Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,552)

Search Parameters:
Keywords = dual elements

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
26 pages, 7975 KiB  
Article
Soil Moisture Prediction Using the VIC Model Coupled with LSTMseq2seq
by Xiuping Zhang, Xiufeng He, Rencai Lin, Xiaohua Xu, Yanping Shi and Zhenning Hu
Remote Sens. 2025, 17(14), 2453; https://doi.org/10.3390/rs17142453 - 15 Jul 2025
Abstract
Soil moisture (SM) is a key variable in agricultural ecosystems and is crucial for drought prevention and control management. However, SM is influenced by underlying surface and meteorological conditions, and it changes rapidly in time and space. To capture the changes in SM [...] Read more.
Soil moisture (SM) is a key variable in agricultural ecosystems and is crucial for drought prevention and control management. However, SM is influenced by underlying surface and meteorological conditions, and it changes rapidly in time and space. To capture the changes in SM and improve the accuracy of short-term and medium-to-long-term predictions on a daily scale, an LSTMseq2seq model driven by both observational data and mechanism models was constructed. This framework combines historical meteorological elements and SM, as well as the SM change characteristics output by the VIC model, to predict SM over a 90-day period. The model was validated using SMAP SM. The proposed model can accurately predict the spatiotemporal variations in SM in Jiangxi Province. Compared with classical machine learning (ML) models, traditional LSTM models, and advanced transformer models, the LSTMseq2seq model achieved R2 values of 0.949, 0.9322, 0.8839, 0.8042, and 0.7451 for the prediction of surface SM over 3 days, 7 days, 30 days, 60 days, and 90 days, respectively. The mean absolute error (MAE) ranged from 0.0118 m3/m3 to 0.0285 m3/m3. This study also analyzed the contributions of meteorological features and simulated future SM state changes to SM prediction from two perspectives: time importance and feature importance. The results indicated that meteorological and SM changes within a certain time range prior to the prediction have an impact on SM prediction. The dual-driven LSTMseq2seq model has unique advantages in predicting SM and is conducive to the integration of physical mechanism models with data-driven models for handling input features of different lengths, providing support for daily-scale SM time series prediction and drought dynamics prediction. Full article
Show Figures

Figure 1

23 pages, 3101 KiB  
Article
Restructuring the Coupling Coordination Mechanism of the Economy–Energy–Environment (3E) System Under the Dual Carbon Emissions Control Policy—An Exploration Based on the “Triangular Trinity” Theoretical Framework
by Yuan Xu, Wenxiu Wang, Xuwen Yan, Guotian Cai, Liping Chen, Haifeng Cen and Zihan Lin
Energies 2025, 18(14), 3735; https://doi.org/10.3390/en18143735 - 15 Jul 2025
Abstract
Against the backdrop of the profound restructuring in global climate governance, China’s energy management system is undergoing a comprehensive transition from dual energy consumption control to dual carbon emissions control. This policy shift fundamentally alters the underlying logic of energy-focused regulation and inevitably [...] Read more.
Against the backdrop of the profound restructuring in global climate governance, China’s energy management system is undergoing a comprehensive transition from dual energy consumption control to dual carbon emissions control. This policy shift fundamentally alters the underlying logic of energy-focused regulation and inevitably impacts the economy–energy–environment (3E) system. This study innovatively constructs a “Triangular Trinity” theoretical framework integrating internal, intermediate, and external triangular couplings, as well as providing a granular analysis of their transmission relationships and feedback mechanisms. Using Guangdong Province as a case study, this study takes the dual control emissions policy within the external triangle as an entry point to research the restructuring logic of dual carbon emissions control for the coupling coordination mechanisms of the 3E system. The key findings are as follows: (1) Policy efficacy evolution: During 2005–2016, dual energy consumption control significantly improved energy conservation and emissions reduction, elevating Guangdong’s 3E coupling coordination. Post 2017, however, its singular focus on total energy consumption revealed limitations, causing a decline in 3E coordination. Dual carbon emissions control demonstrably enhances 3E systemic synergy. (2) Decoupling dynamics: Dual carbon emissions control accelerates economic–carbon emission decoupling, while slowing economic–energy consumption decoupling. This created an elasticity space of 5.092 million tons of standard coal equivalent (sce) and reduced carbon emissions by 26.43 million tons, enabling high-quality economic development. (3) Mechanism reconstruction: By leveraging external triangular elements (energy-saving technologies and market mechanisms) to act on the energy subsystem, dual carbon emissions control leads to optimal solutions to the “Energy Trilemma”. This drives the systematic restructuring of the sustainability triangle, achieving high-order 3E coupling coordination. The Triangular Trinity framework constructed by us in the paper is an innovative attempt in relation to the theory of energy transition, providing a referenceable methodology for resolving the contradictions of the 3E system. The research results can provide theoretical support and practical reference for the low-carbon energy transition of provinces and cities with similar energy structures. Full article
Show Figures

