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Abstract: For the aeration of highly viscous non-Newtonian fluids, prior studies have demonstrated
the improved efficacy of dual coaxial mixing bioreactors fitted with two central impellers and a
close clearance anchor. Evaluating the effectiveness of these bioreactors involves considering various
mixing characteristics, with a specific emphasis on shear rate distribution. The study of shear
rate distribution is critical due to its significant impact on the mixing performance, gas dispersion,
and homogeneity in aerated mixing systems comprising shear-thinning fluids. Although yield-
pseudoplastic fluids are commonly employed in various industries, there is a research gap when
it comes to evaluating shear rate distribution in aerated mixing bioreactors that utilize this fluid
type. This study aims to investigate shear rate distribution in an aerated double coaxial bioreactor
that handles a 1 wt% xanthan gum solution, known as a Herschel–Bulkley fluid. To achieve this
goal, we employed an experimentally validated computational fluid dynamics (CFD) model to assess
the effect of different mixing configurations, including down-pumping and co-rotating (Down-Co),
up-pumping and co-rotating (Up-Co), down-pumping and counter-rotating (Down-Counter), and
up-pumping and counter-rotating (Up-Counter) modes, on the shear rate distribution within the
coaxial mixing bioreactor. Our findings revealed that the Up-Co system led to a more uniform local
shear distribution and improved mixing performance.

Keywords: yield-pseudoplastic fluids; double coaxial mixing bioreactor; shear rate distribution;
mixing configurations; computational fluid dynamics

1. Introduction

The majority of biological operations take place in the presence of aerobic microor-
ganisms. The main goal of these processes is to provide sufficient oxygen in liquids for
cell growth and the production of desired products, such as metabolites, enzymes, and
proteins [1,2]. An inadequate level of oxygen in these processes can lead to impaired cell
growth, altered metabolism, the accumulation of toxic compounds, and diminished product
yields [3,4]. Therefore, finding an efficient bioreactor design that maintains a sufficient level
of oxygen concentration in the fluid is essential, particularly for processes involving highly
viscous non-Newtonian fluids. In fact, gas dispersion in bioreactors containing highly vis-
cous non-Newtonian fluids presents challenges such as uneven distribution of gas bubbles,
reduced gas–liquid contact area, lower mass transfer coefficient, increasing sensitivity to
shear rate, scale-up complexities, fouling risks, and elevated power consumption [5,6].

Stirred bioreactors are superior compared to other aerated systems such as bubble
columns and airlift bioreactors due to improved gas hold-up, a higher volumetric mass
transfer coefficient, a more homogeneous shear rate distribution within the tank, and
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a lower possibility of aggregate formation [7,8]. Despite their extensive range of appli-
cations in various industries, the effectiveness of aerated mixing bioreactors containing
high-viscosity shear-thinning fluids faces challenges due to the uneven distribution of
gas and shear forces [9]. Furthermore, due to the non-uniform distribution of shear rate,
the stirring of yield-pseudoplastic fluids results in the formation of a thoroughly mixed
zone near the impeller, commonly referred to as the “cavern”, with other areas remaining
stationary [10,11]. This phenomenon is particularly notable within laminar and transitional
flow regimes [12]. To address these issues, several studies demonstrated that intensifying
operational conditions such as the impeller rotational speed and the aeration rate could pos-
itively influence mixing performance and offset the rise in broth viscosity [5,13]. In contrast,
Jamshidzadeh et al. [14] reported instances of flooding and poor mixing patterns arising
from higher aeration rates. Additionally, preventing the formation of high shear zones is
crucial to avoid morphological damage to shear-sensitive microorganisms, especially in the
case of plant or animal cells lacking protective cell walls [15].

In recent years, coaxial mixers integrating high-speed inner impellers alongside low-
speed outer impellers have been introduced to confront the challenge of uneven gas and
shear distribution encountered in traditional stirred bioreactors when dealing with highly
viscous shear-thinning fluids. Coaxial mixers significantly improve mixing effectiveness by
merging the benefits associated with both small-diameter and large-diameter impellers.
The primary function of the low-speed outer impeller is to prevent the formation of stag-
nant zones by mobilizing the bulk fluid and the fluid adjacent to the tank walls [5,16,17].
In contrast, the high-speed inner impellers generate elevated shear rates in the center of
the mixing tank, facilitating the breakup of bubbles. Over the past few years, research on
the performance of aerated coaxial mixers handling highly viscous non-Newtonian fluids
has primarily centered on analyzing gas hold-up, power consumption, and volumetric
mass transfer coefficient [18–20]. Nevertheless, it is essential to acknowledge the growing
significance of evaluating shear rate distribution within these systems. Shear-thinning
fluids, characterized by decreasing viscosity as shear rates increase, introduce distinctive
flow hydrodynamics when compared to Newtonian fluids, which significantly impact mass
and momentum transfer as well as energy dissipation rates near the impeller [21]. Conse-
quently, the focus has shifted towards studying shear rate distribution due to its substantial
influence on enhancing gas dispersion efficiency and achieving system homogeneity. For
instance, an even shear rate distribution promotes enhanced dispersion of gas bubbles,
improved gas–liquid interactions, and uniform product quality. Sossa-Echeverria et al. [22]
concluded that the comprehensive analysis of shear rate distribution enables the anticipa-
tion of flow patterns, optimization of power consumption, and identification of potential
stagnation zones.

