Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (140)

Search Parameters:
Keywords = drug release variation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
10 pages, 419 KiB  
Brief Report
Pilot Data on Salivary Oxytocin as a Biomarker of LSD Response in Patients with Major Depressive Disorder
by Laure Cazorla, Sylvie Alaux, Caroline Amberger, Cédric Mabilais, Leonice Furtado, Albert Buchard, Gabriel Thorens, Louise Penzenstadler, Daniele Zullino and Tatiana Aboulafia Brakha
Psychoactives 2025, 4(3), 26; https://doi.org/10.3390/psychoactives4030026 - 1 Aug 2025
Viewed by 113
Abstract
Despite growing evidence supporting the efficacy of LSD-assisted psychotherapy in treating major depressive disorder (MDD), identifying reliable psychopharmacological biomarkers remains necessary. Oxytocin, a neuropeptide implicated in social bonding and flexibility, is a promising candidate due to its release following serotonergic psychedelic administration in [...] Read more.
Despite growing evidence supporting the efficacy of LSD-assisted psychotherapy in treating major depressive disorder (MDD), identifying reliable psychopharmacological biomarkers remains necessary. Oxytocin, a neuropeptide implicated in social bonding and flexibility, is a promising candidate due to its release following serotonergic psychedelic administration in healthy individuals; however, its dynamics in psychiatric populations are currently unexplored. This observational pilot study aimed to characterize salivary oxytocin dynamics during a single LSD-assisted psychotherapy session in our patients with treatment-resistant MDD. Participants received 100 or 150 µg LSD, and salivary oxytocin was measured at baseline, 60, 90, and 180 min post-LSD. Concurrently, participants rated subjective drug intensity (0–10 scale) at 60, 90, and 180 min. A linear mixed model revealed significant variation of oxytocin levels over time. Perceived psychedelic intensity also significantly varied over time. This supports oxytocin as a potential biomarker. Larger, controlled trials are warranted to replicate these findings and clarify the mechanistic links between oxytocin dynamics and clinical outcomes, including changes in depressive symptoms and mental flexibility. Full article
Show Figures

Figure 1

16 pages, 2379 KiB  
Article
Atractylodes lancea (Thunb.) DC. [Asteraceae] Rhizome-Derived Exosome-like Nanoparticles Suppress Lipopolysaccharide-Induced Inflammation by Reducing Toll-like Receptor 4 Expression in BV-2 Murine Microglial Cells
by Mizusa Hyodo, Kei Kawada, Tomoaki Ishida, Yuki Izawa-Ishizawa, Ryoko Matoba, Rina Okamoto, Kohei Jobu, Io Horikawa, Fuka Aizawa, Kenta Yagi, Takahiro Niimura, Yayoi Kawano, Shinji Abe, Yukihiro Hamada, Mitsuhiro Goda and Keisuke Ishizawa
Pharmaceuticals 2025, 18(8), 1099; https://doi.org/10.3390/ph18081099 - 24 Jul 2025
Viewed by 270
Abstract
Background/Objectives: Atractylodes lancea (Thunb.) DC. [Asteraceae] (ALR)-derived exosome-like nanoparticles (ALR-ELNs) exhibit anti-neuroinflammatory effects in microglial cells. However, the associated mechanisms and pathways are unknown. We aimed to characterize the effects of ALR-ELNs on inflammatory responses of BV-2 microglial cells to lipopolysaccharide (LPS) [...] Read more.
Background/Objectives: Atractylodes lancea (Thunb.) DC. [Asteraceae] (ALR)-derived exosome-like nanoparticles (ALR-ELNs) exhibit anti-neuroinflammatory effects in microglial cells. However, the associated mechanisms and pathways are unknown. We aimed to characterize the effects of ALR-ELNs on inflammatory responses of BV-2 microglial cells to lipopolysaccharide (LPS) using RNA sequencing. Methods: ALR-ELNs were fractionated from ALR. BV-2 microglial murine cells were stimulated with LPS after treatment with ALR-ELNs. RNA sequencing was performed to analyze variations in mRNA levels. Ingenuity pathway analysis (IPA) was performed to investigate the mechanism of action of ALR-ELNs. mRNA expression was assessed using real-time quantitative polymerase chain reaction (qPCR). Results: The expression of 651 genes was downregulated, whereas that of 1204 genes was upregulated in LPS-stimulated BV2 cells pretreated with ALR-ELNs. The IPA showed that the effects of ALR-ELNs on inflammation took place through pathogen-influenced signaling. Network analysis via IPA showed that the Toll-like receptor (TLR) is involved in the suppression of inflammation by ALR-ELNs. The qPCR analysis showed that pretreatment with ALR-ELNs significantly reduced TLR4 mRNA expression. Conclusions: ALR-ELNs suppress the release of inflammatory mediators by downregulating TLR4 expression, which is a novel mechanism by which ALR-ELNs act on microglia. Identifying active ingredients in ALR-ELNs that downregulate TLR4 expression can advance the development of therapeutic drugs for neuroinflammatory diseases. Full article
(This article belongs to the Section Natural Products)
Show Figures

