Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (24)

Search Parameters:
Keywords = dual VEGFR-2/HER-2 inhibitor

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
63 pages, 3510 KiB  
Review
Morphometric and Molecular Interplay in Hypertension-Induced Cardiac Remodeling with an Emphasis on the Potential Therapeutic Implications
by Lyubomir Gaydarski, Kristina Petrova, Stancho Stanchev, Dimitar Pelinkov, Alexandar Iliev, Iva N. Dimitrova, Vidin Kirkov, Boycho Landzhov and Nikola Stamenov
Int. J. Mol. Sci. 2025, 26(9), 4022; https://doi.org/10.3390/ijms26094022 - 24 Apr 2025
Cited by 1 | Viewed by 1189
Abstract
Hypertension-induced cardiac remodeling is a complex process driven by interconnected molecular and cellular mechanisms that culminate in hypertensive myocardium, characterized by ventricular hypertrophy, fibrosis, impaired angiogenesis, and myocardial dysfunction. This review discusses the histomorphometric changes in capillary density, fibrosis, and mast cells in [...] Read more.
Hypertension-induced cardiac remodeling is a complex process driven by interconnected molecular and cellular mechanisms that culminate in hypertensive myocardium, characterized by ventricular hypertrophy, fibrosis, impaired angiogenesis, and myocardial dysfunction. This review discusses the histomorphometric changes in capillary density, fibrosis, and mast cells in the hypertensive myocardium and delves into the roles of key regulatory systems, including the apelinergic system, vascular endothelial growth factor (VEGF)/VEGF receptor (VEGFR) pathways, and nitric oxide (NO)/nitric oxide synthase (NOS) signaling in the pathogenesis of hypertensive heart disease (HHD). Capillary rarefaction, a hallmark of HHD, contributes to myocardial ischemia and fibrosis, underscoring the importance of maintaining vascular integrity. Targeting capillary density (CD) through antihypertensive therapy or angiogenic interventions could significantly improve cardiac outcomes. Myocardial fibrosis, mediated by excessive collagen deposition and influenced by fibroblast growth factor-2 (FGF-2) and transforming growth factor-beta (TGF-β), plays a pivotal role in the structural remodeling of hypertensive myocardium. While renin–angiotensin–aldosterone system (RAAS) inhibitors show anti-fibrotic effects, more targeted therapies are needed to address fibrosis directly. Mast cells, though less studied in humans, emerge as critical regulators of cardiac remodeling through their release of pro-fibrotic mediators such as histamine, tryptase, and FGF-2. The apelinergic system emerges as a promising therapeutic target due to its vasodilatory, anti-fibrotic, and cardioprotective properties. The system counteracts the deleterious effects of the RAAS and has demonstrated efficacy in preclinical models of hypertension-induced cardiac damage. Despite its potential, human studies on apelin analogs remain limited, warranting further exploration to evaluate their clinical utility. VEGF signaling plays a dual role, facilitating angiogenesis and compensatory remodeling during the early stages of arterial hypertension (AH) but contributing to maladaptive changes when dysregulated. Modulating VEGF signaling through exercise or pharmacological interventions has shown promise in improving CD and mitigating hypertensive cardiac damage. However, VEGF inhibitors, commonly used in oncology, can exacerbate AH and endothelial dysfunction, highlighting the need for therapeutic caution. The NO/NOS pathway is essential for vascular homeostasis and the prevention of oxidative stress. Dysregulation of this pathway, particularly endothelial NOS (eNOS) uncoupling and inducible NOS (iNOS) overexpression, leads to endothelial dysfunction and nitrosative stress in hypertensive myocardium. Strategies to restore NO bioavailability, such as tetrahydrobiopterin (BH4) supplementation and antioxidants, hold potential for therapeutic application but require further validation. Future studies should adopt a multidisciplinary approach to integrate molecular insights with clinical applications, paving the way for more personalized and effective treatments for HHD. Addressing these challenges will not only enhance the understanding of hypertensive myocardium but also improve patient outcomes and quality of life. Full article
Show Figures