Both experimental and numerical methods have been employed to study factors af-
fecting mixing effectiveness. Non-intrusive visualization methods, like particle image
velocimetry (PIV), provide valuable insights into flow patterns by measuring tracer par-
ticle displacement to capture instantaneous velocity fields and related properties [22–24].
However, PIV, an experimental technique, necessitates transparent media for effective im-
plementation [22]. This becomes a significant limitation when dealing with highly viscous
non-Newtonian fluids with yield stress, as they are often opaque [25–27]. Consequently,
conducting a comprehensive experimental investigation of fluid hydrodynamics within
mixing systems containing such fluids becomes nearly impossible.

Computational fluid dynamics (CFD) is a powerful tool offering insights into the as-
sessment of flow patterns and mixing characteristics that are often prohibitively expensive
or simply unattainable through available experimental techniques [28–30]. This method
provides comprehensive information regarding shear rates, flow patterns, velocity distri-
butions, energy dissipation rate, power consumption, pumping capacities, and mixing
time under various operating conditions [31,32]. Sossa-Echeverria et al. [22] employed
computational fluid dynamics to explore the mixing performance of shear-thinning fluids
with yield stress in a stirred tank equipped with various axial-flow impellers across laminar
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to transitional flow regimes. Their findings demonstrated that the spatial distribution was
determined using the trajectory of the impeller’s discharge. However, while their CFD
model effectively simulated the impact of operating conditions on mixing characteristics,
it could not fully capture the flow symmetry observed in the experiments, which was
attributed to limitations in the moving reference frame technique. Zang et al. [33] investi-
gated the distribution of local shear rates in a stirred bioreactor containing pseudoplastic
fluids near the impeller blade under a transitional flow regime using the CFD approach.
They observed that the increase in consistency index and power-law index reduced the
high-shear regions below the impeller blades. They showed that the influence of the im-
peller speed on the average local shear rate surpassed that of the rheological parameters.
Furthermore, they showed that, given the complex dynamics of fluid flow in the vicinity
of the impeller blade within stirred bioreactors with non-Newtonian fluids, the validated
CFD model stands as a dependable approach that offers a comprehensive understanding of
the flow phenomenon. This understanding, in turn, holds the potential to provide valuable
insights for the optimization and design of stirred bioreactors.

Despite the widespread use of yield-pseudoplastic fluids across various industries, in-
cluding food, chemical, biochemical, pharmaceutical, cosmetic production, and wastewater
treatment plants, scarce information is available in the literature regarding the assessment
of shear rate distribution in aerated mixing systems containing this type of media. Despite
the recognized advantages of double coaxial stirred bioreactors compared to conventional
systems, to the best of our knowledge, no prior study has investigated the distribution of
the local shear rate in dual coaxial mixing bioreactors handling pseudoplastic fluids pos-
sessing yield stress. Therefore, this study addresses a significant research gap pertaining to
the shear rate distribution in aerated coaxial mixing bioreactors that handle shear-thinning
fluids with yield stress. The present work evaluates the influence of different mixing
configurations, such as up-pumping and co-rotating (Up-Co), down-pumping and co-
rotating (Down-Co), up-pumping and counter-rotating (Up-Counter), and down-pumping
and counter-rotating (Down-Counter), on shear rate distribution within a double-aerated
coaxial mixer containing 1 wt% xanthan gum solution, a pseudoplastic fluid with yield
stress, using computational fluid dynamics (CFD). For this purpose, we employed a double
coaxial mixing bioreactor with an aspect ratio greater than 1.0. This factor plays a critical
role in ensuring the quality and consistency of the final product in the pharmaceutical,
food processing, and cosmetics industries. The findings of this study contribute to under-
standing the behavior of aerated mixing of yield-pseudoplastic fluids and shed light on
optimizing stirred bioreactors for improved shear distribution and gas dispersion.