Figure 1

16 pages, 3597 KiB  
Article
Towards a Customized Oral Drug Therapy for Pediatric Applications: Chewable Propranolol Gel Tablets Printed by an Automated Extrusion-Based Material Deposition Method
by Kristiine Roostar, Andres Meos, Ivo Laidmäe, Jaan Aruväli, Heikki Räikkönen, Leena Peltonen, Sari Airaksinen, Niklas Sandler Topelius, Jyrki Heinämäki and Urve Paaver
Pharmaceutics 2025, 17(7), 881; https://doi.org/10.3390/pharmaceutics17070881 - 4 Jul 2025
Viewed by 433
Abstract
Background: Automated semi-solid extrusion (SSE) material deposition is a promising new technology for preparing personalized medicines for different patient groups and veterinary applications. The technology enables the preparation of custom-made oral elastic gel tablets of active pharmaceutical ingredient (API) by using a semi-solid [...] Read more.
Background: Automated semi-solid extrusion (SSE) material deposition is a promising new technology for preparing personalized medicines for different patient groups and veterinary applications. The technology enables the preparation of custom-made oral elastic gel tablets of active pharmaceutical ingredient (API) by using a semi-solid polymeric printing ink. Methods: An automated SSE material deposition method was used for generating chewable gel tablets loaded with propranolol hydrochloride (-HCl) at three different API content levels (3.0 mg, 4.0 mg, 5.0 mg). The physical appearance, surface morphology, dimensions, mass and mass variation, process-derived solid-state changes, mechanical properties, and in-vitro drug release of the gel tablets were studied. Results: The inclusion of API (1% w/w) in the semi-solid CuraBlendTM printing mixture decreased viscosity and increased fluidity, thus promoting the spreading of the mixture on the printed (material deposition) bed and the printing performance of the gel tablets. The printed gel tablets were elastic, soft, jelly-like, chewable preparations. The mechanical properties of the gel tablets were dependent on the printing ink composition (i.e., with or without propranolol HCl). The maximum load for the final deformation of the CuraBlend™-API (3.0 mg) gel tablets was very uniform, ranging from 73 N to 80 N. The in-vitro dissolution test showed that more than 85% of the drug load was released within 15–20 min, thus verifying the immediate-release behavior of these drug preparations. Conclusions: Automated SSE material deposition as a modified 3D printing method is a feasible technology for preparing customized oral chewable gel tablets of propranolol HCl. Full article
Show Figures

Figure 1

13 pages, 1678 KiB  
Article
pH-Sensitive Multiliposomal Containers for Encapsulation and Rapid Release of Bioactive Substances
by Anna A. Efimova, Tatyana A. Abramova, Igor V. Yatsenko, Alexey V. Kazantsev, Denis V. Pozdyshev, Nikolay V. Lukashev, Vladimir I. Muronets and Alexander A. Yaroslavov
Molecules 2025, 30(12), 2608; https://doi.org/10.3390/molecules30122608 - 16 Jun 2025
Viewed by 463
Abstract
A new method of the design of stimuli-sensitive multiliposomal containers for encapsulation and controlled drug release is described. Despite quite a wide choice of pH-sensitive containers, there is still a considerable challenge to synthesize those that respond quickly to small variations in pH [...] Read more.
A new method of the design of stimuli-sensitive multiliposomal containers for encapsulation and controlled drug release is described. Despite quite a wide choice of pH-sensitive containers, there is still a considerable challenge to synthesize those that respond quickly to small variations in pH and release most of the encapsulated drug in a short time. The suggested AMS-containing multiliposomal complexes demonstrated an excellent rate of encapsulated substance release under altering the pH of the outer solution. To improve the efficiency of the delivery of bioactive compounds to target cells and to increase the therapeutic effect, pH-sensitive liposomes were concentrated on the surface of the carrier- PEG-coated cationic liposomes. A pH-sensitive ampholytic derivative of cholan-24-oic acid embedded into the membrane of anionic liposomes allowed the rapid release of the cargo in the areas of low pH, such as tumors, inflammation sites, etc. The diameter of the complexes was optimized for passive targeting and typically ranged from 250 to 400 nm. The biodegradability of liposomes ensured enzymatic destruction of the multiliposomal containers and their elimination from the body after performing their transport function. The multiliposomal complexes and products of their biodegradation demonstrated low cytotoxicity. The composition of multiliposomal complexes, in particular, the amount of PEGylated lipid in the bilayer, was estimated to provide a high speed of the cargo release upon changing the pH. The novel developed pH-sensitive containers show potential for biomedical applications. Full article
(This article belongs to the Section Nanochemistry)
Show Figures

