Up-pumping pitched blade turbine (PBTU) and Rushton turbine (RT) were the two types of impellers tested. The reactor was equipped with different designs of [...] Read more.
In the present study, the effect of different kinds of impellers with different baffles or no baffle was investigated. Up-pumping pitched blade turbine (PBTU) and Rushton turbine (RT) were the two types of impellers tested. The reactor was equipped with different designs of baffles: full, half and surface baffles or no baffles. Single (PBTU or RT) and dual (PBTU/PBTU or RT/RT) use of impellers with full (FB), half (HB), surface (SB) and no baffle (NB) combinations formed two sets of 16 experiments. There was estimation of rate of hydrate formation, induction time, hydrate productivity, overall power consumption, split fraction and separation factor. In both single and dual impellers, the results showed that RT experiments are better compared to PBTU in rate of hydrate formation. The induction time is almost the same since we are deep in the equilibrium line while hydrate productivity values are higher in PBTU compared to RT experiments. As general view RT experiments consume more energy compared to PBTU experiments. Full article
(This article belongs to the Special Issue Energy Storage Systems and Conversion Processes)
Show Figures

Graphical abstract

21 pages, 6351 KiB  
Article
Hydrodynamics and Mass Transfer Analysis in BioFlow® Bioreactor Systems
by Marian Kordas, Maciej Konopacki, Bartłomiej Grygorcewicz, Adrian Augustyniak, Daniel Musik, Krzysztof Wójcik, Magdalena Jędrzejczak-Silicka and Rafał Rakoczy
Processes 2020, 8(10), 1311; https://doi.org/10.3390/pr8101311 - 19 Oct 2020
Cited by 6 | Viewed by 4290
Abstract
Biotechnological processes involving the presence of microorganisms are realized by using various types of stirred tanks or laboratory-scale dual-impeller commercial bioreactor. Hydrodynamics and mass transfer rate are crucial parameters describing the functionality and efficiency of bioreactors. Both parameters strictly depend on mixing applied [...] Read more.
Biotechnological processes involving the presence of microorganisms are realized by using various types of stirred tanks or laboratory-scale dual-impeller commercial bioreactor. Hydrodynamics and mass transfer rate are crucial parameters describing the functionality and efficiency of bioreactors. Both parameters strictly depend on mixing applied during bioprocesses conducted in bioreactors. Establishing optimum hydrodynamics conditions for the realized process with microorganisms maximizes the yield of desired products. Therefore, our main objective was to analyze and define the main operational hydrodynamic parameters (including flow field, power consumption, mixing time, and mixing energy) and mass transfer process (in this case, gas–liquid transfer) of two different commercial bioreactors (BioFlo® 115 and BioFlo® 415). The obtained results are allowed using mathematical relationships to describe the analyzed processes that can be used to predict the mixing process and mass transfer ratio in BioFlo® bioreactors. The proposed correlations may be applied for the design of a scaled-up or scaled-down bioreactors. Full article
(This article belongs to the Section AI-Enabled Process Engineering)
Show Figures

Graphical abstract

Back to TopTop