Figure 1

26 pages, 8589 KiB  
Article
In Silico Analysis of Triamterene as a Potential Dual Inhibitor of VEGFR-2 and c-Met Receptors
by Stuart Lutimba, Baraya Saleem, Eiman Aleem and Mohammed A. Mansour
J. Xenobiot. 2024, 14(4), 1962-1987; https://doi.org/10.3390/jox14040105 - 14 Dec 2024
Viewed by 1766
Abstract
The vascular endothelial growth factor receptor 2 (VEGFR2) and the hepatocyte growth factor receptor (C-Met) are critical receptors for signaling pathways controlling crucial cellular processes such as cell growth, angiogenesis and tissue regeneration. However, dysregulation of these proteins has been reported in different [...] Read more.
The vascular endothelial growth factor receptor 2 (VEGFR2) and the hepatocyte growth factor receptor (C-Met) are critical receptors for signaling pathways controlling crucial cellular processes such as cell growth, angiogenesis and tissue regeneration. However, dysregulation of these proteins has been reported in different diseases, particularly cancer, where these proteins promote tumour growth, invasiveness, metastasis and resistance to conventional therapies. The identification of dual inhibitors targeting both VEGFR-2 and c-Met has emerged as a strategic therapeutic approach to overcome the limitations and resistance mechanisms associated with single-target therapies in clinical settings. Through molecular dynamics simulations and comparative docking analysis, we tested the inhibitory potential of 2,016 Food and Drug Administration (FDA)-approved drugs targeting VEGFR-2 and/or c-Met receptors. The results revealed that entacapone and telmisartan are potent and selective inhibitors for c-Met and VEGFR-2, respectively. Interestingly, triamterene was identified as a promising dual inhibitor, demonstrating specific and significant binding affinity to both proteins. Molecular dynamics simulations revealed key interactions between the identified compounds and critical residues in the catalytic domains of both VEGFR-2 (e.g., Lys868, Asp1028, Asp1046) and c-Met (e.g., Asp1204, His1202, Asp1222), providing insights into their mechanism of action. These findings underscore the therapeutic potential of triamterene in targeting multiple signaling pathways involved in cancer progression, metastasis and poor prognosis in patients. Our study provides a foundational framework for the development of novel anticancer compounds able to target multiple pathways in cancer. Further preclinical and clinical investigations are needed to validate the efficacy of these compounds in clinical settings and to test their ability to overcome resistance and improve patient outcome. Full article
(This article belongs to the Section Drug Therapeutics)
Show Figures

Graphical abstract

23 pages, 5206 KiB  
Article
Fibroblast Growth Factor 2 (FGF2) Activates Vascular Endothelial Growth Factor (VEGF) Signaling in Gastrointestinal Stromal Tumors (GIST): An Autocrine Mechanism Contributing to Imatinib Mesylate (IM) Resistance
by Sergei Boichuk, Pavel Dunaev, Aigul Galembikova and Elena Valeeva
Cancers 2024, 16(17), 3103; https://doi.org/10.3390/cancers16173103 - 7 Sep 2024
Cited by 2 | Viewed by 2135
Abstract
We showed previously that the autocrine activation of the FGFR-mediated pathway in GIST lacking secondary KIT mutations was a result of the inhibition of KIT signaling. We show here that the FGF2/FGFR pathway regulates VEGF-A/VEGFR signaling in IM-resistant GIST cells. Indeed, recombinant FGF2 [...] Read more.
We showed previously that the autocrine activation of the FGFR-mediated pathway in GIST lacking secondary KIT mutations was a result of the inhibition of KIT signaling. We show here that the FGF2/FGFR pathway regulates VEGF-A/VEGFR signaling in IM-resistant GIST cells. Indeed, recombinant FGF2 increased the production of VEGF-A by IM-naive and resistant GIST cells. VEGF-A production was also increased in KIT-inhibited GIST, whereas the neutralization of FGF2 by anti-FGF2 mAb attenuated VEGFR signaling. Of note, BGJ 398, pan FGFR inhibitor, effectively and time-dependently inhibited VEGFR signaling in IM-resistant GIST T-1R cells, thereby revealing the regulatory role of the FGFR pathway in VEGFR signaling for this particular GIST cell line. This also resulted in significant synergy between BGJ 398 and VEGFR inhibitors (i.e., sunitinib and regorafenib) by enhancing their pro-apoptotic and anti-proliferative activities. The high potency of the combined use of VEGFR and FGFR inhibitors in IM-resistant GISTs was revealed by the impressive synergy scores observed for regorafenib or sunitinib and BGJ 398. Moreover, FGFR1/2 and VEGFR1/2 were co-localized in IM-resistant GIST T-1R cells, and the direct interaction between the aforementioned RTKs was confirmed by co-immunoprecipitation. In contrast, IM-resistant GIST 430 cells expressed lower basal levels of FGF2 and VEGF-A. Despite the increased expression VEGFR1 and FGFR1/2 in GIST 430 cells, these RTKs were not co-localized and co-immunoprecipitated. Moreover, no synergy between FGFR and VEGFR inhibitors was observed for the IM-resistant GIST 430 cell line. Collectively, the dual targeting of FGFR and VEGFR pathways in IM-resistant GISTs is not limited to the synergistic anti-angiogenic treatment effects. The dual inhibition of FGFR and VEGFR pathways in IM-resistant GISTs potentiates the proapoptotic and anti-proliferative activities of the corresponding RTKi. Mechanistically, the FGF2-induced activation of the FGFR pathway turns on VEGFR signaling via the overproduction of VEGF-A, induces the interaction between FGFR1/2 and VEGFR1, and thereby renders cancer cells highly sensitive to the dual inhibition of the aforementioned RTKs. Thus, our data uncovers the novel mechanism of the cross-talk between the aforementioned RTKs in IM-resistant GISTs lacking secondary KIT mutations and suggests that the dual blockade of FGFR and VEGFR signaling might be an effective treatment strategy for patients with GIST-acquired IM resistance via KIT-independent mechanisms. Full article
Show Figures