Figure 1

32 pages, 6157 KiB  
Article
mPEG-PCL Nanoparticles to Improve Oral Bioavailability of Acalabrutinib: Effect of Polymer Lipophilicity and Hydrophilicity on Physicochemical Properties and In Vivo Performance in Rats
by Swagata Sinha, Punna Rao Ravi, Sahadevan Rajesh Rashmi and Łukasz Szeleszczuk
Pharmaceutics 2025, 17(6), 774; https://doi.org/10.3390/pharmaceutics17060774 - 13 Jun 2025
Viewed by 751
Abstract
Background/Objectives: This research focuses on the development and optimization of polymer–lipid hybrid nanoparticles (PLHNs) using two grades of mPEG-PCL co-polymers in combination with DPPC and lecithin to address the biopharmaceutical challenges of acalabrutinib (ACP), a selective treatment for different hematological malignancies. Methods: [...] Read more.
Background/Objectives: This research focuses on the development and optimization of polymer–lipid hybrid nanoparticles (PLHNs) using two grades of mPEG-PCL co-polymers in combination with DPPC and lecithin to address the biopharmaceutical challenges of acalabrutinib (ACP), a selective treatment for different hematological malignancies. Methods: Variations in the mPEG-to-ε-caprolactone ratio influenced both the molecular weight (Mw) of the synthesized co-polymers and their aqueous phase affinity. The ACP-loaded PLHNs (ACP-PLHNs) were optimized using a circumscribed central composite design. The in vivo studies were performed in Wistar rats. Results: The lipophilic mPEG-PCL (Mw = 9817.67 Da) resulted in PLHNs with a particle size of 155.91 nm and 40.08% drug loading, while the hydrophilic mPEG-PCL (Mw = 23,615.84 Da) yielded PLHNs with a relatively larger size (223.46 nm) and relatively higher drug loading (46.59%). The drug release profiles were polymer-grade dependent: lipophilic ACP-PLHNs (lACP-PLHNs) sustained release up to 30 h in pH 7.2 buffer, while hydrophilic ACP-PLHNs (hACP-PLHNs) completed release within 24 h. Stability studies showed greater stability for lACP-PLHNs, likely due to reduced molecular rearrangement from the chemically stable lipophilic co-polymer. Conclusions: Oral administration of both formulations exhibited a 2-fold (p < 0.001) improvement in the Cmax and AUC0-tlast and a 3.9-fold (p < 0.001) increase in the relatively oral bioavailability compared to the conventional ACP suspension in male wistar rats. Full article
(This article belongs to the Special Issue Recent Advances on Molecular Modeling in Pharmaceutics)
Show Figures

Figure 1

21 pages, 10265 KiB  
Article
Exploring the Potential of Carboxymethyl Chitosan and Oxidized Agarose to Form Self-Healing Injectable Hydrogels
by Eduard A. Córdoba, Natalia A. Agudelo, Luis F. Giraldo and Claudia E. Echeverri-Cuartas
Polysaccharides 2025, 6(2), 49; https://doi.org/10.3390/polysaccharides6020049 - 11 Jun 2025
Viewed by 601
Abstract
Localized treatment has emerged as an excellent alternative to minimize the side effects associated with the systemic dispersion of therapeutic agents, which can damage healthy tissues. Injectable hydrogels offer a promising solution because they can encapsulate and release therapeutic agents in a controlled [...] Read more.
Localized treatment has emerged as an excellent alternative to minimize the side effects associated with the systemic dispersion of therapeutic agents, which can damage healthy tissues. Injectable hydrogels offer a promising solution because they can encapsulate and release therapeutic agents in a controlled manner. In this context, this study focuses on the development and characterization of an injectable hydrogel based on carboxymethyl chitosan (CMCh) and oxidized agarose (OA), in which chemical crosslinking through imine bond formation avoids the use of external crosslinking agents. Several polymer ratios were evaluated to obtain hydrogels (OA:CMCh), and stable gels were formed at physiological temperatures in all cases. The hydrogels were injectable through a 21 G needle with forces below 30 N, formed porous structures, and exhibited a self-healing capacity after 48 h. Additionally, the hydrogels displayed compressive strengths ranging from 26 to 71 kPa and elastic moduli similar to those of human tissues (6–20 kPa). Swelling percentages of up to 3090% were achieved owing to the high hydrophilicity of CMCh and OA, and strong chemical crosslinking maintained the gel stability for two weeks with low mass loss rates (<21%). Furthermore, polymer ratio variation and storage at 4 °C were observed to affect the hydrogel characteristics, allowing for property modulation according to the application needs. These results indicate that the proposed polymeric combination enables the formation of hydrogels with the potential for localized drug delivery. Full article
Show Figures