Figure 1

24 pages, 3598 KiB  
Article
Comprehensive Analysis of the Complete Mitochondrial Genome of Paeonia ludlowii Reveals a Dual-Circular Structure and Extensive Inter-Organellar Gene Transfer
by Zhefei Zeng, Zhengyan Zhang, Ngawang Norbu, Ngawang Bonjor, Xin Tan, Shutong Zhang, Norzin Tso, Junwei Wang and La Qiong
Biology 2025, 14(7), 854; https://doi.org/10.3390/biology14070854 - 14 Jul 2025
Viewed by 79
Abstract
Paeonia ludlowii, a critically endangered species endemic to Tibet, China, possesses significant ornamental, culinary, and medicinal value. However, its mitochondrial genome remains understudied, limiting insights into its evolutionary mechanisms and constraining conservation genetics applications and molecular breeding programs. We present the first [...] Read more.
Paeonia ludlowii, a critically endangered species endemic to Tibet, China, possesses significant ornamental, culinary, and medicinal value. However, its mitochondrial genome remains understudied, limiting insights into its evolutionary mechanisms and constraining conservation genetics applications and molecular breeding programs. We present the first complete assembly and comprehensive analysis of the P. ludlowii mitochondrial genome. Most remarkably, we discovered that the P. ludlowii mitogenome exhibits an atypical dual-circular structure, representing the first documented occurrence of this architectural feature within the genus Paeonia. The assembled genome spans 314,371 bp and encodes 42 tRNA genes, 3 rRNA genes, and 31 protein-coding genes, with a pronounced adenine–thymine bias. This multipartite genome structure is characterized by abundant repetitive elements (112 functionally annotated SSRs, 33 tandem repeats, and 945 dispersed repeats), which potentially drive genome rearrangements and facilitate adaptive evolution. Analyses of codon usage bias and nucleotide diversity revealed highly conserved gene expression regulation with limited variability. Phylogenetic reconstruction confirms that P. ludlowii, P. suffruticosa, and P. lactiflora form a monophyletic clade, reflecting close evolutionary relationships, while extensive syntenic collinearity with other Paeonia species underscores mitochondrial genome conservation at the genus level. Extensive inter-organellar gene transfer events, particularly from chloroplast to mitochondrion, suggest that such DNA exchanges enhance genetic diversity and promote environmental adaptation. The discovery of the dual-circular architecture provides novel insights into plant mitochondrial genome evolution and structural plasticity. This study elucidates the unique structural characteristics of the P. ludlowii mitochondrial genome and establishes a crucial genetic foundation for developing targeted conservation strategies and facilitating molecular-assisted breeding programs for this endangered species. Full article
Show Figures