Figure 1

20 pages, 3281 KiB  
Article
Identification of Benzothiazoles Bearing 1,3,4-Thiadiazole as Antiproliferative Hybrids Targeting VEGFR-2 and BRAF Kinase: Design, Synthesis, BIO Evaluation and In Silico Study
by Wafaa A. Ewes, Samar S. Tawfik, Aya M. Almatary, Mashooq Ahmad Bhat, Hamed W. El-Shafey, Ahmed A. B. Mohamed, Abdullah Haikal, Mohammed A. El-Magd, Abdullah A. Elgazar, Marwa Balaha and Abdelrahman Hamdi
Molecules 2024, 29(13), 3186; https://doi.org/10.3390/molecules29133186 - 4 Jul 2024
Cited by 13 | Viewed by 2518
Abstract
Cancer remains a leading cause of death worldwide, often resulting from uncontrolled growth in various organs. Protein kinase inhibitors represent an important class of targeted cancer therapies. Recently, the kinases BRAF and VEGFR-2 have shown synergistic effects on tumor progression. Seeking to develop [...] Read more.
Cancer remains a leading cause of death worldwide, often resulting from uncontrolled growth in various organs. Protein kinase inhibitors represent an important class of targeted cancer therapies. Recently, the kinases BRAF and VEGFR-2 have shown synergistic effects on tumor progression. Seeking to develop dual BRAF/VEGFR-2 inhibitors, we synthesized 18 amino-benzothiazole derivatives with structural similarities to reported dual inhibitors. Four compounds—4a, 4f, 4l, and 4r—demonstrated remarkable cytotoxicity, with IC50 values ranging from 3.58 to 15.36 μM, against three cancer cell lines. Furthermore, these compounds showed IC50 values of 38.77–66.22 μM in the case of a normal cell line, which was significantly safer than the reference, sorafenib. Subsequent investigation revealed that compound 4f exhibited the capacity to inhibit the BRAF and VEGFR-2 enzymes, with IC50 values similar to sorafenib (0.071 and 0.194 μM, respectively). Moreover, compound 4f caused G2-M- and S-phase cycle arrest. Molecular modeling demonstrated binding patterns compatible with inhibition for both targets, where 4f exerted the critical interactions in the BRAF site and interacted in the VEGFR-2 site in a manner akin to sorafenib, demonstrating affinity similar to dabrafenib. Full article
(This article belongs to the Special Issue Synthesis of Bioactive Compounds: Volume II)
Show Figures

Figure 1

17 pages, 3522 KiB  
Article
Influence of Lenvatinib on the Functional Reprogramming of Peripheral Myeloid Cells in the Context of Non-Medullary Thyroid Carcinoma
by Chunying Peng, Katrin Rabold, Mihai G. Netea, Martin Jaeger and Romana T. Netea-Maier
Pharmaceutics 2023, 15(2), 412; https://doi.org/10.3390/pharmaceutics15020412 - 26 Jan 2023
Cited by 3 | Viewed by 2577
Abstract
Lenvatinib is a multitarget tyrosine kinase inhibitor (TKI) approved for the treatment of several types of cancers, including metastatic differentiated thyroid cancer (DTC). The intended targets include VEGFR 1–3, FGFR 1–4, PDGFRα, RET, and KIT signaling pathways, but drug resistance inevitably develops and [...] Read more.
Lenvatinib is a multitarget tyrosine kinase inhibitor (TKI) approved for the treatment of several types of cancers, including metastatic differentiated thyroid cancer (DTC). The intended targets include VEGFR 1–3, FGFR 1–4, PDGFRα, RET, and KIT signaling pathways, but drug resistance inevitably develops and a complete cure is very rare. Recent data has revealed that most of the TKIs have additional ‘off-target’ immunological effects, which might contribute to a protective antitumor immune response; however, human cellular data are lacking regarding Lenvatinib-mediated immunomodulation in DTC. Here, we investigated in ex vivo models the impact of Lenvatinib on the function of immune cells in healthy volunteers. We found that monocytes and macrophages were particularly susceptible to Lenvatinib, while neutrophiles and lymphocytes were less affected. In tumor-immune cell co-culture experiments, Lenvatinib exerted a broad inhibitory effect on the proinflammatory response in TC-induced macrophages. Interestingly, Lenvatinib-treated cells had decreased cellular M2 membrane markers, whereas they secreted a significantly higher level of the anti-inflammatory cytokine IL-10 upon LPS stimulation. In addition, prolonged exposure to Lenvatinib impaired macrophages survival and phenotypical differentiation, which was accompanied by remarkable morphological changes and suppressed cellular metabolic activity. These effects were mediated by myeloid cell-intrinsic mechanisms which are independent of Lenvatinib’s on-target activity. Finally, using specific inhibitors, we argue that dual effects on p38 MAPK and Syk pathways are likely the underlying mechanism of the off-target immunological effects we observed in this study. Collectively, our data show the immunomodulatory properties of Lenvatinib on human monocytes. These insights could be harnessed for the future design of novel treatment strategies involving a combination of Lenvatinib with other immunotherapeutic agents. Full article
(This article belongs to the Special Issue Kinase Inhibitor for Cancer Therapy)
Show Figures