Graphical abstract

23 pages, 14789 KiB  
Article
Feasibility of Hot Melt Extrusion in Converting Water-Based Nanosuspensions into Solid Dosage Forms
by Erasmo Ragucci, Marco Uboldi, Adam Sobczuk, Giorgio Facchetti, Alice Melocchi, Mauro Serratoni and Lucia Zema
Pharmaceutics 2025, 17(5), 662; https://doi.org/10.3390/pharmaceutics17050662 - 17 May 2025
Viewed by 761
Abstract
Aim: In addition to numerous benefits provided by nanosuspensions (NSs) (e.g., enhanced saturation solubility, increased area for interaction with fluids), they suffer from major stability, handling and compliance issues. To overcome these challenges, we evaluated the feasibility of hot melt extrusion (HME) in [...] Read more.
Aim: In addition to numerous benefits provided by nanosuspensions (NSs) (e.g., enhanced saturation solubility, increased area for interaction with fluids), they suffer from major stability, handling and compliance issues. To overcome these challenges, we evaluated the feasibility of hot melt extrusion (HME) in transforming a cinnarizine-based NS, selected as a case study, into granules for oral intake. Methods: Thermoplastic polymers, in principle compatible with the thermal behavior of the selected drug and characterized by different interaction mechanisms with aqueous fluids, were used as carriers to absorb the NS and were processed by HME. Results: The extruded granules pointed out good physio-technological characteristics, a drug content > 85% with coefficient of variation (CV) < 5% and tunable in vitro performance coherent with the polymeric carriers they were composed of. Particle size as well as the solid state of cinnarizine was checked using several analytical techniques in combination (e.g., DSC, SEM, FT-IR, Raman). Depending on the composition of the granules, and specifically for formulations processed below 85 °C, the drug was found to remain crystalline and in the desired nanoscale. Conclusions: HME turned out to be a versatile process to transform, in a single-step, NSs into multi-particulate solid products for oral administration showing a variety of release profiles. Full article
(This article belongs to the Special Issue Advances in Hot Melt Extrusion Technology)
Show Figures

Graphical abstract

22 pages, 3787 KiB  
Article
Development of Smart pH-Sensitive Collagen-Hydroxyethylcellulose Films with Naproxen for Burn Wound Healing
by Elena-Emilia Tudoroiu, Mădălina Georgiana Albu Kaya, Cristina Elena Dinu-Pîrvu, Lăcrămioara Popa, Valentina Anuța, Mădălina Ignat, Emilia Visileanu, Durmuș Alpaslan Kaya, Răzvan Mihai Prisada and Mihaela Violeta Ghica
Pharmaceuticals 2025, 18(5), 689; https://doi.org/10.3390/ph18050689 - 7 May 2025
Cited by 1 | Viewed by 916
Abstract
Background: Developing versatile dressings that offer wound protection, maintain a moist environment, and facilitate healing represents an important therapeutic approach for burn patients. Objectives: This study presents the development of new smart pH-sensitive collagen-hydroxyethylcellulose films, incorporating naproxen and phenol red, designed [...] Read more.
Background: Developing versatile dressings that offer wound protection, maintain a moist environment, and facilitate healing represents an important therapeutic approach for burn patients. Objectives: This study presents the development of new smart pH-sensitive collagen-hydroxyethylcellulose films, incorporating naproxen and phenol red, designed to provide controlled drug release while enabling real-time pH monitoring for burn care. Methods: Biopolymeric films were prepared by the solvent-casting method using ethanol and glycerol as plasticizers. Results: Orange-colored films were thin, flexible, and easily peelable, with uniform, smooth, and nonporous morphology. Tensile strength varied from 0.61 N/mm2 to 3.33 N/mm2, indicating improved mechanical properties with increasing collagen content, while wetting analysis indicated a hydrophilic surface with contact angle values between 17.61° and 75.51°. Maximum swelling occurred at pH 7.4, ranging from 5.65 g/g to 9.20 g/g and pH 8.5, with values from 4.74 g/g to 7.92 g/g, suggesting effective exudate absorption. In vitro degradation proved structural stability maintenance for at least one day, with more than 40% weight loss. Films presented a biphasic naproxen release profile with more than 75% of the drug released after 24 h, properly managing inflammation and pain on the first-day post-burn. The pH variation mimicking the stages of the healing process demonstrated the color transition from yellow (pH 5.5) to orange (pH 7.4) and finally to bright fuchsia (pH 8.5), enabling easy visual evaluation of the wound environment. Conclusions: New multifunctional films combine diagnostic and therapeutic functions, providing a promising platform for monitoring wound healing, making them suitable for real-time wound assessment. Full article
(This article belongs to the Special Issue Development of Specific Dosage Form: Wound Dressing)
Show Figures