2. Material and Methods

The experimental setup employed in this work consists of a flat-bottom cylindri-
cal coaxial mixing tank with a diameter of 0.40 m, as depicted in Figure 1. The liquid
level within the tank was maintained at a height of 0.50 m, resulting in a fluid volume of
0.063 m3 and an aspect ratio of 1.25. The coaxial mixer comprised two shafts: an upper
shaft equipped with dual centrally positioned pitched-blade impellers and a lower shaft
housing a close-clearance anchor impeller. These shafts were powered with two indepen-
dent electric motors and regulated through frequency converters. Four distinct mixing
configurations, namely Down-Co, Up-Co, Down-Counter, and Up-Counter, were examined
in this study. A ring sparger featuring 20 holes was positioned at a clearance of 0.1 m from
the tank base for introducing air into the system, and air dispersion within the system was
regulated by measuring and controlling the airflow rate using a rotameter and a control
valve, respectively.
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Figure 1. (a) Schematic diagram of experimental setup: (1) air control valve, (2) rotameter, (3) ring
sparger, (4) pitched-blade turbine impellers, (5) anchor impeller, (6) ERT sensors, (7) torque meter,
(8) couplings, (9) electric motor, (10) data acquisition system, (11) host computer, and (12) drain valve;
(b) pitched-blade turbine impeller; and (c) anchor impeller.

2.1. Working Liquid

The aqueous solution of xanthan gum with a concentration of 1 wt% was employed
as the working fluid. The rheological characteristics were assessed using a Kinexus Pro+
Rheometer (Malvern Instruments, Westborough, MA, USA). The rheological properties
were measured using the shear rate table test at a constant temperature of 22 ◦C, which
corresponds to the operating temperature of the experiments. Figure 2 displays the apparent
viscosity and shear stress of the working fluid under varying shear rates. The working fluid
exhibits shear-thinning behavior with yield stress. The rheological properties are closely
aligned with the Herschel–Bulkley model for shear rates ranging from 0.1 to 100 L/s, and
the corresponding model parameters are detailed in Table 1.
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Table 1. The rheological characteristic of the 1 wt% xanthan gum solution.

Density, ρ (kg/m3) Yield Stress, τy (Pa) Consistency Index,
k (Pa·sn) Power-Law Index (n)

983 3.22 10.16 0.13

2.2. Electrical Resistance Tomography (ERT)

In this work, both local and overall gas hold-ups were measured experimentally using
the electrical resistance tomography (ERT) approach. For this purpose, the ERT system
(Industrial Tomography Systems, model P2+) was used. As shown in Figure 1, the ERT
system comprises four planes with 16 stainless steel electrodes on each plane, evenly
distributed around the bioreactor tank. The ERT planes were labeled by number, and their
heights from the bottom of the tank were: 0.38 m for plane 1, 0.27 m for plane 2, 0.22 m for
plane 3, and 0.17 m for plane 4. A current of 5 mA with a frequency of 4800 Hz was applied
to neighboring electrodes, and the voltages across consecutive pairs of these electrodes
were recorded. This procedure was iterated to ascertain the local fluid conductivity. To
mitigate the influence of the impellers, sparger, and shafts on fluid conductivity, 50 reference
frames were recorded while the coaxial mixer rotated within a xanthan gum solution before
introducing air. Subsequent to air introduction, an additional 50 frames were captured to
establish a steady-state condition, and an extra 100 frames were recorded to quantify gas
hold-up. It is important to mention that a minimum of 100 frames is essential for generating
high-resolution tomography images and precisely assessing gas hold-up in the gas–liquid
coaxial mixing bioreactors. Subsequently, the acquired data were sent to a data acquisition
(DAQ) system for further processing. The linear back projection method was employed
to reconstruct tomograms and analyze variations in the conductivity of the xanthan gum
solution after air injection. Finally, the local fluid conductivity values were converted to
local gas hold-ups using the Maxwell equation [34]:

εg =
2σl + σg − 2σm

σmσg
σl

σm −
σg
σl

σm + 2
(
σl − σg

) (1)
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where εg, σl , σg, and σm represent the conductivity of the liquid, gas, gas–liquid mixture,
and gas hold-up. Due to the negligible conductivity of the gas phase, the above equation
can be simplified accordingly:

εg =
2(σl − σm)

2σl + σm
(2)