Figure 1

22 pages, 16747 KiB  
Article
Development of a Technique for Toughness Estimation in Dual-Phase Steels Using Representative Volume Elements
by Amin Latifi Vanjani, Hari M. Simha and Alexander Bardelcik
Metals 2025, 15(7), 788; https://doi.org/10.3390/met15070788 - 11 Jul 2025
Viewed by 101
Abstract
A novel approach to estimating the absorbed energy (toughness) in a uniaxial tensile test with only knowledge of the microstructure is presented. The flow behavior of each Dual-Phase (DP) steel grade is predicted using idealized Representative Volume Elements (RVEs) up to uniform elongation. [...] Read more.
A novel approach to estimating the absorbed energy (toughness) in a uniaxial tensile test with only knowledge of the microstructure is presented. The flow behavior of each Dual-Phase (DP) steel grade is predicted using idealized Representative Volume Elements (RVEs) up to uniform elongation. To estimate the flow behavior beyond uniform elongation, the stress-modified fracture strain in a non-local damage model was implemented in Abaqus. Damage parameters were calibrated using Finite Element (FE) simulations of purely ferritic tensile specimens. The damage parameters remained unchanged, except for the coefficient of triaxiality. This coefficient was adjusted based on the average triaxiality of ferrite elements at the instability point of the uniaxially loaded RVEs for each DP steel grade. The proposed approach comprises two steps: micron-sized RVEs to predict the flow behavior up to the point of uniform elongation and the average triaxiality and full-scale tensile-test simulations to predict the rest of the curves. The results show that the damage parameters calibrated for high-strain ferrite effectively estimate the absorbed energy during failure in tension tests. This approach is also geometry-independent; varying the geometry of the tensile specimen, including miniature or notched specimens, still yields predicted absorbed energies that are in good agreement with the experimental results. Full article
Show Figures

Figure 1

18 pages, 3402 KiB  
Article
Synergistic Detrital Zircon U-Pb and REE Analysis for Provenance Discrimination of the Beach-Bar System in the Oligocene Dongying Formation, HHK Depression, Bohai Bay Basin, China
by Jing Wang, Youbin He, Hua Li, Tao Guo, Dayong Guan, Xiaobo Huang, Bin Feng, Zhongxiang Zhao and Qinghua Chen
J. Mar. Sci. Eng. 2025, 13(7), 1331; https://doi.org/10.3390/jmse13071331 - 11 Jul 2025
Viewed by 174
Abstract
The Oligocene Dongying Formation beach-bar system, widely distributed in the HHK Depression of the Bohai Bay Basin, constitutes a key target for mid-deep hydrocarbon exploration, though its provenance remains controversial due to complex peripheral source terrains. To address this, we developed an integrated [...] Read more.
The Oligocene Dongying Formation beach-bar system, widely distributed in the HHK Depression of the Bohai Bay Basin, constitutes a key target for mid-deep hydrocarbon exploration, though its provenance remains controversial due to complex peripheral source terrains. To address this, we developed an integrated methodology combining LA-ICP-MS zircon U-Pb dating with whole-rock rare earth element (REE) analysis, facilitating provenance studies in areas with limited drilling and heavy mineral data. Analysis of 849 high-concordance zircons (concordance >90%) from 12 samples across 5 wells revealed that Geochemical homogeneity is evidenced by strongly consistent moving-average trendlines of detrital zircon U-Pb ages among the southern/northern provenances and the central uplift zone, complemented by uniform REE patterns characterized by HREE (Gd-Lu) enrichment and LREE depletion; geochemical disparities manifest as dual dominant age peaks (500–1000 Ma and 1800–3100 Ma) in the southern provenance and central uplift samples, contrasting with three distinct peaks (65–135 Ma, 500–1000 Ma, and 1800–3100 Ma) in the northern provenance; spatial quantification via multidimensional scaling (MDS) demonstrates closer affinity between the southern provenance and central uplift (dij = 4.472) than to the northern provenance (dij = 6.708). Collectively, these results confirm a dual (north–south) provenance system for the central uplift beach-bar deposits, with the southern provenance dominant and the northern acting as a subsidiary source. This work establishes a dual-provenance beach-bar model, providing a universal theoretical and technical framework for provenance analysis in hydrocarbon exploration within analogous settings. Full article
(This article belongs to the Section Geological Oceanography)
Show Figures