Figure 1

25 pages, 13890 KiB  
Article
Design, Synthesis, Biological Evaluation, and Molecular Dynamics Studies of Novel Lapatinib Derivatives
by Ahmed Elkamhawy, Seohyun Son, Hwa Young Lee, Mahmoud H. El-Maghrabey, Mohamed A. El Hamd, Saud O. Alshammari, Abeer A. Abdelhameed, Qamar A. Alshammari, Ahmed Abdeen, Samah F. Ibrahim, Wael A. Mahdi, Sultan Alshehri, Radwan Alnajjar, Won Jun Choi, Ahmed A. Al-Karmalawy and Kyeong Lee
Pharmaceuticals 2023, 16(1), 43; https://doi.org/10.3390/ph16010043 - 28 Dec 2022
Cited by 13 | Viewed by 5063
Abstract
Co-expression of the epidermal growth factor receptor (EGFR, also known as ErbB1) and human epidermal growth factor receptor 2 (HER2) has been identified as a diagnostic or prognostic sign in various tumors. Despite the fact that lapatinib (EGFR/HER2 dual inhibitor) has shown to [...] Read more.
Co-expression of the epidermal growth factor receptor (EGFR, also known as ErbB1) and human epidermal growth factor receptor 2 (HER2) has been identified as a diagnostic or prognostic sign in various tumors. Despite the fact that lapatinib (EGFR/HER2 dual inhibitor) has shown to be successful, many patients do not respond to it or develop resistance for a variety of reasons that are still unclear. As a result, new approaches and inhibitory small molecules are still needed for EGFR/HER2 inhibition. Herein, novel lapatinib derivatives possessing 4-anilinoquinazoline and imidazole scaffolds (6al) were developed and screened as EGFR/HER2 dual inhibitors. In vitro and in silico investigations revealed that compound 6j has a high affinity for the ATP-binding regions of EGFR and HER2. All of the designed candidates were predicted to not penetrate the BBB, raising the expectation for the absence of CNS side effects. At 10 µM, derivatives possessing 3-chloro-4-(pyridin-2-ylmethoxy)aniline moiety (6il) demonstrated outstanding ranges of percentage inhibition against EGFR (97.65–99.03%) and HER2 (87.16–96.73%). Compound 6j showed nanomolar IC50 values over both kinases (1.8 nM over EGFR and 87.8 nM over HER2). Over EGFR, compound 6j was found to be 50-fold more potent than staurosporine and 6-fold more potent than lapatinib. A kinase selectivity panel of compound 6j showed poor to weak inhibitory activity over CDK2/cyclin A, c-MET, FGFR1, KDR/VEGFR2, and P38a/MAPK14, respectively. Structure–activity relationship (SAR) that were obtained with different substitutions were justified. Additionally, molecular docking and molecular dynamics studies revealed insights into the binding mode of the target compounds. Thus, compound 6j was identified as a highly effective and dual EGFR/HER2 inhibitor worthy of further investigation. Full article
(This article belongs to the Special Issue Enzyme Inhibitors: Potential Therapeutic Approaches)
Show Figures