2.3. Numerical Model

In this study, a fluid Eulerian–Eulerian approach was used to model the gas–liquid
multiphase flow within the double coaxial mixing bioreactor. In this approach, both gas and
liquid phases are considered interpenetrating continua; however, governing equations are
independently solved for each phase [35]. The summation of the volume fractions of both
phases is considered as one for all domains (Equation (3). The continuity and momentum
equations for each phase are presented in Equation (4) and Equation (5), respectively:

∅l +∅g = 1 (3)

∂(ρi∅i)

∂t
+∇·(ρi∅i

→
u i) = 0 (4)

∂(∅iρi
→
u i)

∂t
+∇·(∅iρi

→
u i
→
u i) = −∅i∇p +∇·(=τe f f ) +∅iρig± Fi (5)

In the above equations, ρi, φi, ui, and Fi are density, volume fraction, mean velocity,
and the interface momentum exchange of phase i, respectively. Reynolds stress tensor,

=
τe f f ,

as a function of time-averaged velocity is defined below [35]:

=
τe f f = ∅i(µi + µT,i)(∇

→
u i +∇

→
u

T
i ) + (λi −

2
3
(µi + µT,i)∇.

→
u i

=
I (6)

where λi is the bulk viscosity of the phase i and µi and µT,i are the laminar and turbulent
viscosity of phase i, respectively.

In our prior research, we have demonstrated the accuracy of the modified Jamshidzadeh’s
correlation in reliably predicting the power number and Reynolds number [36]. Therefore,
the apparent Reynolds number was estimated using Equation (7):

Re =
ρ( fPcNc + fPaNa)( fpcDc + fpaDa)2

τy
Ks Nc

+ k(KsNc)n−1
(7)

where
fPc =

Pc

Pt
(8)

and
fPa =

Pa

Pt
(9)

where fPc, fPa, and Pt are the central impeller power fraction, the anchor impeller power
fraction, and the total gassed power consumption, respectively. Na, Nc, Dc, and Da are
anchor speed, central impeller speed, anchor impeller diameter, and central impeller
diameter, respectively. The Metzner–Otto constant (Ks) for the pitched blade turbine
impeller was considered to be 12 [37]. Using Equation (7) and the rotational speeds of
the impellers employed in this study, the range of Reynolds numbers for co-rotating and
counter-rotating modes falls within 120 < Re < 2000 and 150 < Re < 2200, respectively. It is
worth noting that the fully turbulent regime typically occurs when Re ≥ 10000, while the
laminar flow regime prevails when Re ≤ 10 in stirred tanks. Consequently, the current flow
regime in this study is transitional.

The interphase force, Fi (Equation (5)), is used to describe the interaction between the
gas and liquid phases. In reality, fluid-induced forces such as drag, lift, and virtual mass all
have an impact on the velocity of a bubble. However, several studies have demonstrated



Processes 2023, 11, 3387 7 of 19

that the only dominant force is the drag force, making it possible to ignore the impact of
other interfacial forces [38–40].

Despite various drag models proposed in the literature to calculate the drag force
in gas–liquid systems, the Schiller–Naumann drag model stands out for its accuracy
in predicting mixing parameters. In addition, as reported in the literature, this model
demonstrated the ability to effectively model the drag force for gas dispersion in non-
Newtonian fluids under a laminar regime [41].

→
F drag =

3
4
∅g∅lρl

CD
db

∣∣∣→u g −
→
u l

∣∣∣(→u g −
→
u l) (10)

2.4. CFD Model

The 3D CFD modeling of the aerated double coaxial mixing bioreactor was developed
using the commercial software ANSYS Fluent 2022 R1. Several studies have reported that
assuming laminar flow in the transitional regime is justifiable when mixing shear-thinning
fluids with yield stress [10,22]. Therefore, a laminar flow model was used in the simula-
tions. The sliding mesh technique was employed to model the rotation of the impeller,
enabling the transient simulation of the flow field. As shown in Figure 3, the fluid domain
was discretized using non-uniform and unstructured tetrahedral elements. To assess the
independence of the grid size on the simulation results, three distinct mesh configurations
were employed in this study, consisting of 974,234, 1,843,861, and 3,642,931 mesh cells,
respectively. The investigation of the impact of various mesh sizes on the xanthan gum
velocity in the axial direction was carried out through simulations with three different
mesh sizes: a coarse grid size (974,234), a medium grid size (1,843,861), and a fine grid size
(3,642,931), with the corresponding results depicted in Figure 4. In this figure, the profiles
of liquid velocity along the axial direction are depicted for three distinct grid sizes. Based
on the data presented in this figure, it can be observed that the results obtained from the
medium and fine grids exhibited negligible differences. Consequently, the grid with a size
of 1,843,861 was chosen as the optimal mesh.
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The governing equations were solved using the finite volume method (FVM), and
the pressure–velocity coupling was conducted using the SIMPLE technique. A second-
order implicit scheme controlled time advancement, while a second-order upwind scheme
discretized the momentum equation. To achieve convergence in each time step, 20 iterations
were employed to ensure that the specified convergence tolerance of 10−7 was met for
every normalized residual. Furthermore, the convergence of the model was verified by
monitoring the dynamic profiles of gas hold-up in the four ERT planes. It was observed that
nearly 72 revolutions of the central impeller were required for local gas hold-up profiles
to attain a quasi-steady-state condition, indicating successful simulation convergence. To
achieve convergence in each simulation, parallel computing with 12 CPUs was employed,
with computational times ranging from 180 to 220 h.

