Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (242)

Search Parameters:
Keywords = druggable genes

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 6395 KiB  
Article
Investigation of Novel Therapeutic Targets for Rheumatoid Arthritis Through Human Plasma Proteome
by Hong Wang, Chengyi Huang, Kangkang Huang, Tingkui Wu and Hao Liu
Biomedicines 2025, 13(8), 1841; https://doi.org/10.3390/biomedicines13081841 - 29 Jul 2025
Viewed by 361
Abstract
Background: Rheumatoid arthritis (RA) is an autoimmune disease that remains incurable. An increasing number of proteomic genome-wide association studies (GWASs) are emerging, offering immense potential for identifying novel therapeutic targets for diseases. This study aims to identify potential therapeutic targets for RA [...] Read more.
Background: Rheumatoid arthritis (RA) is an autoimmune disease that remains incurable. An increasing number of proteomic genome-wide association studies (GWASs) are emerging, offering immense potential for identifying novel therapeutic targets for diseases. This study aims to identify potential therapeutic targets for RA based on human plasma proteome. Methods: Protein quantitative trait loci were extracted and integrated from eight large-scale proteomic GWASs. Proteome-wide Mendelian randomization (Pro-MR) was performed to prioritize proteins causally associated with RA. Further validation of the reliability and stratification of prioritized proteins was performed using MR meta-analysis, colocalization, and transcriptome-wide summary-data-based MR. Subsequently, prioritized proteins were characterized through protein–protein interaction and enrichment analyses, pleiotropy assessment, genetically engineered mouse models, cell-type-specific expression analysis, and druggability evaluation. Phenotypic expansion analyses were also conducted to explore the effects of the prioritized proteins on phenotypes such as endocrine disorders, cardiovascular diseases, and other immune-related diseases. Results: Pro-MR prioritized 32 unique proteins associated with RA risk. After validation, prioritized proteins were stratified into four reliability tiers. Prioritized proteins showed interactions with established RA drug targets and were enriched in an immune-related functional profile. Four trans-associated proteins exhibited vertical or horizontal pleiotropy with specific genes or proteins. Genetically engineered mouse models for 18 prioritized protein-coding genes displayed abnormal immune phenotypes. Single-cell RNA sequencing data were used to validate the enriched expression of several prioritized proteins in specific synovial cell types. Nine prioritized proteins were identified as targets of existing drugs in clinical trials or were already approved. Further phenome-wide MR and mediation analyses revealed the effects and potential mediating roles of some prioritized proteins on other phenotypes. Conclusions: This study identified 32 plasma proteins as potential therapeutic targets for RA, expanding the prospects for drug discovery and deepening insights into RA pathogenesis. Full article
(This article belongs to the Section Gene and Cell Therapy)
Show Figures

Figure 1

18 pages, 20761 KiB  
Article
Integrated Meta-Analysis Identifies Keratin Family Genes and Associated Genes as Key Biomarkers and Therapeutic Targets in Metastatic Cutaneous Melanoma
by Sumaila Abubakari, Yeşim Aktürk Dizman and Filiz Karaman
Diagnostics 2025, 15(14), 1770; https://doi.org/10.3390/diagnostics15141770 - 13 Jul 2025
Viewed by 464
Abstract
Background/Objectives: Cutaneous melanoma is one of the aggressive forms of skin cancer originating from melanocytes. The high incidence of melanoma metastasis continues to rise, partly due to the complex nature of the molecular mechanisms driving its progression. While melanomas generally arise from melanocytes, [...] Read more.
Background/Objectives: Cutaneous melanoma is one of the aggressive forms of skin cancer originating from melanocytes. The high incidence of melanoma metastasis continues to rise, partly due to the complex nature of the molecular mechanisms driving its progression. While melanomas generally arise from melanocytes, we investigated whether aberrant keratinocyte differentiation pathways—like cornified envelope formation—discriminate primary melanoma from metastatic melanoma, revealing novel biomarkers in progression. Methods: In the present study, we retrieved four datasets (GSE15605, GSE46517, GSE8401, and GSE7553) associated with primary and metastatic melanoma tissues and identified differentially expressed genes (DEGs). Thereafter, an integrated meta-analysis and functional enrichment analysis of the DEGs were performed to evaluate the molecular mechanisms involved in melanoma metastasis, such as immune cell deconvolution and protein-protein interaction (PPI) network construction. Hub genes were identified based on four topological methods, including ‘Betweenness’, ‘MCC’, ‘Degree’, and ‘Bottleneck’. We validated the findings using the TCGA-SKCM cohort. Drug-gene interactions were evaluated using the DGIdb, whereas structural druggability was assessed using the ProteinPlus and AlphaFold databases. Results: We identified a total of eleven hub genes associated with melanoma progression. These included members of the keratin gene family (e.g., KRT5, KRT6A, KRT6B, etc.). Except for the gene CDH1, all the hub genes were downregulated in metastatic melanoma tissues. From a prognostic perspective, these hub genes were associated with poor prognosis (i.e., unfavorable). Using the Human Protein Atlas (HPA), immunohistochemistry evaluation revealed mostly undetected levels in metastatic melanoma. Additionally, the cornified envelope formation was the most enriched pathway, with a gene ratio of 17/33. The tumor microenvironment (TME) of metastatic melanomas was predominantly enriched in NK cell–associated signatures. Finally, several hub genes demonstrated favorable druggable potential for immunotherapy. Conclusions: Through integrated meta-analysis, this study identifies transcriptional, immunological, and structural pathways to melanoma metastasis and highlights keratin family genes as promising biomarkers for therapeutic targeting. Full article
(This article belongs to the Section Pathology and Molecular Diagnostics)
Show Figures