Figure 1

24 pages, 564 KiB  
Review
Pharmacokinetics of Different Tacrolimus Formulations in the Early Post-Liver Transplant Period: A Scoping Review
by Paloma Barriga-Rodríguez, Marta Falcón-Cubillo, Marta Mejías-Trueba, Pablo Ciudad-Gutiérrez, Ana Belén Guisado-Gil, Miguel Ángel Gómez-Bravo, Manuel Porras-López, María Victoria Gil-Navarro and Laura Herrera-Hidalgo
Pharmaceutics 2025, 17(5), 619; https://doi.org/10.3390/pharmaceutics17050619 - 6 May 2025
Viewed by 594
Abstract
Background: Tacrolimus (TAC) is the cornerstone of immunosuppression after liver transplantation (LT). TAC has a narrow therapeutic index and high inter- and intra-individual pharmacokinetic (PK) variability, requiring dose individualization. This variability is more noticeable in the early post-LT period. Objectives: This study aimed [...] Read more.
Background: Tacrolimus (TAC) is the cornerstone of immunosuppression after liver transplantation (LT). TAC has a narrow therapeutic index and high inter- and intra-individual pharmacokinetic (PK) variability, requiring dose individualization. This variability is more noticeable in the early post-LT period. Objectives: This study aimed to compare the PK of different TAC formulations in the early post-LT period and describe the main PK characteristics and plasma levels obtained with each TAC formulation used. Methods: The search was conducted in MEDLINE (PubMed) and EMBASE in accordance with PRISMA-ScR guidelines. The main inclusion criteria were clinical trials and observational studies focusing on the PK parameters of TAC in LT recipients during the first month post-transplant. Results: A total of 2169 articles were identified, of which 23 met the inclusion criteria. Various PK parameters were analyzed after LT for the different TAC formulations: intravenous (iv) and oral forms, such as immediate-release (IRT), prolonged-release (PRT), and extended-release (LCPT) formulations. PK variability was higher in the initial days after LT, with different TAC exposure between formulations. IV TAC allows the rapid attainment of therapeutic levels, but it has fallen into disuse. Regarding oral formulations, IRT reaches target levels faster than PRT and LCPT. PRT and LCPT exposure seem more stable during the first month post-LT than when using IRT. Conclusions: TAC formulations exhibit relevant differences in their PK profile in the early post-LT period. PK differences might influence the dose regimen and the time to achieve PK targets. Given these variations, therapeutic drug monitoring (TDM) is essential for optimizing treatment. Full article
(This article belongs to the Section Pharmacokinetics and Pharmacodynamics)
Show Figures

Figure 1

20 pages, 3881 KiB  
Article
Formulation and In Vitro Evaluation of Matrix Tablets Containing Ketoprofen–Beta Cyclodextrin Complex for Enhanced Rheumatoid Arthritis Therapy: Experimental and Computational Insights
by Monica Stamate Cretan, Lacramioara Ochiuz, Vlad Ghizdovat, Monica Molcalut, Maricel Agop, Carmen Anatolia Gafițanu, Alexandra Barsan (Bujor), Mousa Sha’at and Ciprian Stamate
Pharmaceutics 2025, 17(4), 474; https://doi.org/10.3390/pharmaceutics17040474 - 5 Apr 2025
Viewed by 639
Abstract
Background: Rheumatoid arthritis is a chronic autoimmune disease that leads to severe disability and requires improved therapeutic strategies to optimize anti-inflammatory treatment. This study aimed to address this challenge by developing and characterizing an extended-release polymer matrix tablet containing ketoprofen and a ketoprofen–β-cyclodextrin [...] Read more.
Background: Rheumatoid arthritis is a chronic autoimmune disease that leads to severe disability and requires improved therapeutic strategies to optimize anti-inflammatory treatment. This study aimed to address this challenge by developing and characterizing an extended-release polymer matrix tablet containing ketoprofen and a ketoprofen–β-cyclodextrin complex with enhanced therapeutic properties. The objective was to improve inflammation management and therapeutic outcomes using a novel delivery system based on the inclusion of the active substance in cyclodextrin complexes. Methods: Tablets were formulated using ketoprofen and ketoprofen–β-cyclodextrin complexes combined with hydrophilic polymers such as Carbopol® 971P NF, Kollidon® VA 64, and MethocelTM K4M. The complexes were obtained via the coprecipitation method to improve bioavailability. The kinetics of the release of ketoprofen, ketoprofen–β-cyclodextrin complex (2:1), and ketoprofen–β-cyclodextrin complex (1:1) from the tablets were investigated in vitro in artificial gastric and intestinal fluids, and drug release profiles were established. Advanced mathematical models were used to describe the nonlinear behavior of the drug–polymer systems. Results: The inclusion of ketoprofen in the β-cyclodextrin complexes was confirmed, revealing distinct release profiles. Tablets (K-3 F-3) containing the 1:1 complex showed rapid release (96.2% in 4–7 h), while tablets (K-1 F-4) containing free ketoprofen released 76% over 9–11 h. Higher polymer concentrations slowed the release due to gel barrier formation. Pharmacotechnical and stability tests supported their suitability as extended-release forms. A multifractal modeling approach described the release dynamics, treating the polymer–drug matrix as a complex system, with release curves characterized by variations in the fractal dimension and resolution. Conclusions: Specific hydrophilic polymer combinations effectively prolonged ketoprofen release. The developed matrix tablets, which were evaluated via in vitro studies and mathematical modeling, show promise for improving therapeutic outcomes and patient compliance during rheumatoid arthritis treatment. Full article
(This article belongs to the Section Drug Delivery and Controlled Release)
Show Figures