The validation of the CFD model was performed by comparing the numerical results
with experimental measurements of gassed power consumption and overall gas hold-
up. The validation outcomes are displayed in Table 2. It is evident that there is a fairly
good agreement between the experimental and CFD results, demonstrating the model’s
predictive capability for other mixing characteristics.

Table 2. CFD model validation results for the Up-Co and Up-Counter modes at Nc = 350, Na = 10 rpm,
and Qg = 20 L/min.

Mixing Configuration Power Consumption (W) Local Gas Hold-Up

EXP CFD Error% EXP CFD Error%

Up-Co 155.9 142.3 8.72

Plane 1 0.0520 0.0474 8.85
Plane 2 0.0534 0.0496 7.12
Plane 3 0.0509 0.0477 6.29
Plane 4 0.0500 0.0472 5.60

Up-Counter 181.9 167.9 7.69

Plane 1 0.0407 0.0349 14.25
Plane 2 0.0402 0.0370 7.96
Plane 3 0.0386 0.0359 6.99
Plane 4 0.0333 0.0310 6.91

3. Results and Discussion

The results obtained from the CFD model were used to compare the mixing charac-
teristics of four mixing configurations, including Down-Co, Up-Co, Down-Counter, and
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Up-Counter. For this purpose, local shear rate distribution, velocity fields, and dynamic
viscosity were evaluated for different mixing configurations at varying rotational speeds of
central impellers.

3.1. Comparing Different Mixing Configurations

Given the paramount importance of comprehending shear distribution in coaxial
mixing bioreactors handling yield-pseudoplastic fluids, this study endeavors to investigate
how various mixing configurations, namely Down-Co, Up-Co, Down-Counter, and Up-
Counter, impact shear rate profiles within the system. In this regard, the shear rate contours
were created using CFD post-processing within the range of 0.1 to 100 L/s, which aligns
with the shear rate range selected for the rheological measurements. As depicted in Figure 5,
a higher shear rate (indicated in red) was observed at the central impeller’s blades, impeller
discharge area, impeller swept zone, and tank wall. In general, a predominance of radial
shear distribution was observed in the counter-rotation mode, whereas the co-rotating
mode exhibited a more prominent axial shear distribution. For the Up-Co mode, the shear
rate was distributed axially, which is attributed to the synergistic impact of the anchor
and central impellers. In addition, in the vicinity of the tank wall, a higher shear rate was
observed in the Up-Co configuration compared to other configurations, which reduced the
likelihood of stationary zones.
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(c) Down-Counter, and (d) Up-Counter at Nc = 350 rpm, Na = 10 rpm, and Qg = 20 L/min.

The wider red areas were observed for the Up-Co mode around the impeller blades.
Additionally, Figure 5 shows the presence of more uniformly distributed medium-shear
zones in the axial direction for this configuration. When comparing the downward-
pumping and upward-pumping in the co-rotating mode, it is evident that in the Down-Co
mode, the area of high shear rate is limited to the vicinity of the central impellers, while a
more homogeneous shear distribution was observed in the Up-Co mode.

The distribution of viscosity can be inferred from the shear rate contours due to the
shear-thinning behavior displayed by the 1 wt% xanthan gum solution (Figure 6). As
expected, lower apparent viscosities were observed in proximity to the impellers’ discharge
(indicated with a dark blue color) and along the tank wall, while an increase in viscosity
was observed as the fluid moved away from the central impeller. In fact, high-viscosity
regions were experienced below the sparger and near the liquid surface, while a reduction
in viscosity occurred in the low-pressure zones created behind the blades, attributed to the
acceleration of the rate of deformation caused by the central impellers. When comparing the
shear distribution of all mixing configurations, the Up-Co mode showed a more uniform
dynamic viscosity distribution, while the least uniformity was observed in the viscosity
contours of the Down-Co and Down-Counter modes.
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Figure 6. Local viscosity distribution for different mixing configurations: (a) Down-Co, (b) Up-Co,
(c) Down-Counter, and (d) Up-Counter at Nc = 350 rpm, Na = 10 rpm, and Qg = 20 L/min.