Figure 1

17 pages, 9177 KiB  
Article
Identification of Potential Therapeutic Targets for Coronary Atherosclerosis from an Inflammatory Perspective Through Integrated Proteomics and Single-Cell Omics
by Hesong Wang, Fengzhe Xie, Meng Wang, Jianxin Ji, Yongzhen Song, Yanyan Dai, Liuying Wang, Zheng Kang and Lei Cao
Int. J. Mol. Sci. 2025, 26(13), 6201; https://doi.org/10.3390/ijms26136201 - 27 Jun 2025
Viewed by 570
Abstract
Coronary atherosclerosis (CAS) is a major cause of cardiovascular morbidity worldwide. The understanding of atherosclerosis has shifted from a cholesterol deposition disorder to an inflammation-driven disease, with anti-inflammatory therapies demonstrating clinical efficacy. Identifying inflammatory protein targets is crucial for developing targeted therapies. A [...] Read more.
Coronary atherosclerosis (CAS) is a major cause of cardiovascular morbidity worldwide. The understanding of atherosclerosis has shifted from a cholesterol deposition disorder to an inflammation-driven disease, with anti-inflammatory therapies demonstrating clinical efficacy. Identifying inflammatory protein targets is crucial for developing targeted therapies. A proteome-wide Mendelian randomization (MR) analysis was performed to explore therapeutic targets for CAS by integrating inflammatory proteomics data from the UK-PPP (54,219 participants, 2923 proteins) and Iceland cohorts (35,559 participants, 4907 proteins) as exposures and outcome data for CAS, atherosclerosis, and carotid atherosclerosis from FinnGen. Replication MR employed meta-analysis of six proteomics datasets and CAS data from three sources, while the impact of the identified proteins on four cardiovascular diseases was also investigated. Colocalization analysis (PPH4 > 0.9), reverse MR, and SMR were used to ensure robust causal inference. Proteome-wide MR identified 11 proteins significantly associated with CAS (p < 3.52 × 10−5), with all but CD4 linked to cardiovascular disease risk. Notably, colocalization confirmed the causal roles of PCSK9, IL6R, CELSR2, FN1, and SPARCL1 in CAS, and single-cell RNA-seq analysis revealed that five genes (TGFB1, SPARCL1, IL6R, FN1, and CELSR2) were exclusively expressed in smooth muscle cells of either coronary plaques or healthy vasculature. Druggability assessments were subsequently conducted for these targets. The three most promising targets (CELSR2, FN1, and SPARCL1), along with the other identified proteins and their biological functions, exhibit robust causal associations with CAS. FN1 and TGFB1 have the potential for drug repurposing in atherosclerosis treatment. Full article
(This article belongs to the Special Issue Molecular Pharmacology of Cardiovascular Disease, 2nd Edition)
Show Figures

Figure 1

33 pages, 7432 KiB  
Article
From Brain to Blood: Uncovering Potential Therapeutical Targets and Biomarkers for Huntington’s Disease Using an Integrative RNA-Seq Analytical Platform (BDASeq®)
by João Rafael Dias Pinto, Benedito Faustinoni Neto, Luciana Munhoz, Irina Kerkis and Rodrigo Pinheiro Araldi
Cells 2025, 14(13), 976; https://doi.org/10.3390/cells14130976 - 25 Jun 2025
Viewed by 761
Abstract
Background: Huntington’s Disease (HD) remains without disease-modifying treatments, with existing therapies primarily targeting chorea symptoms and offering limited benefits. This study aims to identify druggable genes and potential biomarkers for HD, focusing on using RNA-Seq analysis to uncover molecular targets and improve clinical [...] Read more.
Background: Huntington’s Disease (HD) remains without disease-modifying treatments, with existing therapies primarily targeting chorea symptoms and offering limited benefits. This study aims to identify druggable genes and potential biomarkers for HD, focusing on using RNA-Seq analysis to uncover molecular targets and improve clinical trial outcomes. Methods: We reanalyzed transcriptomic data from six independent studies comparing cortex samples of HD patients and healthy controls. The Propensity Score Matching (PSM) algorithm was applied to match cases and controls by age. Differential expression analysis (DEA) coupled with machine learning algorithms were coupled to identify differentially expressed genes (DEGs) and potential biomarkers in HD. Results: Our analysis identified 5834 DEGs, including 394 putative druggable genes involved in processes like neuroinflammation, metal ion dysregulation, and blood–brain barrier dysfunction. These genes’ expression levels correlated with CAG repeat length, disease onset, and progression. We also identified FTH1 as a promising biomarker for HD, with its expression downregulated in the prefrontal cortex and upregulated in peripheral blood in a CAG repeat-dependent manner. Conclusions: This study highlights the potential of FTH1 as both a biomarker and a therapeutic target for HD. Advanced bioinformatics approaches like RNA-Seq and PSM are crucial for uncovering novel targets in HD, paving the way for better therapeutic interventions and improved clinical trial outcomes. Further validation of FTH1′s role is needed to confirm its utility in HD. Full article
(This article belongs to the Special Issue Role of Gene Regulation in Neurological Disorders)
Show Figures