Figure 1

18 pages, 8813 KiB  
Article
Chitosan-TPP Nanogels for Ocular Delivery of Folic Acid: Release Profile, Corneal Permeation, and Mucoadhesion Assessment
by Sebastián G. Bruno, Sofía M. Martínez, Camila Costa Gobbato, Daniela A. Quinteros, Agustina Alaimo and Oscar E. Pérez
Pharmaceutics 2025, 17(4), 424; https://doi.org/10.3390/pharmaceutics17040424 - 27 Mar 2025
Cited by 1 | Viewed by 703
Abstract
Background: Folic acid (FA) is essential for cellular functions but has limited ocular bioavailability, restricting its therapeutic effectiveness. Objective: To develop chitosan (CS)-based nanogels (NGs) for FA transport and release, with corneal permeation evaluation. Methods: NGs’ hydrodynamic diameter (Ho) and [...] Read more.
Background: Folic acid (FA) is essential for cellular functions but has limited ocular bioavailability, restricting its therapeutic effectiveness. Objective: To develop chitosan (CS)-based nanogels (NGs) for FA transport and release, with corneal permeation evaluation. Methods: NGs’ hydrodynamic diameter (Ho) and polydispersity index (PdI) were determined using dynamic light scattering (DLS). CS-FA interaction was confirmed by Fourier transform infrared (FTIR) spectroscopy, differential scanning calorimetry (DSC), and thermogravimetric analysis (TGA) was applied for the dehydrated material characterization. Scanning electron microscopy (SEM) was used to evaluate the NGs ultraestructure. In vitro drug release studies were performed using a modified Franz diffusion cell, and the release profile was fitted to obtain kinetics parameters. Mucoadhesion properties were evaluated through ζ-potential measurements. Ex vivo corneal permeation studies were conducted in rabbit corneas to compare the permeability of FA contained in NGs. Results: NGs presented a Ho of 312.4 ± 8.2 nm and a PdI of 0.28 ± 0.04. SEM imaging revealed spherical morphologies with minor variations in size and shape induced by FA. Lyophilized and resuspended NGs exhibited a 6.8% increase in Ho and a PdI rise to 0.42, indicating slight aggregation. In vitro drug release studies demonstrated sustained FA release, as determined by the Higuchi model. Mucoadhesion studies showed a decrease in ζ-potential from +36.9 to +18.1 mV, confirming electrostatic interactions with mucin. Ex vivo corneal permeation studies indicated that encapsulated FA permeated 2.6 times slower than free FA, suggesting sustained release. Conclusions: our findings demonstrate the potential of nanostructures in the form of NGs to enhance FA-loaded ocular delivery and bioavailability. Full article
(This article belongs to the Special Issue Recent Advances in Chitosan-Based Nanoparticles for Drug Delivery)
Show Figures