To provide more insight, the local shear distribution contours were created on the
radial planes at y = 0.18 m and y = 0.36 m (as depicted in Figure 7), corresponding to
the centers of the top and bottom impellers, respectively. The red areas represent the
high shear rates generated by the discharged jets from the central impeller through this
plane. Similar to the axial shear rate contours, the radial shear rate contours for the Up-
Co configuration illustrated a wider high-shear area surrounding the central impellers’
blades and a more uniformly distributed shear rate, with large zones of medium shear rate
values compared to the other mixing configurations. However, while the shear distribution
near the central impeller in the Up-Counter mode closely resembles that of the Up-Co
configuration, the presence of dark blue areas adjacent to the tank wall indicates insufficient
shear dispersion in these regions. This deficit in shear distribution disrupts uniformity
within the Up-Counter configuration.
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Qg = 20 L/min.

The velocity fields were analyzed to conduct a more in-depth analysis of how mix-
ing configurations affect shear rate distribution. Consequently, the velocity vectors were
created for the 1 wt% xanthan gum solution over an axial plane for all configurations, in-
cluding the Down-Co, Up-Co, Down-Counter, and Up-Counter, operating at Nc = 350 rpm,
Na = 10 rpm, and Qg = 20 L/min, using CFD post-processing as shown in Figure 8. Ac-
cording to this figure, the high-speed red vectors represent the jets discharged from the
central impellers, while the low-speed blue vectors indicate areas of slow motion. In a
conventional double-mixing bioreactor without a close-clearance impeller, the radial jets
discharged from the impeller move both upward and downward, forming upper and
lower loops around each central impeller. Notably, Jamshidzadeh et al. [42] demonstrated
that in a coaxial mixing system equipped with a close-clearance anchor and two central
impellers, the synergistic effect of the anchor and central impellers led to the merging of the
upper and lower loops, resulting in stable axial circulation loops in the middle of the tank,
as shown in Figure 8a,b. When comparing the upward and downward pumping in the
co-rotating mode, it became evident that while in the Down-Co configuration, the lower
loops generated by the bottom impeller existed, the upper loops formed by the top impeller
disappeared. This led to a significant reduction in the magnitude of the velocity vectors,
resulting in decreased fluid motion near the anchor blades at the top part of the tank and a
subsequent reduction in shear distribution in these areas. However, in the Up-Co mode,
the upper loops generated by the top impeller ensured efficient mixing near the anchor
blades at the top part of the tank.

In the counter-rotating mode, the circulation loops exhibited inconsistent shapes,
resulting in small and disorderly circulation patterns in certain areas of the aerated tank.
Additionally, a decrease in the magnitude of the velocity vector was observed at the top
and bottom of the tank compared to the co-rotating mode, with a higher velocity observed
around the central impellers (Figure 8c,d). Therefore, it can be concluded that the flow
pattern generated by the counter-rotating mode led to compartmentalization within the
coaxial mixing bioreactor, resulting in reduced axial flow from the top to the bottom of
the system. For example, in the Up-Counter configuration, poor mixing was noted at the
bottom of the tank, while in the Down-Counter configuration, insufficient mixing was
noted in the upper section of the tank.
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Overall, when comparing all the velocity vectors of the xanthan gum solution obtained
for all mixing configurations at Nc = 350 rpm and Na = 10 rpm, it becomes evident that
more efficient mixing occurs in the Up-Co mode. This accounts for the more uniform shear
rate distribution in this configuration.