Figure 1

28 pages, 1744 KiB  
Review
HER2 in Non-Small Cell Lung Cancer (NSCLC): Evolution of the Therapeutic Landscape and Emerging Drugs—A Long Way to the Top
by Pamela Trillo Aliaga, Gianluca Spitaleri, Ilaria Attili, Carla Corvaja, Elena Battaiotto, Panagiotis Agisilaos Angelopoulos, Ester Del Signore, Antonio Passaro and Filippo de Marinis
Molecules 2025, 30(12), 2645; https://doi.org/10.3390/molecules30122645 - 18 Jun 2025
Viewed by 1469
Abstract
Non-small-cell lung cancer (NSCLC) can harbour different HER2 alterations: HER2 protein overexpression (2–35%), HER2 gene amplification (2–20%), and gene mutations (1–4%). The discovery of the HER2 gene in the 1980s raised great expectations for the treatment of several tumours. However, it was only [...] Read more.
Non-small-cell lung cancer (NSCLC) can harbour different HER2 alterations: HER2 protein overexpression (2–35%), HER2 gene amplification (2–20%), and gene mutations (1–4%). The discovery of the HER2 gene in the 1980s raised great expectations for the treatment of several tumours. However, it was only in 2004 that HER2 mutations were identified, and they currently represent a key druggable target in NSCLC. Despite numerous strengths, there is only one FDA/EMA-approved targeted therapy, an antibody-drug conjugate (ADC) called trastuzumab deruxtecan for pretreated patients with HER2 mutant NSCLC. In the first-line treatment, the standard of care (SoC) remains chemotherapy with or without immunotherapy. In the past, pan-HER tyrosine kinase inhibitors (TKIs) were extensively studied with poor results. But, two newly developed HER2-specific TKIs with low EGFR WT inhibition (BAY2927088 and zongertinib) reported encouraging results and received the breakthrough therapy designation from the FDA. Ongoing clinical trials are investigating new agents. This review focuses on HER2 alterations. Additionally, the anti-HER2 therapies explored so far will be discussed in detail, including the following: HER2 inhibitors (pan-inhibitors and selective inhibitors), monoclonal antibodies (mAbs), and ADCs. A section of this paper is dedicated to the role of immunotherapy in HER2-altered NSCLC. The last section of this paper focuses on the drugs under development and their challenges. Full article
(This article belongs to the Special Issue New Insights into Kinase Inhibitors II)
Show Figures