Figure 1

16 pages, 332 KiB  
Review
Therapeutic Management of Metastatic Clear Cell Renal Cell Carcinoma: A Revolution in Every Decade
by Mathieu Larroquette, Félix Lefort, Luc Heraudet, Jean-Christophe Bernhard, Alain Ravaud, Charlotte Domblides and Marine Gross-Goupil
Cancers 2022, 14(24), 6230; https://doi.org/10.3390/cancers14246230 - 17 Dec 2022
Cited by 9 | Viewed by 2834
Abstract
Clear cell renal cell carcinoma (RCC) oncogenesis is mainly driven by VHL gene inactivation, leading to overexpression of vascular endothelial growth factor (VEGF). The use of tyrosine-kinase inhibitors (TKIs) directed against VEGF and its receptor (VEGFR) revolutionised the management of metastatic renal cancer [...] Read more.
Clear cell renal cell carcinoma (RCC) oncogenesis is mainly driven by VHL gene inactivation, leading to overexpression of vascular endothelial growth factor (VEGF). The use of tyrosine-kinase inhibitors (TKIs) directed against VEGF and its receptor (VEGFR) revolutionised the management of metastatic renal cancer in the 2000s. The more recent development of next-generation TKIs such as cabozantinib or lenvatinib has made it possible to bypass some of the mechanisms of resistance to first-generation anti-VEGFR TKIs. During the decade 2010–2020, the development of immune checkpoint blockade (ICB) therapies revolutionised the management of many solid cancers, including RCC, in first- and subsequent-line settings. Dual ICB or ICB plus anti-VEGFR TKI combinations are now the standard of care for patients with advanced clear cell RCC. To optimise these combination therapies while preserving patient quality of life, escalation and de-escalation strategies are being evaluated in prospective randomised trials, based on patient selection according to their prognosis risk. Finally, new therapeutic approaches, such as targeting hypoxia-inducible factor (HIF) and the development of innovative treatments using antibody-drug conjugates (ADCs), CAR-T cells, or radiopharmaceuticals, are all potential candidates to improve further patient survival. Full article
(This article belongs to the Special Issue Novel Therapeutics for Genitourinary Tumors)
20 pages, 12931 KiB  
Article
Vascular Niche Facilitates Acquired Drug Resistance to c-Met Inhibitor in Originally Sensitive Osteosarcoma Cells
by Weifeng Tang, Yu Zhang, Haixia Zhang and Yan Zhang
Cancers 2022, 14(24), 6201; https://doi.org/10.3390/cancers14246201 - 15 Dec 2022
Cited by 4 | Viewed by 2307
Abstract
Osteosarcoma (OS) is the most common primary bone tumor in children and adolescents characterized by drug resistance and poor prognosis. As one of the key oncogenes, c-Met is recognized as a promising therapeutic target for OS. In this report, we show that c-Met [...] Read more.
Osteosarcoma (OS) is the most common primary bone tumor in children and adolescents characterized by drug resistance and poor prognosis. As one of the key oncogenes, c-Met is recognized as a promising therapeutic target for OS. In this report, we show that c-Met inhibitor PF02341066 specifically killed OS cells with highly phosphorylated c-Met in vitro. However, the inhibitory effect of PF02341066 was abrogated in vivo due to interference from the vascular niche. OS cells adjacent to microvessels or forming vascular mimicry suppressed c-Met expression and phosphorylation. Moreover, VEGFR2 was activated in OS cells and associated with acquired drug resistance. Dual targeting of c-Met and VEGFR2 could effectively shrink the tumor size in a xenograft model. c-Met-targeted therapy combined with VEGFR2 inhibition might be beneficial to achieve an ideal therapeutic effect in OS patients. Together, our results confirm the pivotal role of tumor heterogeneity and the microenvironment in drug response and reveal the molecular mechanism underlying acquired drug resistance to c-Met-targeted therapy. Full article
(This article belongs to the Special Issue Tyrosine Kinase Inhibitors (TKIs) in Cancer Targeted Therapy)
Show Figures

Figure 1

26 pages, 8022 KiB  
Article
Computational Investigation of 1, 3, 4 Oxadiazole Derivatives as Lead Inhibitors of VEGFR 2 in Comparison with EGFR: Density Functional Theory, Molecular Docking and Molecular Dynamics Simulation Studies
by Muhammad Sajjad Bilal, Syeda Abida Ejaz, Seema Zargar, Naveed Akhtar, Tanveer A. Wani, Naheed Riaz, Adullahi Tunde Aborode, Farhan Siddique, Nojood Altwaijry, Hamad M. Alkahtani and Haruna Isiyaku Umar
Biomolecules 2022, 12(11), 1612; https://doi.org/10.3390/biom12111612 - 1 Nov 2022
Cited by 28 | Viewed by 4093
Abstract
Vascular endothelial growth factor (VEGF) is an angiogenic factor involved in tumor growth and metastasis. Gremlin has been proposed as a novel therapeutic pathway for the treatment of renal inflammatory diseases, acting via VEGFR 2 receptor. To date, most FDA-approved tyrosine kinase (TK) [...] Read more.
Vascular endothelial growth factor (VEGF) is an angiogenic factor involved in tumor growth and metastasis. Gremlin has been proposed as a novel therapeutic pathway for the treatment of renal inflammatory diseases, acting via VEGFR 2 receptor. To date, most FDA-approved tyrosine kinase (TK) inhibitors have been reported as dual inhibitors of EGFR and VEGFR 2. The aim of the present study was to find the potent and selective inhibitor of VEGFR 2 specifically for the treatment of renal cancer. Fourteen previously identified anti-inflammatory compounds i.e., 1, 3, 4 oxadiazoles derivatives by our own group were selected for their anti-cancer potential, targeting the tyrosine kinase (TK) domain of VEGFR2 and EGFR. A detailed virtual screening-based study was designed viz density functional theory (DFT) study to find the compounds’ stability and reactivity, molecular docking for estimating binding affinity, SeeSAR analysis and molecular dynamic simulations to confirm protein ligand complex stability and ADMET properties to find the pharmacokinetic profile of all compounds. The DFT results suggested that among all the derivatives, the 7g, 7j, and 7l were chemically reactive and stable derivatives. The optimized structures obtained from the DFTs were further selected for molecular docking, and the results suggested that 7g, 7j and 7l derivatives as the best inhibitors of VEGFR 2 with binding energy values −46.32, −48.89 and −45.01 kJ/mol. The Estimated inhibition constant (IC50) of hit compound 7j (0.009 µM) and simulation studies of its complexes confirms its high potency and best inhibitor of VEGFR2. All the derivatives were also docked with EGFR, where they showed weak binding energies and poor interactions, important compound 7g, 7j and 7i exhibited binding energy of −31.01, −33.23 and −34.19 kJ/mol respectively. Furthermore, the anticancer potential of the derivatives was confirmed by cell viability (MTT) assay using breast cancer and cervical cancer cell lines. At the end, the results of ADMET studies confirmed these derivatives as drug like candidates. Conclusively, the current study suggested substituted oxadiazoles as the potential anticancer compounds which exhibited more selectivity towards VEGFR2 in comparison to EGFR. Therefore, the identified lead molecules can be used for the synthesis of more potent derivatives of VEGFR2, along with extensive in vitro and in vivo experiments, that can be used to treat various cancers, especially renal cancers, and to prevent angiogenesis due to aberrant expression of VEGFR2. Full article
Show Figures