Graphical abstract

30 pages, 13089 KiB  
Article
Polylactic-Co-Glycolic Acid/Alginate/Neem Oil-Reduced Graphene Oxide as a pH-Sensitive Nanocarrier for Hesperidin Drug Delivery: Antimicrobial and Acute Otitis Media Assessments
by Saeed Abdul Kareem Saeed Al-Zuhairy, Sammar Fathy Elhabal, Mohamed Fathi Mohamed Elrefai, Sandra Hababeh, Jakline Nelson, Marwa Fady, Nahla A. Elzohairy, Tassneim M. Ewedah, Ibrahim S. Mousa and Ahmed Mohsen Elsaid Hamdan
Pharmaceuticals 2025, 18(3), 381; https://doi.org/10.3390/ph18030381 - 7 Mar 2025
Cited by 6 | Viewed by 1089
Abstract
Background/Objectives: Hesperidin (HSP) is a potent phytochemical antioxidant and anti-inflammatory agent that protects against otitis media. However, due to its low solubility and bioavailability, a suitable delivery method is needed to overcome these problems. A hydrogel is a promising nanocarrier for controlled [...] Read more.
Background/Objectives: Hesperidin (HSP) is a potent phytochemical antioxidant and anti-inflammatory agent that protects against otitis media. However, due to its low solubility and bioavailability, a suitable delivery method is needed to overcome these problems. A hydrogel is a promising nanocarrier for controlled drug delivery in response to external stimuli, such as pH variations. Methods: Graphene oxide (GO)-based nanocarriers that encapsulate hesperidin (HSP) were further coated with a polylactic-co-glycolic acid/alginate (PLGA-Alg) hydrogel before being integrated into a green neem oil (N.O.) double emulsion to produce a synergistic effect and then characterized by different assays. Results: The nanocarriers exhibited a substantial particle size (168 ± 0.32 nm), with high encapsulation (89.86 ± 0.23%) and a zeta potential of 37 ± 0.43 mV. In vitro release studies conducted over 96 h indicated a sustained HSP release of 82% at pH 5.4 and 65% at pH 7.4. The GO-HSP-loaded neem oil double emulsion formulation exhibits substantial antibacterial activity, as evidenced by inhibition zones of 39 ± 0.02 mm against Staphylococcus epidermidis, and considerable antifungal activity against Candida albicans, with an inhibition zone of 43 ± 0.13 mm, along with biofilm inhibition activity. The formulation demonstrated antioxidant activity (5.21 µg/mL) and increased cell viability (90–95%) while maintaining low cytotoxicity in HSE-2 cells. A histopathological analysis confirmed that treatment with the nanocarriers reduced the levels of pro-inflammatory cytokines (IL-1β, TNF-α, TLR4, IL-6) and raised the levels of antioxidant markers (Nrf-2, SOD) in an in vivo rat model of otitis media. Conclusions: GO-based nanocarriers integrated into a neem oil double emulsion and coated with PLGA-Alg hydrogel deliver hesperidin with sustained release and enhanced antibacterial, antifungal, and antioxidant properties. This formulation may be used to treat otitis media and other oxidative stress diseases. Full article
(This article belongs to the Special Issue Progress of Hydrogel Applications in Novel Drug Delivery Platforms)
Show Figures

Figure 1

19 pages, 3013 KiB  
Article
Preparing a Liposome-Aided Drug Delivery System: The Entrapment and Release Profiles of Doxorubicin and 9-(N-Piperazinyl)-5-methyl-12(H)-quino [3,4-b][1,4]benzothiazinium Chloride with Human Serum Albumin
by Danuta Pentak, Violetta Kozik, Andrzej Zieba, Marlena Paździor-Heiske, Aleksandra Szymczyk, Josef Jampilek and Andrzej Bak
Pharmaceutics 2025, 17(2), 202; https://doi.org/10.3390/pharmaceutics17020202 - 6 Feb 2025
Cited by 1 | Viewed by 1185
Abstract
Background/Objectives: The principal aim of this work was to prepare a liposomal drug delivery system based on the commercial drug doxorubicin (DOX) and a budding agent with promising anticancer activity, 9-(N-piperazinyl)-5-methyl-12(H)-quino [3,4-b][1,4]benzothiazinium chloride (9-PBThACl). Methods: A spectrophotometric methodology [...] Read more.
Background/Objectives: The principal aim of this work was to prepare a liposomal drug delivery system based on the commercial drug doxorubicin (DOX) and a budding agent with promising anticancer activity, 9-(N-piperazinyl)-5-methyl-12(H)-quino [3,4-b][1,4]benzothiazinium chloride (9-PBThACl). Methods: A spectrophotometric methodology was used to meticulously investigate the drug entrapment and release characteristics of the new liposomal complexes (L) based on dipalmitoylphosphatidylcholine (DPPC) with human serum albumin (HSA) and its defeated analog (dHSA). Results: The impact of the operational parameters (temperature and pH) on the liposome/drug(s)/(d)HSA, namely [LDPPC/9-PBThACl/DOX ]:(d)HSA] systems, as well as the polarity of the phospholipid bilayer, was examined. In order to compare the experimental findings, mathematical models were employed to specify the analytical factors controlling the process of drug release/potential drug release from liposomes. The observed variations in the drug encapsulation and release profiles were due to the combination of liposomal conjugates with human plasma protein. Conclusions: It was proven that changes in the environmental pH directly affect the percentage of drug entrapment in liposomes and the medicine release efficiency. Moreover, the grouping tendency of the liposomal combinations was investigated using a principal component analysis (PCA) and a hierarchical clustering analysis (HCA). Finally, an analysis of variance (ANOVA) confirmed the statistical impact of pH buffering and changing temperature factors on the drug release characteristics of liposomal conjugates. Full article
(This article belongs to the Special Issue Advanced Nanopharmaceuticals for Anticancer Therapy)
Show Figures