Figure 1

18 pages, 2548 KiB  
Article
Integrative Analysis of Plasma Proteomics and Transcriptomics Reveals Potential Therapeutic Targets for Psoriasis
by Hesong Wang, Chenguang Wang, Ruihao Qin, Jia He, Xuan Zhang, Chenjing Ma, Shi Li, Lijun Fan, Liuying Wang and Lei Cao
Biomedicines 2025, 13(6), 1380; https://doi.org/10.3390/biomedicines13061380 - 4 Jun 2025
Viewed by 754
Abstract
Background Psoriasis (PsO): is an immune-mediated inflammatory disease that imposes a significant burden on patients. Many patients experience relapse or inadequate responses, and PsO subtypes also lack effective therapies, highlighting the need for new therapeutic targets. Methods: We performed a proteome-wide Mendelian [...] Read more.
Background Psoriasis (PsO): is an immune-mediated inflammatory disease that imposes a significant burden on patients. Many patients experience relapse or inadequate responses, and PsO subtypes also lack effective therapies, highlighting the need for new therapeutic targets. Methods: We performed a proteome-wide Mendelian randomization (MR) to explore potential therapeutic targets for PsO. Protein quantitative trait loci (pQTLs) data were obtained from the Pharma Proteomics Project (54,219 UK Biobank participants, 2923 proteins), and PsO phenotype and subtype data were sourced from FinnGen (10,312 cases; 397,564 controls) for discovery. Replication MR utilized integrated protein data (Iceland and Norfolk) and phenotype data from multiple databases (UK Biobank and GWAS Catalog). Reverse MR and colocalization were used to support causal relationships. Single-cell RNA-seq analysis revealed distinct expression patterns of protein-coding genes across different cell types in PsO biopsy samples and normal skin tissues. Protein-protein interactions (PPI) and molecular docking were used to evaluate druggability. Results: MR analysis identified 13 proteins significantly associated with PsO risk (p < 2.56×105), including 10 proteins associated with PsO subtypes. Decreased levels of eight proteins (IFNLR1, APOF, TDRKH, DDR1, HLA-E, LTA, MOG, and ICAM3) and increased levels of five proteins (IFNGR2, HCG22, IL12B, BTN3A2, and TRIM40) showed protective effects against PsO progression. Robust colocalization (PPH4 > 0.9) identified IFNLR1, IFNGR2, APOF, and TDRKH as top candidates. Single-cell RNA sequencing analysis revealed that IFNLR1, IFNGR2, LTA, TDRKH, and DDR1 were specifically expressed in T cells of psoriatic biopsy specimens compared to healthy controls. Molecular docking indicated the druggability of IFNLR1 and IFNGR2. Conclusions: We identified several potential therapeutic targets for PsO, with IFNLR1, IFNGR2, APOF, and TDRKH emerging as promising candidates, particularly IFNLR1 and IFNGR2, which are associated with the IFN family. These findings may provide new perspectives on PsO therapy and pathogenesis. Full article
(This article belongs to the Section Molecular and Translational Medicine)
Show Figures

Figure 1

13 pages, 251 KiB  
Review
Perioperative Strategies in Resectable Non-Squamous Non-Small Cell Lung Cancer with EGFR Mutations and ALK Rearrangement
by Francesco Petrella, Andrea Cara, Enrico Mario Cassina, Sara Degiovanni, Lidia Libretti, Sara Lo Torto, Emanuele Pirondini, Federico Raveglia, Francesca Spinelli, Antonio Tuoro and Stefania Rizzo
Cancers 2025, 17(11), 1844; https://doi.org/10.3390/cancers17111844 - 31 May 2025
Viewed by 740
Abstract
Lung cancer is the leading cause of cancer-related death worldwide, ranking first among men and second among women for both incidence and mortality. Surgery remains the primary treatment for early-stage, resectable non-small cell lung cancer (NSCLC), encompassing stages I and selected cases of [...] Read more.
Lung cancer is the leading cause of cancer-related death worldwide, ranking first among men and second among women for both incidence and mortality. Surgery remains the primary treatment for early-stage, resectable non-small cell lung cancer (NSCLC), encompassing stages I and selected cases of stage IIIB. For patients with stage II to III disease, as well as some stage IB tumors, neoadjuvant or adjuvant systemic therapies are recommended. It is well recognized that specific driver gene mutations play a critical role in tumor progression and aggressiveness, and patients with these genetic alterations may benefit from targeted treatment approaches. These alterations are referred to as “druggable”, “targetable”, or “actionable”, representing specific targets for personalized treatments. Tyrosine kinase inhibitors (TKIs) are now the preferred first-line treatment for patients harboring mutations in EGFR, ALK, ROS1, and BRAF. Additionally, targeted therapies exist for patients with alterations in RET, ERBB2, KRAS, MET, and NTRK, either for those who have received prior treatments or as part of ongoing clinical trials. The success of targeted therapies is reshaping treatment approaches for NSCLC with targetable driver gene alterations, both in early-stage and locally advanced settings. This review focuses on current therapeutic strategies that combine targeted therapies with surgical resection in patients with resectable non-small cell lung cancer (NSCLC) harboring actionable driver gene alterations. Full article
19 pages, 2322 KiB  
Article
A Cross-Tissue Transcriptome-Wide Association Study Reveals Novel Susceptibility Genes for Diabetic Kidney Disease in the FinnGen Cohort
by Menghan Liu, Zehua Li, Yao Lu, Pingping Sun, Ying Chen and Li Yang
Biomedicines 2025, 13(5), 1231; https://doi.org/10.3390/biomedicines13051231 - 19 May 2025
Viewed by 765
Abstract
Background/Objectives: Diabetic kidney disease (DKD) is a common diabetic complication, driven by a multifactorial pathogenesis that includes various genetic components. However, the precise causative genes and their underlying biological pathways remain poorly understood. Methods: We performed a cross-tissue transcriptome-wide association study [...] Read more.
Background/Objectives: Diabetic kidney disease (DKD) is a common diabetic complication, driven by a multifactorial pathogenesis that includes various genetic components. However, the precise causative genes and their underlying biological pathways remain poorly understood. Methods: We performed a cross-tissue transcriptome-wide association study (TWAS) of DKD using expression quantitative trait loci (eQTL) data from 49 tissues in the Genotype—Tissue Expression (GTEx) version 8 (v8) resource. Five complementary analytical frameworks—sparse canonical correlation analysis (sCCA), functional summary-based imputation (FUSION), fine-mapping of causal gene sets (FOCUS), summary-data-based Mendelian randomization (SMR), and multi-marker analysis of genomic annotation (MAGMA)—were integrated to nominate candidate genes. Causal inference was refined using Mendelian randomization (MR), and biological significance was evaluated through pathway enrichment, protein interaction networks, and druggability profiling. Results: We identified 23 candidate genes associated with DKD risk, of which 13 were supported by MR analysis. Among these, 10 represent previously unreported susceptibility genes. Notably, four genes—HLA-DRB1, HLA-DRB5, NOTCH4, and CYP21A2—encode potentially druggable proteins, with HLA-DRB5 and CYP21A2 both qualifying as novel susceptibility genes and therapeutic targets. These genes converge on immune modulation, steroid biosynthesis, DNA repair, and transcriptional regulation—processes central to DKD pathogenesis. Conclusions: Our study represents the first systematic cross-tissue TWAS of DKD, revealing a prioritized set of genetically and functionally supported susceptibility genes. The identification of druggable targets among these genes provides critical insight into the mechanistic underpinnings of DKD and highlights their potential for future therapeutic development. These findings enhance our understanding of DKD pathophysiology and offer a foundation for precision medicine strategies in nephrology. Full article
(This article belongs to the Section Endocrinology and Metabolism Research)
Show Figures