Figure 1

22 pages, 4817 KiB  
Article
LightSpot Fluorescent Conjugates as Highly Efficient Tools for Lysosomal P-gp Quantification in Olaparib-Treated Triple-Negative Breast Cancer Cells
by Antoine Goisnard, Pierre Daumar, Maxime Dubois, Elodie Gay, Manon Roux, Marie Depresle, Frédérique Penault-Llorca, Emmanuelle Mounetou and Mahchid Bamdad
Int. J. Mol. Sci. 2025, 26(14), 6675; https://doi.org/10.3390/ijms26146675 - 11 Jul 2025
Viewed by 233
Abstract
P-glycoprotein (P-gp) is a key element of cancer treatment resistance, actively extruding cytotoxic drugs from cells and diminishing their efficacy. While its role at the plasma membrane is well established, its intracellular localization, particularly on lysosomes, is increasingly recognized as a critical contributor [...] Read more.
P-glycoprotein (P-gp) is a key element of cancer treatment resistance, actively extruding cytotoxic drugs from cells and diminishing their efficacy. While its role at the plasma membrane is well established, its intracellular localization, particularly on lysosomes, is increasingly recognized as a critical contributor to drug resistance. This study investigates four innovative LightSpot fluorescent compounds to detect and quantify both membrane and lysosomal P-gp in Triple-Negative Breast Cancer (TNBC) SUM1315 and DU4475 cell lines. Results highlighted lysosomal P-gp staining by the LightSpot-FL-1, LightSpot-BrX-1, and LightSpot-BdO-1 fluorescent compounds (Mander’s coefficients > 0.8 overlapping with LAMP2 immunostaining). After both cell lines were exposed to Olaparib, a significant increase in P-gp expression level and lysosomal distribution of P-gp was detected. Indeed, after 100 µM Olaparib exposure, LightSpot-FL-1 allowed us to quantify an increase in P-gp-positive lysosome number of 1293 and 334% for SUM1315 and DU4475 cells, respectively, compared to the control. Findings suggest that P-gp may relocate to lysosomes upon drug exposure, highlighting a dual resistance mechanism involving both membrane and lysosomal P-gp. This study demonstrated the potential of LightSpot fluorescent compounds to evaluate P-gp-mediated cell resistance to treatment and emphasized the need to assess global cell P-gp expression to improve cancer diagnosis. Full article
Show Figures

Figure 1

21 pages, 2440 KiB  
Article
Dual-Purpose Utilization of Sri Lankan Apatite for Rare Earth Recovery Integrated into Sustainable Nitrophosphate Fertilizer Manufacturing
by D. B. Hashini Indrachapa Bandara, Avantha Prasad, K. D. Anushka Dulanjana and Pradeep Wishwanath Samarasekere
Sustainability 2025, 17(14), 6353; https://doi.org/10.3390/su17146353 - 11 Jul 2025
Viewed by 449
Abstract
Rare earth elements (REEs) have garnered significant global attention due to their essential role in advanced technologies. Sri Lanka is endowed with various REE-bearing minerals, including the apatite-rich deposit in the Eppawala area, commonly known as Eppawala rock phosphate (ERP). However, direct extraction [...] Read more.
Rare earth elements (REEs) have garnered significant global attention due to their essential role in advanced technologies. Sri Lanka is endowed with various REE-bearing minerals, including the apatite-rich deposit in the Eppawala area, commonly known as Eppawala rock phosphate (ERP). However, direct extraction of REEs from ERP is technically challenging and economically unfeasible. This study introduces a novel, integrated approach for recovering REEs from ERP as a by-product of nitrophosphate fertilizer production. The process involves nitric acid-based acidolysis of apatite, optimized at 10 M nitric acid for 2 h at 70 °C with a pulp density of 2.4 mL/g. During cooling crystallization, 42 wt% of calcium was removed as Ca(NO3)2.4H2O while REEs remained in the solution. REEs were then selectively precipitated as REE phosphates via pH-controlled addition of ammonium hydroxide, minimizing the co-precipitation with calcium. Further separation was achieved through selective dissolution in a sulfuric–phosphoric acid mixture, followed by precipitation as sodium rare earth double sulfates. The process achieved over 90% total REE recovery with extraction efficiencies in the order of Pr > Nd > Ce > Gd > Sm > Y > Dy. Samples were characterized for their phase composition, elemental content, and morphology. The fertilizer results confirmed the successful production of a nutrient-rich nitrophosphate (NP) with 18.2% nitrogen and 13.9% phosphorus (as P2O5) with a low moisture content (0.6%) and minimal free acid (0.1%), indicating strong agronomic value and storage stability. This study represents one of the pioneering efforts to valorize Sri Lanka’s apatite through a novel, dual-purpose, and circular approach, recovering REEs while simultaneously producing high-quality fertilizer. Full article
(This article belongs to the Special Issue Technologies for Green and Sustainable Mining)
Show Figures