Graphical abstract

17 pages, 888 KiB  
Article
New High-Throughput Method for Aluminum Content Determination in Vaccine Formulations
by Lorenzo Di Meola, Daniela Pasqui, Chiara Tigli, Stephen Luckham, Silvio Colomba, Marilena Paludi, Maxime Denis, Angelo Palmese, Daniela Stranges, Agnese Marcelli, Alessio Moriconi, Malte Meppen and Carlo Pergola
Vaccines 2025, 13(2), 105; https://doi.org/10.3390/vaccines13020105 - 22 Jan 2025
Cited by 1 | Viewed by 1244
Abstract
Objective: This manuscript describes an innovative, non-destructive, high-throughput method for the quantification of aluminum hydroxide in aluminum-adjuvanted vaccines, eliminating the need of reagents and providing real-time results. The method is based on a spectrophotometric principle, and several model proteins were studied and tested [...] Read more.
Objective: This manuscript describes an innovative, non-destructive, high-throughput method for the quantification of aluminum hydroxide in aluminum-adjuvanted vaccines, eliminating the need of reagents and providing real-time results. The method is based on a spectrophotometric principle, and several model proteins were studied and tested with the aim to simulate the behavior of aluminum-adjuvanted antigens. Methods: As a proof of concept, the MenB vaccine was used, and the titration of aluminum hydroxide (AH) with ethylenediaminetetraacetic acid (EDTA) was used as an orthogonal reference, as it is one of the current release methods for the content determination of aluminum-hydroxide-adjuvanted vaccine drug products (DPs). The factors influencing the spectrophotometric analysis, such as different plate 96/well containers, variation in the sedimentation of the suspension due to component addition errors during formulation, and batch-to-batch variation were studied to assess the method’s robustness. Five concentration levels (ranging from 2.0 to 4.0 mg/mL AH) with two different batches of aluminum hydroxide were each measured with independent preparations performed by three different operators, for a total of four sessions/operator and 20 formulations/session. An in-depth statistical study was carried out with generated data to assess the precision (in terms of intermediate precision and repeatability), accuracy, linearity, and specificity of the method. Results: The novel spectrophotometric method and the official release one (potentiometric) yielded comparable results, demonstrating the potential of this new method as a release test for AH-adjuvanted products. A simple calibration curve enabled the measurement of samples in a 96-well plate in just a few minutes. Conclusions: We developed a novel method for Aluminum concentration determination in Aluminum-containing pharmaceutical products, like alum-adjuvanted vaccines. This method is fast, completely automatable, and as precise and accurate as already-in-place release methods. Full article
Show Figures

Figure 1

17 pages, 26057 KiB  
Article
Staggered Design of UV–Curable Polymer Microneedle Arrays with Increased Vertical Action Space
by Baoling Jia, Tiandong Xia, Yangtao Xu and Bei Li
Polymers 2025, 17(1), 104; https://doi.org/10.3390/polym17010104 - 2 Jan 2025
Cited by 1 | Viewed by 985
Abstract
Recent studies have identified microneedle (MN) arrays as promising alternatives for transdermal drug delivery. This study investigated the properties of novel staggered MN arrays design featuring two distinct heights of MNs. The staggered MN arrays were precisely fabricated via PμSL light-cured 3D printing [...] Read more.
Recent studies have identified microneedle (MN) arrays as promising alternatives for transdermal drug delivery. This study investigated the properties of novel staggered MN arrays design featuring two distinct heights of MNs. The staggered MN arrays were precisely fabricated via PμSL light-cured 3D printing technology. The arrays were systematically evaluated for their morphology, fracture force, skin penetration ability, penetration mechanism, and drug delivery capability. The results demonstrated that the staggered MN arrays punctured the skin incrementally, leveraging the benefits of skin deformation during the puncture process. This approach effectively reduced the puncture force needed, achieving a maximum reduction of approximately 80.27% due to variations in the staggered height. Additionally, the staggered design facilitated skin penetration, as confirmed by the results of the rat skin hematoxylin-eosin (H&E) staining experiments. Compared with 3D-printed planar structures and highly uniform MN arrays, the staggered design exhibited enhanced hydrophilicity, as evidenced by a reduction in the contact angle from approximately 93° to 70°. Simulated drug release images of both coated and hollow staggered MNs illustrated the release and delivery capabilities of these structures across various skin layers, and the staggered design expanded the effective area of the MN arrays within the vertical dimension of the skin layers. This study offers both experimental and theoretical foundations for developing MN arrays with three–dimensional structural distributions, thereby facilitating advancements in MN array technology. Full article
(This article belongs to the Special Issue Advanced Processing Strategy for Functional Polymer Materials)
Show Figures

Figure 1

Back to TopTop