Figure 1

33 pages, 16266 KiB  
Article
Integrated Bioinformatics Analysis and Cellular Experimental Validation Identify Lipoprotein Lipase Gene as a Novel Biomarker for Tumorigenesis and Prognosis in Lung Adenocarcinoma
by Wanwan He, Meilian Wei, Yan Huang, Junsen Qin, Meng Liu, Na Liu, Yanli He, Chuanbing Chen, Yali Huang, Heng Yin and Ren Zhang
Biology 2025, 14(5), 566; https://doi.org/10.3390/biology14050566 - 19 May 2025
Viewed by 753
Abstract
Lung adenocarcinoma (LUAD) is one of the leading causes of death worldwide, and thus, more biomarker and therapeutic targets need to be explored. Herein, we aimed to explore new biomarkers of LUAD by integrating bioinformatics analysis with cell experiments. We firstly identified 266 [...] Read more.
Lung adenocarcinoma (LUAD) is one of the leading causes of death worldwide, and thus, more biomarker and therapeutic targets need to be explored. Herein, we aimed to explore new biomarkers of LUAD by integrating bioinformatics analysis with cell experiments. We firstly identified 266 druggable genes that were significantly differentially expressed between LUAD tissues and adjacent normal lung tissues. Among these genes, SMR analysis with p-value correction suggested that declining lipoprotein lipase (LPL) levels may be causally associated with an elevated risk of LUAD, which was corroborated by co-localization analysis. Analyses of clinical data showed that LPL in lung cancer tissues has considerable diagnostic value for LUAD, and elevated LPL levels were positively associated with improved patient survival outcomes. Cell experiments with an LPL activator proved these findings; the activator inhibited the proliferation and migration of lung cancer cells. Next, we found that LPL promoted the infiltration of immune cells such as DCs, IDCs, and macrophages in LUAD by mononuclear sequencing analysis and TIMER2.0. Meanwhile, patients with low levels of LPL expression demonstrated superior immunotherapeutic responses to anti-PD-1 therapy. We conclude that LPL acts as a diagnostic and prognostic marker for LUAD. Full article
(This article belongs to the Special Issue Disease Biomarker Discovery and Validation)
Show Figures