Figure 1

21 pages, 4090 KiB  
Article
Linear Actuation of Dielectrophoretic Formed Multi-Walled Carbon Nanotube Fiber with Carbide-Derived Carbon in Polar Aprotic and Polar Protic Solvents
by Chau B. Tran, Quoc Bao Le and Rudolf Kiefer
Materials 2025, 18(14), 3254; https://doi.org/10.3390/ma18143254 - 10 Jul 2025
Viewed by 237
Abstract
Carbon nanotube (CNT) fiber research focuses on developing functional fabrics with dual or multifunctional capabilities. This study investigates CNT fibers fabricated via dielectrophoresis (DEP) with the incorporation of 10 wt.% carbide-derived carbon (CDC), referred to as CNTCDC fibers. The linear actuation behavior of [...] Read more.
Carbon nanotube (CNT) fiber research focuses on developing functional fabrics with dual or multifunctional capabilities. This study investigates CNT fibers fabricated via dielectrophoresis (DEP) with the incorporation of 10 wt.% carbide-derived carbon (CDC), referred to as CNTCDC fibers. The linear actuation behavior of the CNT and the CNTCDC fibers is compared using identical electrolyte concentrations in both a polar aprotic solvent (propylene carbonate, PC) and a polar protic solvent (aqueous solution, aq). Electromechanical deformation (EMD) is studied through cyclic voltammetry and chronoamperometry. The CNTCDC fiber outperformed the pristine CNT fiber, exhibiting primary expansion during discharge in PC (stress: 1.64 kPa, strain: 0.1%) and during charge in water (stress: 1.32 kPa, strain: 0.047%). By contrast, the pristine CNT fibers showed mixed actuation responses in both solvents, resulting in diminished net stress and strain. Chronopotentiometric measurements indicated that the CNTCDC fibers achieved their highest specific capacitance in aqueous media, reaching 223 ± 17 F g−1 at ±0.8 A g−1, with a capacity retention of 94.2% at ±32 A g−1. Fundamental characterization techniques, including scanning electron microcopy (SEM), energy-dispersive X-ray spectroscopy (EDX), and Raman spectroscopy, are employed to analyze fiber morphology and composition. The dual functionality of CNTCDC fibers, as both actuators and energy storage elements, is demonstrated. Full article
(This article belongs to the Special Issue Electronic, Optical, and Structural Properties of Carbon Nanotubes)
Show Figures

Graphical abstract

20 pages, 13326 KiB  
Article
Stress–Strain and Structural Evolution on the Localized Interface of Stainless Steel Clad Plate
by Yinpeng Wang, Bo Gao, Qiqing Tian, Chunhui Jiang, Lu Zhu, Yanguang Cao, Wei Wei and Zhaodong Li
Materials 2025, 18(14), 3255; https://doi.org/10.3390/ma18143255 - 10 Jul 2025
Viewed by 214
Abstract
By applying different heat treatment processes (furnace cooling, air cooling, and water cooling), the stress–strain behavior of the localized interfacial region in weathering steel–stainless steel clad plates was investigated using nanoindentation, along with an analysis of interfacial microstructure formation and strengthening mechanisms. The [...] Read more.
By applying different heat treatment processes (furnace cooling, air cooling, and water cooling), the stress–strain behavior of the localized interfacial region in weathering steel–stainless steel clad plates was investigated using nanoindentation, along with an analysis of interfacial microstructure formation and strengthening mechanisms. The results show that samples in the as-rolled (R), furnace-cooled (FC), air-cooled (AC), and water-cooled (WC) conditions exhibit distinct interfacial morphologies and local mechanical properties. A well-defined interfacial layer forms between the base and cladding materials, where a high density of dislocations, grain boundaries, precipitates, and nanoscale oxides significantly enhances interfacial strength, resulting in a yield strength (Rp0.2) much higher than that of either adjacent metal. Across the transition from weathering steel to stainless steel, the interfacial region consists of ferrite—interfacial layer—“new austenite”—stainless steel austenite. Its formation is predominantly governed by element diffusion, which is strongly influenced by the applied heat treatment. Variations in diffusion behavior significantly affect the microstructural evolution of the dual-phase transition zone at the interface, thereby altering the local mechanical response. Full article
(This article belongs to the Section Metals and Alloys)
Show Figures