The quantitative analysis of xanthan gum velocity was conducted to provide a more
comprehensive explanation of the velocity fields. In this context, profiles of normalized
fluid velocity along a vertical line at 2r/D = 0.5 were plotted for 1.0 wt% xanthan gum
solution at Nc = 350 rpm and an aeration rate of 0.32 vvm for all configurations, including
Down-Co, Up-Co, Down-Counter, and Up-Counter. It is important to note that the tip
velocity of the central impellers (πDcNc) served as a reference for calculating the normalized
fluid velocities. As depicted in Figure 9, the fluid velocity variation exhibited a bimodal
distribution for all mixing configurations. The peaks on the plots correspond to the ve-
locities of the jets discharged from each central impeller. Notably, the maximum velocity
along the axial line is consistently lower than 60% of the central impeller tip speed (Utip).
This reduction is attributed to the high apparent viscosity of the xanthan gum solution. It
can be inferred that the high apparent viscosity of the fluid led to resistance of the fluid
to deformation, resulting in a lower transfer of shear rate generated by the impeller to the
fluid and subsequently causing a decrease in the fluid velocity.
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According to Figure 9, in the co-rotating mode, the velocity peaks were observed in
the vicinity of the central impeller. However, it was noted that in the Up-Counter mode,
the lower peak shifted above the impeller blades, while the upper peak remained at the
axial position of the upper impeller’s blades. Conversely, in the Down-Counter mode, the
axial position of the lower peak remained around the bottom impeller’s blades, and the
upper peak shifted below the blades of the top central impeller. This observation indicates
that, in the counter-rotating mode, the axial positions of the upper and lower peaks were
closer to each other, centered in the middle of the mixing tank. This phenomenon can be
attributed to a reduced impeller pumping capacity in the counter-rotating mode. As a
result, the lower fluid velocity and the closer peak positions in the counter-rotating mode
diminished the efficient axial distribution of shear rate from top to bottom when compared
to the co-rotating mode.

Figure 9 shows that the highest peak was located at the top central impeller in the Up-
Co mode, while the highest peak at the bottom central impeller was observed in the Down-
Co configuration. These observations are in agreement with the stable axial circulation
loops seen in Figure 8a,b for the co-rotating mode, indicating that the higher fluid velocity
in the co-rotating mode led to a greater impeller pumping capacity. Consequently, the fluid
flow generated by the co-rotating mode was more directed in the axial direction compared
to the counter-rotating mode. This finding corroborates the shear rate distribution seen
in Figure 5.

3.2. The Effect of Central Impeller Speed

The substantial significance of the central impeller speed’s influence on the shear
rate distribution has been well-demonstrated in the literature [20]. Thus, this research
aims to explore the effect of the central impeller speed on the shear distribution within a
double coaxial mixer containing a 1 wt% xanthan gum solution. Therefore, both radial and
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axial shear rate distributions were examined for Up-Co and Up-Counter configurations, as
illustrated in Figure 10, at three different central impeller speeds: 250, 350, and 450 rpm. As
shown in Figure 10 at Nc = 250 rpm, the shear rate distribution displayed non-uniformity
in both the Up-Co and Up-Counter modes. The medium-shear rate regions (indicated in
green) were observed around the central impellers, while dark blue regions at the lower
and upper parts of the tank and near the tank wall indicated very low shear rates generated
by the impellers in those areas.
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Figure 10. Shear rate contour at various central impeller speeds: (a) 250 rpm, (b) 350 rpm, and
(c) 450 rpm at Na = 10 rpm and Qg = 20 L/min.

Elevating the central impeller speed to 450 rpm significantly enhanced both radial and
axial shear distribution within the double coaxial bioreactor for both configurations. As
shown in Figure 10c, in the Up-Co mode, raising the central impeller speed from 350 rpm
to 450 rpm notably improved the uniformity of shear distribution within the system,
particularly in the bottom half of the mixing tank, where shear rates had been very low at
lower central impeller speeds. However, in the Up-Counter mode, while the shear rate
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distribution considerably improved at Nc = 450 rpm compared to lower impeller speeds,
the presence of the dark blue region in the lower part of the tank still indicates insufficient
shear distribution in those areas.

As reported in the literature [14], designing efficient coaxial mixing bioreactors for
pseudoplastic fluids with yield stress is crucial to eradicating or minimizing stagnant
zones. CFD post-processing enables the identification of stagnant zones in mixing systems
containing Herschel–Bulkley fluids by constraining the minimum shear rate in the shear
rate contours to the critical shear rate value. To investigate the effect of increasing the
central impeller speed on potential stagnant zones in a double coaxial bioreactor with
pseudoplastic fluids possessing yield stress, shear rate contours were plotted for the Up-Co
and Up-Counter modes at three central impeller speeds, as shown in Figure 11. To display
stagnant zones in the shear rate contours, the minimum shear range was selected higher
than the shear rate corresponding to the yield stress. Therefore, the uncolored regions in
Figure 11 within the shear rate contours represent stagnant areas. According to this figure,
the stagnant zones developed at the bottom of the tank for both the Up-Co and Up-Counter
modes, with larger stagnant zones in the Up-Counter mode.
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(c) 450 rpm.