Figure 1

17 pages, 2313 KiB  
Article
Mapping Inherited Genetic Variation with Opposite Effects on Autoimmune Disease and Four Cancer Types Identifies Candidate Drug Targets Associated with the Anti-Tumor Immune Response
by Junyu Chen, Michael P. Epstein, Joellen M. Schildkraut and Siddhartha P. Kar
Genes 2025, 16(5), 575; https://doi.org/10.3390/genes16050575 - 14 May 2025
Viewed by 907
Abstract
Background: Germline alleles near genes encoding certain immune checkpoints (CTLA4, CD200) are associated with autoimmune/autoinflammatory disease and cancer, but in opposite ways. This motivates a systematic search for additional germline alleles with this pattern with the aim of identifying [...] Read more.
Background: Germline alleles near genes encoding certain immune checkpoints (CTLA4, CD200) are associated with autoimmune/autoinflammatory disease and cancer, but in opposite ways. This motivates a systematic search for additional germline alleles with this pattern with the aim of identifying potential cancer immunotherapeutic targets using human genetics. Methods: Pairwise fixed effect cross-disorder meta-analyses combining genome-wide association studies (GWAS) for breast, prostate, ovarian and endometrial cancers (240,540 cases/317,000 controls) and seven autoimmune/autoinflammatory diseases (112,631 cases/895,386 controls) coupled with in silico follow-up. Results: Meta-analyses followed by linkage disequilibrium clumping identified 312 unique, independent lead variants with p < 5 × 10−8 associated with at least one of the cancer types at p < 10−3 and one of the autoimmune/autoinflammatory diseases at p < 10−3. At each lead variant, the allele that conferred autoimmune/autoinflammatory disease risk was protective for cancer. Mapping led variants to nearest genes as putative functional targets and focusing on immune-related genes implicated 32 genes. Tumor bulk RNA-Seq data highlighted that the tumor expression of 5/32 genes (IRF1, IKZF1, SPI1, SH2B3, LAT) was each strongly correlated (Spearman’s ρ > 0.5) with at least one intra-tumor T/myeloid cell infiltration marker (CD4, CD8A, CD11B, CD45) in every one of the cancer types. Tumor single-cell RNA-Seq data from all cancer types showed that the five genes were more likely to be expressed in intra-tumor immune versus malignant cells. The five lead SNPs corresponding to these genes were linked to them via the expression of quantitative trait locus mechanisms and at least one additional line of functional evidence. Proteins encoded by the genes were predicted to be druggable. Conclusions: We provide population-scale germline genetic and functional genomic evidence to support further evaluation of the proteins encoded by IRF1, IKZF1, SPI1, SH2B3 and LAT as possible targets for cancer immunotherapy. Full article
(This article belongs to the Special Issue Genetics of Cancer Immunology)
Show Figures

Figure 1

22 pages, 8027 KiB  
Article
Natural Killer Cell Activation Signature Identifies Cyclin B1/CDK1 as a Druggable Target to Overcome Natural Killer Cell Dysfunction and Tumor Invasiveness in Melanoma
by Linbin Chen, Wanqian Liao, Jing Huang, Qiuyue Ding, Junwan Wu, Qiong Zhang, Ya Ding, Dandan Li, Jingjing Li, Xizhi Wen and Xiaoshi Zhang
Pharmaceuticals 2025, 18(5), 666; https://doi.org/10.3390/ph18050666 - 30 Apr 2025
Viewed by 631
Abstract
Background/Objectives: Natural killer (NK) cells play a crucial role in immune surveillance against melanoma, yet they frequently exhibit dysfunction in the tumor microenvironment. This study aims to establish an NK cell activation-related prognostic signature and identify potential druggable targets to overcome NK cell [...] Read more.
Background/Objectives: Natural killer (NK) cells play a crucial role in immune surveillance against melanoma, yet they frequently exhibit dysfunction in the tumor microenvironment. This study aims to establish an NK cell activation-related prognostic signature and identify potential druggable targets to overcome NK cell dysfunction. Methods: A prognostic signature was developed using the TCGA-SKCM cohort and validated across independent datasets. NK cell activation and cytotoxicity were evaluated in melanoma-NK-92MI co-culture systems via flow cytometry. Mechanistic studies employed Western blotting, co-immunoprecipitation, ELISA, and qRT-PCR. Single-cell RNA-seq data were used to analyze cell–cell communication. Results: A four-gene NK cell activation signature was identified and validated for prognostic significance across five independent melanoma datasets. Among the identified genes, cyclin B1 (CCNB1) emerged as a novel therapeutic target for overcoming NK cell resistance. In vivo, pharmacological inhibition of the CCNB1/Cyclin-dependent kinase 1 (CDK1) complex with RO-3306 significantly suppressed melanoma growth by enhancing NK cell infiltration and IFN-γ production. In vitro, CCNB1 knockdown in melanoma cells augmented NK-92MI activation, as evidenced by increased expression of CD69, CD107a, IFN-γ, and NKG2D, thereby improving NK cell-mediated cytotoxicity. Mechanistically, in melanoma cells, the CCNB1/CDK1 complex phosphorylates STAT3, activating the IL-6/STAT3 positive feedback loop, which upregulates PD-L1 and enables resistance to NK cell-mediated cytotoxicity. Beyond its role in immune evasion, CCNB1 also promoted melanoma invasiveness by inducing epithelial–mesenchymal transition (EMT) through the TGF-β-SMAD2/3 signaling. Conclusions: This study establishes CCNB1/CDK1 as a novel immunotherapeutic target and uncovers a new role for CDK1 inhibitors in enhancing NK cell function and suppressing melanoma progression. Full article
(This article belongs to the Topic Kinases in Cancer and Other Diseases, 2nd Edition)
Show Figures