Figure 1

40 pages, 17704 KiB  
Article
In Silico Identification of Promising New Pyrazole Derivative-Based Small Molecules for Modulating CRMP2, C-RAF, CYP17, VEGFR, C-KIT, and HDAC—Application towards Cancer Therapeutics
by Fatima Ezzahra Bennani, Khalid Karrouchi, Latifa Doudach, Mario Scrima, Noor Rahman, Luca Rastrelli, Trina Ekawati Tallei, Christopher E. Rudd, My El Abbes Faouzi and M’hammed Ansar
Curr. Issues Mol. Biol. 2022, 44(11), 5312-5351; https://doi.org/10.3390/cimb44110361 - 31 Oct 2022
Cited by 9 | Viewed by 3373
Abstract
Despite continual efforts being made with multiple clinical studies and deploying cutting-edge diagnostic tools and technologies, the discovery of new cancer therapies remains of severe worldwide concern. Multiple drug resistance has also emerged in several cancer cell types, leaving them unresponsive to the [...] Read more.
Despite continual efforts being made with multiple clinical studies and deploying cutting-edge diagnostic tools and technologies, the discovery of new cancer therapies remains of severe worldwide concern. Multiple drug resistance has also emerged in several cancer cell types, leaving them unresponsive to the many cancer treatments. Such a condition always prompts the development of next-generation cancer therapies that have a better chance of inhibiting selective target macromolecules with less toxicity. Therefore, in the present study, extensive computational approaches were implemented combining molecular docking and dynamic simulation studies for identifying potent pyrazole-based inhibitors or modulators for CRMP2, C-RAF, CYP17, c-KIT, VEGFR, and HDAC proteins. All of these proteins are in some way linked to the development of numerous forms of cancer, including breast, liver, prostate, kidney, and stomach cancers. In order to identify potential compounds, 63 in-house synthesized pyrazole-derivative compounds were docked with each selected protein. In addition, single or multiple standard drug compounds of each protein were also considered for docking analyses and their results used for comparison purposes. Afterward, based on the binding affinity and interaction profile of pyrazole compounds of each protein, potentially strong compounds were filtered out and further subjected to 1000 ns MD simulation analyses. Analyzing parameters such as RMSD, RMSF, RoG and protein–ligand contact maps were derived from trajectories of simulated protein–ligand complexes. All these parameters turned out to be satisfactory and within the acceptable range to support the structural integrity and interaction stability of the protein–ligand complexes in dynamic state. Comprehensive computational analyses suggested that a few identified pyrazole compounds, such as M33, M36, M72, and M76, could be potential inhibitors or modulators for HDAC, C-RAF, CYP72 and VEGFR proteins, respectively. Another pyrazole compound, M74, turned out to be a very promising dual inhibitor/modulator for CRMP2 and c-KIT proteins. However, more extensive study may be required for further optimization of the selected chemical framework of pyrazole derivatives to yield improved inhibitory activity against each studied protein receptor. Full article
(This article belongs to the Special Issue New Sight: Enzymes as Targets for Drug Development)
Show Figures

Figure 1

23 pages, 6799 KiB  
Article
Identification of Novel Cyanopyridones and Pyrido[2,3-d]Pyrimidines as Anticancer Agents with Dual VEGFR-2/HER-2 Inhibitory Action: Synthesis, Biological Evaluation and Molecular Docking Studies
by Tarfah Al-Warhi, Al-Aliaa M. Sallam, Loah R. Hemeda, Mahmoud A. El Hassab, Nada Aljaeed, Ohoud J. Alotaibi, Ahmed S. Doghish, Mina Noshy, Wagdy M. Eldehna and Mona H. Ibrahim
Pharmaceuticals 2022, 15(10), 1262; https://doi.org/10.3390/ph15101262 - 13 Oct 2022
Cited by 66 | Viewed by 4080
Abstract
In the current work, we designed and synthesized three families of non-fused and fused compounds based on cyanopyridone: derivatives of 6-amino-1,2-dihydropyridine-3,5-dicarbonitrile (5a-f) and 3,4,7,8-tetrahydro pyrimidine-6-carbonitrile (6a-b and 7a-e). The newly synthesized compounds’ structure were determined using a variety of [...] Read more.
In the current work, we designed and synthesized three families of non-fused and fused compounds based on cyanopyridone: derivatives of 6-amino-1,2-dihydropyridine-3,5-dicarbonitrile (5a-f) and 3,4,7,8-tetrahydro pyrimidine-6-carbonitrile (6a-b and 7a-e). The newly synthesized compounds’ structure were determined using a variety of techniques, including 1H NMR, 13C NMR, mass spectrum, infrared spectroscopy, and elemental analysis. The developed compounds were tested for the ability to inhibit the growth of breast adenocarcinoma (MCF-7) and hepatic adenocarcinoma (HepG2) cell lines using MTT assay. Some of the synthesized compounds were more effective towards the cancer cell lines than the standard treatment taxol. The best antiproliferative activities were demonstrated by non-fused cyanopyridones 5a and 5e against the MCF-7 cell line (IC50 = 1.77 and 1.39 μM, respectively) and by compounds 6b and 5a against the HepG2 cell line (IC50 = 2.68 and 2.71 μM, respectively). We further explored 5a and 5e, the two most potent compounds against the MCF-7 cell line, for their ability to inhibit VEGFR-2 and HER-2. Finally, docking and molecular dynamics simulations were performed as part of the molecular modeling investigation to elucidate the molecular binding modes of the tested compounds, allowing for a more thorough comprehension of the activity of compounds 5a and 5e. Full article
(This article belongs to the Section Medicinal Chemistry)
Show Figures