Figure 1

28 pages, 1727 KiB  
Review
Computational and Imaging Approaches for Precision Characterization of Bone, Cartilage, and Synovial Biomolecules
by Rahul Kumar, Kyle Sporn, Vibhav Prabhakar, Ahab Alnemri, Akshay Khanna, Phani Paladugu, Chirag Gowda, Louis Clarkson, Nasif Zaman and Alireza Tavakkoli
J. Pers. Med. 2025, 15(7), 298; https://doi.org/10.3390/jpm15070298 - 9 Jul 2025
Viewed by 312
Abstract
Background/Objectives: Degenerative joint diseases (DJDs) involve intricate molecular disruptions within bone, cartilage, and synovial tissues, often preceding overt radiographic changes. These tissues exhibit complex biomolecular architectures and their degeneration leads to microstructural disorganization and inflammation that are challenging to detect with conventional imaging [...] Read more.
Background/Objectives: Degenerative joint diseases (DJDs) involve intricate molecular disruptions within bone, cartilage, and synovial tissues, often preceding overt radiographic changes. These tissues exhibit complex biomolecular architectures and their degeneration leads to microstructural disorganization and inflammation that are challenging to detect with conventional imaging techniques. This review aims to synthesize recent advances in imaging, computational modeling, and sequencing technologies that enable high-resolution, non-invasive characterization of joint tissue health. Methods: We examined advanced modalities including high-resolution MRI (e.g., T1ρ, sodium MRI), quantitative and dual-energy CT (qCT, DECT), and ultrasound elastography, integrating them with radiomics, deep learning, and multi-scale modeling approaches. We also evaluated RNA-seq, spatial transcriptomics, and mass spectrometry-based proteomics for omics-guided imaging biomarker discovery. Results: Emerging technologies now permit detailed visualization of proteoglycan content, collagen integrity, mineralization patterns, and inflammatory microenvironments. Computational frameworks ranging from convolutional neural networks to finite element and agent-based models enhance diagnostic granularity. Multi-omics integration links imaging phenotypes to gene and protein expression, enabling predictive modeling of tissue remodeling, risk stratification, and personalized therapy planning. Conclusions: The convergence of imaging, AI, and molecular profiling is transforming musculoskeletal diagnostics. These synergistic platforms enable early detection, multi-parametric tissue assessment, and targeted intervention. Widespread clinical integration requires robust data infrastructure, regulatory compliance, and physician education, but offers a pathway toward precision musculoskeletal care. Full article
(This article belongs to the Special Issue Cutting-Edge Diagnostics: The Impact of Imaging on Precision Medicine)
Show Figures

Figure 1

33 pages, 3669 KiB  
Article
Study of the Design Optimization of an AIGC Ordering Interface Under the Dual Paths of User Demand Mapping and Conflict Resolution
by Zhixiong Huang, Hongxiang Song and Xinhui Hong
Appl. Sci. 2025, 15(14), 7674; https://doi.org/10.3390/app15147674 - 9 Jul 2025
Viewed by 167
Abstract
In the context of the rapid digital transformation of the catering industry, the design of ordering interfaces—key hubs of human–computer interaction—has become critical to user service quality and brand competitiveness, especially in terms of usability, visual appeal, and emotional resonance. Based on a [...] Read more.
In the context of the rapid digital transformation of the catering industry, the design of ordering interfaces—key hubs of human–computer interaction—has become critical to user service quality and brand competitiveness, especially in terms of usability, visual appeal, and emotional resonance. Based on a human–computer interaction design framework, this study proposes a dual-path optimization model integrating user demand mapping and conflict resolution to synergize explicit need translation with innovative design problem solving. The model employs KE to capture implicit user needs, applies AHP to construct a weighted design element system, and uses QFD to establish a matrix linking user needs with technical attributes. To address contradictions among design elements, TRIZ is introduced to resolve conflicts between functional redundancy and interaction efficiency. Additionally, generative AI tools such as MidJourney are incorporated to accelerate concept generation and improve innovation. Based on user evaluations and controlled experiments, the optimized design demonstrates measurable improvements in task efficiency and visual appeal. Overall, the dual-path approach effectively bridges the gap between vague user needs and concrete design solutions, achieving a balanced integration of functionality, aesthetics, and interactivity. The proposed model overcomes the limitations of experience-driven design by offering a systematic methodology encompassing demand analysis, technological transformation, conflict resolution, and intelligent generation, with practical value for enhancing the user experience of digital service touchpoints in the catering sector. Full article
Show Figures