Figure 1

18 pages, 7762 KiB  
Article
Identification of Therapeutic Targets for Hyperuricemia: Systematic Genome-Wide Mendelian Randomization and Colocalization Analysis
by Na Chen, Leilei Gong, Li Zhang, Yali Li, Yunya Bai, Dan Gao and Lan Zhang
Biomedicines 2025, 13(5), 1022; https://doi.org/10.3390/biomedicines13051022 - 23 Apr 2025
Viewed by 662
Abstract
Background: At present, there are still limitations and challenges in the treatment of hyperuricemia (HUA). Mendelian randomization (MR) has been widely used to identify new therapeutic targets. Therefore, we conducted a systematic druggable genome-wide MR to explore potential therapeutic targets and drugs [...] Read more.
Background: At present, there are still limitations and challenges in the treatment of hyperuricemia (HUA). Mendelian randomization (MR) has been widely used to identify new therapeutic targets. Therefore, we conducted a systematic druggable genome-wide MR to explore potential therapeutic targets and drugs for HUA. Methods: We integrated druggable genome data; blood, kidney, and intestinal expression quantitative trait loci (eQTLs); and HUA-associated genome-wide association study (GWAS) data to analyze the potential causal relationships between drug target genes and HUA using the MR method. Summary-data-based MR (SMR) analysis and Bayesian colocalization were used to assess causality. In addition, we conducted phenome-wide association studies, protein network construction, and enrichment analysis of significant targets to evaluate their biological functions and potential side effects. Finally, we performed drug prediction and molecular docking to identify potential drugs targeting these genes for HUA treatment. Results: Overall, we identified 22 druggable genes significantly associated with HUA through MR, SMR, and colocalization analyses. Among them, two prior druggable genes (ADORA2B and NDUFC2) reached statistically significant levels in at least two tissues in the blood, kidney, and intestine. Further results from phenome-wide studies revealed that there were no potential side effects of ADORA2B or NDUFC2. Moreover, we screened 15 potential drugs targeting the 22 druggable genes that could serve as candidates for HUA drug development. Conclusions: This study provides genetic evidence supporting the potential benefits of targeting 22 druggable genes for HUA treatment, offering new insights into the development of targeted drugs for HUA. Full article
(This article belongs to the Section Drug Discovery, Development and Delivery)
Show Figures

Figure 1

28 pages, 39795 KiB  
Article
Therapeutic Target Discovery for Multiple Myeloma: Identifying Druggable Genes via Mendelian Randomization
by Shijun Jiang, Fengjuan Fan, Qun Li, Liping Zuo, Aoshuang Xu and Chunyan Sun
Biomedicines 2025, 13(4), 885; https://doi.org/10.3390/biomedicines13040885 - 5 Apr 2025
Viewed by 780
Abstract
Background: Multiple myeloma (MM) is a hematological malignancy originating from the plasma cells present in the bone marrow. Despite significant therapeutic advancements, relapse and drug resistance remain major clinical challenges, highlighting the urgent need for novel therapeutic targets. Methods: To identify [...] Read more.
Background: Multiple myeloma (MM) is a hematological malignancy originating from the plasma cells present in the bone marrow. Despite significant therapeutic advancements, relapse and drug resistance remain major clinical challenges, highlighting the urgent need for novel therapeutic targets. Methods: To identify potential druggable genes associated with MM, we performed Mendelian randomization (MR) analysis. Causal candidates were further validated using a single-tissue transcriptome-wide association study (TWAS), and colocalization analysis was conducted to assess shared genetic signals between gene expression and disease risk. Potential off-target effects were assessed through an MR phenome-wide association study (MR-PheWAS). Additionally, molecular docking and functional assays were used to evaluate candidate drug efficacy. Results: The MR analysis identified nine druggable genes (FDR < 0.05), among which Orosomucoid 1 (ORM1) and Oviductal Glycoprotein 1 (OVGP1) were supported by both TWAS and colocalization evidence (PPH4 > 0.75). Experimental validation demonstrated the significant downregulation of ORM1 and OVGP1 in MM cells (p < 0.05). Pregnenolone and irinotecan, identified as agonists of ORM1 and OVGP1, respectively, significantly inhibited MM cell viability, while upregulating their expression (p < 0.05). Conclusions: Our study highlights ORM1 and OVGP1 as novel therapeutic targets for MM. The efficacy of pregnenolone and irinotecan in suppressing MM cell growth suggests their potential for clinical application. These findings provide insights into MM pathogenesis and offer a promising strategy for overcoming drug resistance. Full article
Show Figures