Figure 1

12 pages, 1855 KiB  
Review
Management of Immune-Related Adverse Events from Immune-Checkpoint Inhibitors in Advanced or Metastatic Renal Cell Carcinoma
by Katharina Leucht, Nalyan Ali, Susan Foller and Marc-Oliver Grimm
Cancers 2022, 14(18), 4369; https://doi.org/10.3390/cancers14184369 - 8 Sep 2022
Cited by 12 | Viewed by 3137
Abstract
Immune checkpoint inhibitors (ICI) are now, among other cancers, routinely used for the treatment of advanced or metastatic renal cell carcinoma (mRCC). In mRCC various combinations of ICIs and inhibitors of the vascular epidermal growth factor receptor tyrosine kinase (VEGFR-TKIs) as well as [...] Read more.
Immune checkpoint inhibitors (ICI) are now, among other cancers, routinely used for the treatment of advanced or metastatic renal cell carcinoma (mRCC). In mRCC various combinations of ICIs and inhibitors of the vascular epidermal growth factor receptor tyrosine kinase (VEGFR-TKIs) as well as dual checkpoint inhibition (nivolumab + ipilimumab), the latter for patients with intermediate and poor risk according to IMDC only (international metastatic renal cell carcinoma database consortium), are now standard of care in the first line setting. Therefore, a profound understanding of immune-related adverse events (irAE) and the differential diagnosis of adverse reactions caused by other therapeutic agents in combination therapies is of paramount importance. Here we describe prevention, early diagnosis and clinical management of the most relevant irAE derived from ICI treatment focusing on the new VEGFR-TKI/ICI combinations. Full article
(This article belongs to the Special Issue Immune Checkpoint Inhibitors in the Treatment of Renal Cell Carcinoma)
Show Figures

Figure 1

16 pages, 861 KiB  
Review
Metastatic Clear-Cell Renal Cell Carcinoma in the Era of Immune Checkpoint Inhibitors: Therapies and Ongoing Trials
by Tony Zibo Zhuang, Katherine Case, Timothy Anders Olsen, Jacqueline T. Brown, Bradley C. Carthon, Omer Kucuk, Jamie Goldman, Wayne Harris, Mehmet Asim Bilen and Bassel Nazha
Cancers 2022, 14(12), 2867; https://doi.org/10.3390/cancers14122867 - 10 Jun 2022
Cited by 17 | Viewed by 4365
Abstract
Immune checkpoint inhibitors (ICI) are now the bedrock for the treatment of metastatic renal cell carcinoma (RCC). Clear cell RCC (ccRCC) represents the most common subtype of this malignancy. Herein, we explore the therapeutic landscape of ccRCC by discussing the standard of care [...] Read more.
Immune checkpoint inhibitors (ICI) are now the bedrock for the treatment of metastatic renal cell carcinoma (RCC). Clear cell RCC (ccRCC) represents the most common subtype of this malignancy. Herein, we explore the therapeutic landscape of ccRCC by discussing the standard of care whose backbone consists of immune checkpoint inhibitors (ICI) and vascular endothelial growth factor inhibitors (VEGF). For ccRCC, pembrolizumab-axitinib, pembrolizumab-lenvatinib, and avelumab-axitinib or nivolumab-cabozantinib are now FDA-approved frontline options for all risk groups while nivolumab-ipilimumab is reserved for intermediate- and poor-risk groups. Monotherapy with pembrolizumab or nivolumab is a potential option for patients who are unable to take VEGFR-tyrosine kinase inhibitors. While outcomes have improved with the adoption of ICI therapies, many patients develop therapy-resistant disease, creating an unmet need for further investigation. The efficacy of novel therapies as well as novel combinations in the post-ICI era is unclear. This review summarizes the most significant clinical trials involving dual ICI/ICI and ICI/VEGFR therapies, in addition to other selected combination therapies that are likely to inform management in the near future. Full article
(This article belongs to the Special Issue Immune Checkpoint Inhibitors for Genitourinary Cancers)
Show Figures