Figure 1

23 pages, 5228 KiB  
Article
From Conventional to Electrified Pavements: A Structural Modeling Approach for Spanish Roads
by Gustavo Boada-Parra, Ronny Romero, Federico Gulisano, Freddy Apaza-Apaza, Damaris Cubilla, Andrea Serpi, Rafael Jurado-Piña and Juan Gallego
Coatings 2025, 15(7), 801; https://doi.org/10.3390/coatings15070801 - 9 Jul 2025
Viewed by 257
Abstract
The accelerated growth of the transport sector has increased oil consumption and greenhouse gas (GHG) emissions, intensifying global environmental challenges. The electrification of transportation has emerged as a key strategy to achieve sustainability targets, with electric vehicles (EVs) expected to account for 50% [...] Read more.
The accelerated growth of the transport sector has increased oil consumption and greenhouse gas (GHG) emissions, intensifying global environmental challenges. The electrification of transportation has emerged as a key strategy to achieve sustainability targets, with electric vehicles (EVs) expected to account for 50% of global car sales by 2035. However, widespread adoption requires smart infrastructure capable of enabling dynamic in-motion charging. In this context, Electric Road Systems (ERSs), particularly those based on Wireless Power Transfer (WPT) technologies, offer a promising solution by transferring energy between road-embedded transmitters and vehicle-mounted receivers. This study assesses the structural response and service life of conventional and electrified asphalt pavement sections representative of the Spanish road network. Several standard pavement configurations were analyzed under heavy traffic (dual axles, 13 tons) using a hybrid approach combining mechanistic–empirical multilayer modeling and three-dimensional Finite Element Method (FEM) simulations. The electrified designs integrate prefabricated charging units (CUs) placed at a 9 cm depth, disrupting the structural continuity of the pavement. The results reveal stress concentrations at the CU–asphalt interface and service life reductions of up to 50% in semiflexible pavements. Semirigid sections performed better, with average reductions close to 40%. These findings are based on numerical simulations of standard Spanish sections and do not include experimental validation. Full article
(This article belongs to the Special Issue Recent Research in Asphalt and Pavement Materials)
Show Figures

Graphical abstract

23 pages, 870 KiB  
Article
The Political Economy of CO2 Emissions: Investigating the Role of Associational and Organizational Freedoms in Environmental Quality
by Umut Uzar
Sustainability 2025, 17(14), 6265; https://doi.org/10.3390/su17146265 - 8 Jul 2025
Viewed by 261
Abstract
The historical peak in CO2 emissions has intensified global environmental concerns, urging the identification of key determinants. While economic drivers are well-documented, political dimensions—especially democracy and institutional quality—are increasingly emphasized. However, the role of freedom of association and organization (AOF), a core [...] Read more.
The historical peak in CO2 emissions has intensified global environmental concerns, urging the identification of key determinants. While economic drivers are well-documented, political dimensions—especially democracy and institutional quality—are increasingly emphasized. However, the role of freedom of association and organization (AOF), a core democratic element, remains largely unexamined in this context. This study fills this gap by analyzing the impact of AOF on CO2 emissions in the top 20 emitter countries from 2006 to 2022. The selection of these countries enables a focused assessment of the world’s primary polluters, ensuring high policy relevance. Using second-generation panel estimators, the Augmented Mean Group and the Common Correlated Effects Mean Group estimators, the analysis accounts for heterogeneity and cross-sectional dependence. Robustness is tested using the CS-ARDL method, confirming the stability of results. Empirical findings show that higher levels of AOF significantly reduce CO2 emissions. Income and energy consumption increase emissions, while the effect of trade openness is statistically insignificant. These results suggest that strengthening associational freedoms can offer a dual benefit: advancing democratic norms and achieving environmental goals. Full article
Show Figures