Figure 1

16 pages, 2175 KiB  
Article
A New Class of BRCA1 Mimetics for ERα-Positive Breast Cancer Therapy: Design, Synthesis, In Silico Screening, In Vitro Assay, and Gene Expression Analysis
by Pottabathula Shyam Sundar, Jubie Selvaraj, Veerachamy Alagarsamy, Viswas Raja Solomon and Jawahar Natarajan
Life 2025, 15(4), 581; https://doi.org/10.3390/life15040581 - 1 Apr 2025
Viewed by 572
Abstract
Breast Cancer Gene 1 (BRCA1) offers a potential approach for ERα repression by blocking cyclin D1’s interaction with ERα, which prevents cells from growing and dividing too rapidly or uncontrollably. When BRCA1 levels are low, BRCA1 mimetics fit into the BRCA1-binding pocket within [...] Read more.
Breast Cancer Gene 1 (BRCA1) offers a potential approach for ERα repression by blocking cyclin D1’s interaction with ERα, which prevents cells from growing and dividing too rapidly or uncontrollably. When BRCA1 levels are low, BRCA1 mimetics fit into the BRCA1-binding pocket within ERα, mimicking the ability of BRCA1 to inhibit ERα activity. This study aims to identify a novel class of lead molecules for BRCA1 mimetics for ER-positive breast cancer, distinct from conventional antiestrogen therapies in their mechanism of action. In this article, coumarin thiosemicarbazone hybrids were synthesized from 7-hydroxy 4-methyl coumarin/4-hydroxy coumarin and thiosemicarbazide with different aldehydes and evaluated for their ERα repression activity. The most active compounds in the series, 9b, 9l, and 9m, exhibited significant potency with an IC50 value of 14.49 µM, 35.08 µM and 42.12 µM, respectively, compared to raloxifene (reported) as the positive control with an IC50 value of 13.7 µM. The gene expression study confirmed the downregulation of the cyclin D1 gene for the compounds 9l (−0.217) and 9m (−0.214). Similarly, the downregulation of the BCL2 gene for the compounds 9b (−0.373), 9l (−0.320), and 9m (−0.376). Also, molecular docking studies and MMGBSA were performed to determine key interactions between compounds and ERα at the BRCA1 binding pocket (AA 338–387). In silico, ADMET properties were executed to illustrate the druggability and safety of the novel derivatives. In silico, in vitro, and gene expression studies revealed that among all the compounds, 9b, 9l, and 9m are promising candidates for the development of lead molecules targeting ERα inhibitors for breast cancer treatment. Moreover, the concept of ERα repression with small molecules as BRCA1 mimetics is novel. In general, it can be concluded that these compounds can serve as promising leads to the design of potential BRCA1 mimetics. Full article
Show Figures

Figure 1

15 pages, 4461 KiB  
Article
Identification of Candidate Lung Function-Related Plasma Proteins to Pinpoint Drug Targets for Common Pulmonary Diseases: A Comprehensive Multi-Omics Integration Analysis
by Yansong Zhao, Lujia Shen, Ran Yan, Lu Liu, Ping Guo, Shuai Liu, Yingxuan Chen, Zhongshang Yuan, Weiming Gong and Jiadong Ji
Curr. Issues Mol. Biol. 2025, 47(3), 167; https://doi.org/10.3390/cimb47030167 - 1 Mar 2025
Cited by 1 | Viewed by 1270
Abstract
The genome-wide association studies (GWAS) of lung disease and lung function indices suffer from challenges to be transformed into clinical interventions, due to a lack of knowledge on the molecular mechanism underlying the GWAS associations. A proteome-wide association study (PWAS) was first performed [...] Read more.
The genome-wide association studies (GWAS) of lung disease and lung function indices suffer from challenges to be transformed into clinical interventions, due to a lack of knowledge on the molecular mechanism underlying the GWAS associations. A proteome-wide association study (PWAS) was first performed to identify candidate proteins by integrating two independent largest protein quantitative trait loci datasets of plasma proteins and four large-scale GWAS summary statistics of lung function indices (forced expiratory volume in 1 s (FEV1), forced vital capacity (FVC), FEV1/FVC and peak expiratory flow (PEF)), followed by enrichment analysis to reveal the underlying biological processes and pathways. Then, with a discovery dataset, we conducted Mendelian randomization (MR) and Bayesian colocalization analyses to select potentially causal proteins, followed by a replicated MR analysis with an independent dataset. Mediation analysis was also performed to explore the possible mediating role of these indices on the association between proteins and two common lung diseases (chronic obstructive pulmonary disease, COPD and Asthma). We finally prioritized the potential drug targets. A total of 210 protein–lung function index associations were identified by PWAS, and were significantly enriched in the pulmonary fibrosis and lung tissue repair. Subsequent MR and colocalization analysis identified 59 causal protein-index pairs, among which 42 pairs were replicated. Further mediation analysis identified 3 potential pathways from proteins to COPD or asthma mediated by FEV1/FVC. The mediated proportion ranges from 68.4% to 82.7%. Notably, 24 proteins were reported as druggable targets in Drug Gene Interaction Database, among which 8 were reported to interact with drugs, including FKBP4, GM2A, COL6A3, MAPK3, SERPING1, XPNPEP1, DNER, and FER. Our study identified the crucial plasma proteins causally associated with lung functions and highlighted potential mediating mechanism underlying the effect of proteins on common lung diseases. These findings may have an important insight into pathogenesis and possible future therapies of lung disorders. Full article
(This article belongs to the Special Issue Predicting Drug Targets Using Bioinformatics Methods)
Show Figures

Figure 1

Back to TopTop