Figure 1

18 pages, 4059 KiB  
Article
In Vitro Anticancer Activity Screening of Novel Fused Thiophene Derivatives as VEGFR-2/AKT Dual Inhibitors and Apoptosis Inducers
by Rana M. Abdelnaby, Afaf A. El-Malah, Rasha R. FakhrEldeen, Marwa M. Saeed, Rania I. Nadeem, Nancy S. Younis, Hanaa M. Abdel-Rahman and Nehad M. El-Dydamony
Pharmaceuticals 2022, 15(6), 700; https://doi.org/10.3390/ph15060700 - 2 Jun 2022
Cited by 13 | Viewed by 3074
Abstract
Protein kinases are seen as promising targets in controlling cell proliferation and survival in treating cancer where fused thiophene synthon was utilized in many kinase inhibitors approved by the FDA. Accordingly, this work focused on adopting fused thienopyrrole and pyrrolothienopyrimidine scaffolds in preparing [...] Read more.
Protein kinases are seen as promising targets in controlling cell proliferation and survival in treating cancer where fused thiophene synthon was utilized in many kinase inhibitors approved by the FDA. Accordingly, this work focused on adopting fused thienopyrrole and pyrrolothienopyrimidine scaffolds in preparing new inhibitors, which were evaluated as antiproliferative agents in the HepG2 and PC-3 cell lines. The compounds 3b (IC50 = 3.105 and 2.15 μM) and 4c (IC50 = 3.023 and 3.12 μM) were the most promising candidates on both cells with good selective toxicity-sparing normal cells. A further mechanistic evaluation revealed promising kinase inhibitory activity, where 4c inhibited VEGFR-2 and AKT at IC50 = 0.075 and 4.60 μM, respectively, while 3b showed IC50 = 0.126 and 6.96 μM, respectively. Moreover, they resulted in S phase cell cycle arrest with subsequent caspase-3-induced apoptosis. Lastly, docking studies evaluated the binding patterns of these active derivatives and demonstrated a similar fitting pattern to the reference ligands inside the active sites of both VEGFR-2 and AKT (allosteric pocket) crystal structures. To conclude, these thiophene derivatives represent promising antiproliferative leads inhibiting both VEGFR-2 and AKT and inducing apoptosis in liver cell carcinoma. Full article
(This article belongs to the Section Medicinal Chemistry)
Show Figures

Figure 1

28 pages, 12091 KiB  
Article
Enhancing the Anticancer Potential of Targeting Tumor-Associated Metalloenzymes via VEGFR Inhibition by New Triazolo[4,3-a]pyrimidinone Acyclo C-Nucleosides Multitarget Agents
by Mohamed Nabil Abd Al Moaty, El Sayed Helmy El Ashry, Laila Fathy Awad, Nihal Ahmed Ibrahim, Marwa Muhammad Abu-Serie, Assem Barakat, Mezna Saleh Altowyan and Mohamed Teleb
Molecules 2022, 27(8), 2422; https://doi.org/10.3390/molecules27082422 - 8 Apr 2022
Cited by 6 | Viewed by 3034
Abstract
The role of metalloenzymes in tumor progression had broadened their application in cancer therapy. Of these, MMPs and CAs are validated druggable targets that share some pivotal signaling pathways. The majority of MMPs or CAs inhibitors are designed as single-target agents. Despite their [...] Read more.
The role of metalloenzymes in tumor progression had broadened their application in cancer therapy. Of these, MMPs and CAs are validated druggable targets that share some pivotal signaling pathways. The majority of MMPs or CAs inhibitors are designed as single-target agents. Despite their transient efficacy, these agents are often susceptible to resistance. This set the stage to introduce dual inhibitors of correlated MMPs and CAs. The next step is expected to target the common vital signaling nodes as well. In this regard, VEGFR-2 is central to various tumorigenesis events involving both families, especially MMP-2 and CA II. Herein, we report simultaneous inhibition of MMP-2, CA II, and VEGFR-2 via rationally designed hybrid 1,2,4-triazolo[4,3-a]pyrimidinone acyclo C-nucleosides. The promising derivatives were nanomolar inhibitors of VEGFR-2 (8; IC50 = 5.89 nM, 9; IC50 = 10.52 nM) and MMP-2 (8; IC50 = 17.44 nM, 9; IC50 = 30.93 nM) and submicromolar inhibitors of CA II (8; IC50 = 0.21 µM, 9; IC50 = 0.36 µM). Docking studies predicted their binding modes into the enzyme active sites and the structural determinants of activity regarding substitution and regioselectivity. MTT assay demonstrated that both compounds were 12 folds safer than doxorubicin with superior anticancer activities against three human cancers recording single-digit nanomolar IC50, thus echoing their enzymatic activities. Up to our knowledge, this study introduces the first in class triazolopyrimidinone acyclo C-nucleosides VEGFR-2/MMP-2/CA II inhibitors that deserve further investigation. Full article
(This article belongs to the Section Medicinal Chemistry)
Show Figures

Graphical abstract

Back to TopTop