Figure 1

11 pages, 681 KiB  
Communication
Compact Four-Port MIMO Antenna Using Dual-Polarized Patch and Defected Ground Structure for IoT Devices
by Dat Tran-Huy, Cuong Do-Manh, Hung Pham-Duy, Nguyen Tran-Viet-Duc, Hung Tran, Dat Nguyen-Tien and Niamat Hussain
Sensors 2025, 25(14), 4254; https://doi.org/10.3390/s25144254 - 8 Jul 2025
Viewed by 210
Abstract
This paper presents a compact four-port multiple-input multiple-output (MIMO) antenna for Internet-of-Things (IoT) devices. As electronic IoT devices become smaller, MIMO antennas should also be compact for ease of integration and multi-port operation for a high channel capacity. Instead of using a single-polarized [...] Read more.
This paper presents a compact four-port multiple-input multiple-output (MIMO) antenna for Internet-of-Things (IoT) devices. As electronic IoT devices become smaller, MIMO antennas should also be compact for ease of integration and multi-port operation for a high channel capacity. Instead of using a single-polarized radiator, which increases the antenna size when scaling to a multi-port MIMO array, a dual-polarized radiator is utilized. This helps to achieve multi-port operation with compact size features. To reduce the mutual coupling between the MIMO elements, an I-shaped defected ground structure is inserted into the ground plane. The measured results indicate that the final four-port MIMO antenna with overall dimensions of 0.92 λ× 0.73 λ× 0.03 λ at 5.5 GHz can achieve an operating bandwidth of about 2.2% with isolation better than 20 dB and a gain higher than 6.0 dBi. Additionally, the proposed method is also applicable to a large-scale MIMO array. Full article
(This article belongs to the Section Communications)
Show Figures

Figure 1

10 pages, 4530 KiB  
Article
A Switchable-Mode Full-Color Imaging System with Wide Field of View for All Time Periods
by Shubin Liu, Linwei Guo, Kai Hu and Chunbo Zou
Photonics 2025, 12(7), 689; https://doi.org/10.3390/photonics12070689 - 8 Jul 2025
Viewed by 196
Abstract
Continuous, single-mode imaging systems fail to deliver true-color high-resolution imagery around the clock under extreme lighting. High-fidelity color and signal-to-noise ratio imaging across the full day–night cycle remains a critical challenge for surveillance, navigation, and environmental monitoring. We present a competitive dual-mode imaging [...] Read more.
Continuous, single-mode imaging systems fail to deliver true-color high-resolution imagery around the clock under extreme lighting. High-fidelity color and signal-to-noise ratio imaging across the full day–night cycle remains a critical challenge for surveillance, navigation, and environmental monitoring. We present a competitive dual-mode imaging platform that integrates a 155 mm f/6 telephoto daytime camera with a 52 mm f/1.5 large-aperture low-light full-color night-vision camera into a single, co-registered 26 cm housing. By employing a sixth-order aspheric surface to reduce the element count and weight, our system achieves near-diffraction-limited MTF (>0.5 at 90.9 lp/mm) in daylight and sub-pixel RMS blur < 7 μm at 38.5 lp/mm under low-light conditions. Field validation at 0.0009 lux confirms high-SNR, full-color capture from bright noon to the darkest nights, enabling seamless switching between long-range, high-resolution surveillance and sensitive, low-light color imaging. This compact, robust design promises to elevate applications in security monitoring, autonomous navigation, wildlife observation, and disaster response by providing uninterrupted, color-faithful vision in all lighting regimes. Full article
(This article belongs to the Special Issue Research on Optical Materials and Components for 3D Displays)
Show Figures

Figure 1

Back to TopTop