Comparing shear rate contours with dynamic viscosity contours at Nc = 250 rpm
revealed that the red regions in the dynamic viscosity contours corresponded to uncolored
regions in the shear rate contours, confirming the presence of dead zones. Additionally, at
Nc = 250 rpm, stagnant regions were observed above the top impeller in the Up-Counter
mode, indicating inadequate mixing performance in this configuration. As the central
impeller speed increased, the size of the undesired dead zone decreased, showing the
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positive impact of higher central impeller speeds on mixing performance. Interestingly,
elevating the central impeller speed to 450 rpm in the Up-Co mode prevented the formation
of undesired dead zones, enhancing fluid mixing effectiveness. However, small stagnant
zones were still observed at the bottom corner and around the anchor impeller shaft in the
Up-Counter configuration.

In order to further elaborate on the positive contribution of increasing the central
impeller speed to eliminating dead zones, the radial profile of the normalized liquid axial
velocity is depicted in Figure 12 at z/H = 0.54 for both the Up-Co and Up-Counter modes.
It should be noted that in this profile, the location of the central impeller blade tip is at
2r/D = ±0.45. It was observed that, for both configurations at Nc = 250 rpm, the distribution
of liquid axial velocity was mostly radial in the region from the impeller tip to the tank wall.
This indicates that the axial flow was not effectively generated by the central impellers at
low rotational speeds. However, in the Up-Co mode, with a further increase in the central
impeller speed, a negative peak was observed between the shaft and the central impeller
tip, while a positive peak was observed at the anchor blades. Similarly, this pattern was
observed for the Up-Counter configuration.
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As reported in the literature, the transition in the axial velocity from positive to nega-
tive affirms the existence of circulation loops [5]. Additionally, the values of both negative
and positive peaks of the normalized axial velocity increased with a further increase in
the central impeller speed, demonstrating the development of stronger circulation loops,
which is in line with the findings in Figure 8. It is noteworthy that higher values of the
axial liquid velocity were obtained in the Up-Co mode compared to the Up-Counter mode,
once again indicating enhanced flow hydrodynamics in the Up-Co mode.

4. Conclusions

In conclusion, this study thoroughly explored the mixing characteristics of four mixing
configurations, namely Down-Co, Up-Co, Down-Counter, and Up-Counter, within a double
coaxial mixing bioreactor handling a 1 wt% xanthan gum solution with yield stress. The
investigation encompassed an extensive analysis of local shear rate distribution, velocity
fields, and dynamic viscosity under varying central impeller speeds. The findings revealed
that the choice of mixing configuration significantly impacts shear rate profiles within
the system. The mixing configurations in the co-rotating mode (Up-Co and Down-Co)
exhibited distinct shear distributions, with the Up-Co mode offering a more prominent axial
shear distribution and superior shear uniformity. In contrast, the coaxial mixing systems
in the counter-rotating mode (Down-Counter and Up-Counter) exhibited radial shear
predominance and less uniform shear rate distribution, resulting in compartmentalization
within the reactor. Furthermore, this study demonstrated the crucial role of central impeller
speed in shear rate distribution. Higher impeller speeds led to improved shear uniformity,
particularly in the bottom half of the tank, and reduced the presence of stagnant zones.
In particular, the Up-Co mode at higher impeller speeds showcased enhanced mixing
effectiveness and the prevention of undesired dead zones.
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Nomenclature

D Tank diameter, m
Dc Diameter of the central impeller, m
fpa The ratio of the anchor power to the total power, dimensionless
fpc The ratio of the central impeller power to the total power, dimensionless
Fi Interface momentum exchange, N
H Height of the tank, m
k Consistency index, Pa.sn

Ks Metzner and Otto constant
n Power index, dimensionless
Nc Central impeller rotational speed, rpm
Na Anchor impeller rotational speed, rpm
Qg Volumetric flow rate of the gas, L/min
Re Reynolds number, dimensionless
r Radius, m
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R Tank radius, m
Uaxial Liquid axial velocity, m/s
Utip Impeller tip velocity, m/s
U Liquid velocity in stationary frame, m/s
z Height, m
Greek letters
.
γ Shear rate, L/s
εg Gas hold-up, dimensionless
λ Bulk viscosity, Pa.s
µ Laminar viscosity, Pa.s
µT Turbulent viscosity, Pa.s
ρ Density of liquid, kg/m3

σg Gas conductivity, S/cm
σl Liquid conductivity, S/cm
σmc Mixture conductivity, S/cm
τ Shear stress, Pa
=
τe f f Reynolds stress tensor, Pa
τy Yield stress, Pa
φ Volume fraction, dimensionless
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