Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (6,451)

Search Parameters:
Keywords = drug management

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
10 pages, 210 KiB  
Article
Adverse Events and Drug Interactions Associated with Elexacaftor/Tezacaftor/Ivacaftor Treatment: A Descriptive Study Across Australian, Canadian, and American Adverse Event Databases
by Theeba Thiruchelvam, Chiao Xin Lim, Courtney Munro, Vincent Chan, Geshani Jayasuria, Kingsley P. Coulthard, Peter A. B. Wark and Vijayaprakash Suppiah
Life 2025, 15(8), 1256; https://doi.org/10.3390/life15081256 (registering DOI) - 7 Aug 2025
Abstract
People with cystic fibrosis may experience polypharmacy, which can increase the risk of drug induced complications such as adverse events and drug–drug interactions. This study aimed to examine the prevalence of adverse events and to identify potential drug–drug interactions associated with elexacaftor/tezacaftor/ivacaftor (ETI). [...] Read more.
People with cystic fibrosis may experience polypharmacy, which can increase the risk of drug induced complications such as adverse events and drug–drug interactions. This study aimed to examine the prevalence of adverse events and to identify potential drug–drug interactions associated with elexacaftor/tezacaftor/ivacaftor (ETI). Three databases, the Australian Therapeutic Goods Administration Database of Adverse Event Notification (TGA DAEN), the Canada Vigilance Adverse Reaction Online Database (CVAROD), and the USA Food and Drug Administration Adverse Event Reporting System (FAERS) Database were searched for spontaneous ETI adverse events between 2019 and 2024. Descriptive analysis of the data was undertaken. The FAERS database was analysed to identify adverse events of interest such as anxiety and depression and concomitant drugs prescribed with ETI. A total of 10,628 ETI associated adverse events were identified in all system organ classes. The incidence of psychiatric adverse events ranged from 7 to 15% across the three databases. Potential drug–drug interactions with CYP 3A4/5 strong inhibitors and strong inducers were identified from the FAERS database and azole antifungals were implicated in several ETI dose modifications. The prevalence and types of ETI adverse events were varied and use of concomitant drugs with potential drug interactions was significant, requiring more research to manage them. Full article
(This article belongs to the Special Issue Cystic Fibrosis: A Disease with a New Face)
15 pages, 2691 KiB  
Review
SGLT2 Inhibitors: Multifaceted Therapeutic Agents in Cardiometabolic and Renal Diseases
by Ana Checa-Ros, Owahabanun-Joshua Okojie and Luis D’Marco
Metabolites 2025, 15(8), 536; https://doi.org/10.3390/metabo15080536 - 7 Aug 2025
Abstract
Background: Sodium–glucose cotransporter-2 inhibitors (SGLT2is), initially developed as antihyperglycemic agents, have emerged as multifunctional therapeutics with profound cardiorenal and metabolic benefits. Their unique insulin-independent mechanism, targeting renal glucose reabsorption, distinguishes them from conventional antidiabetic drugs. Mechanisms and Clinical Evidence: SGLT2is induce [...] Read more.
Background: Sodium–glucose cotransporter-2 inhibitors (SGLT2is), initially developed as antihyperglycemic agents, have emerged as multifunctional therapeutics with profound cardiorenal and metabolic benefits. Their unique insulin-independent mechanism, targeting renal glucose reabsorption, distinguishes them from conventional antidiabetic drugs. Mechanisms and Clinical Evidence: SGLT2is induce glycosuria, reduce hyperglycemia, and promote weight loss through increased caloric excretion. Beyond glycemic control, they modulate tubuloglomerular feedback, attenuate glomerular hyperfiltration, and exert systemic effects via natriuresis, ketone utilization, and anti-inflammatory pathways. Landmark trials (DAPA-HF, EMPEROR-Reduced, CREDENCE, DAPA-CKD) demonstrate robust reductions in heart failure (HF) hospitalizations, cardiovascular mortality, and chronic kidney disease (CKD) progression, irrespective of diabetes status. Adipose Tissue and Metabolic Effects: SGLT2is mitigate obesity-associated adiposopathy by shifting macrophage polarization (M1 to M2), reducing proinflammatory cytokines (TNF-α, IL-6), and enhancing adipose tissue browning (UCP1 upregulation) and mitochondrial biogenesis (via PGC-1α/PPARα). Modest weight loss (~2–4 kg) occurs, though compensatory hyperphagia may limit long-term effects. Emerging Applications: Potential roles in non-alcoholic fatty liver disease (NAFLD), polycystic ovary syndrome (PCOS), and neurodegenerative disorders are under investigation, driven by pleiotropic effects on metabolism and inflammation. Conclusions: SGLT2is represent a paradigm shift in managing T2DM, HF, and CKD, with expanding implications for metabolic syndrome. Future research should address interindividual variability, combination therapies, and non-glycemic indications to optimize their therapeutic potential. Full article
(This article belongs to the Special Issue Metabolic Modulators in Cardiovascular Disease Management)
Show Figures

Figure 1

19 pages, 1632 KiB  
Guidelines
Multidisciplinary Practical Guidance for Implementing Adjuvant CDK4/6 Inhibitors for Patients with HR-Positive, HER2-Negative Early Breast Cancer in Canada
by Katarzyna J. Jerzak, Sandeep Sehdev, Jean-François Boileau, Christine Brezden-Masley, Nadia Califaretti, Scott Edwards, Jenn Gordon, Jan-Willem Henning, Nathalie LeVasseur and Cindy Railton
Curr. Oncol. 2025, 32(8), 444; https://doi.org/10.3390/curroncol32080444 - 7 Aug 2025
Abstract
Cyclin-dependent kinase (CDK)4/6 inhibitors have become a key component of adjuvant treatment for patients with hormone receptor-positive (HR+), human epidermal growth factor receptor 2-negative (HER2−) early breast cancer who are at high risk of recurrence. The addition of abemaciclib and ribociclib to standard [...] Read more.
Cyclin-dependent kinase (CDK)4/6 inhibitors have become a key component of adjuvant treatment for patients with hormone receptor-positive (HR+), human epidermal growth factor receptor 2-negative (HER2−) early breast cancer who are at high risk of recurrence. The addition of abemaciclib and ribociclib to standard endocrine therapy has demonstrated clinically meaningful improvements in invasive disease-free survival, supported by the monarchE and NATALEE trials, respectively. With expansion of patient eligibility for CDK4/6 inhibitors, multidisciplinary coordination among medical oncologists, surgeons, nurses, pharmacists, and other health care providers is critical to optimizing patient identification, monitoring, and management of adverse events. This expert guidance document provides practical recommendations for implementing adjuvant CDK4/6 inhibitor therapy in routine clinical practice, incorporating insights from multiple specialties and with patient advocacy representation. Key considerations include patient selection based on clinical trial data, treatment duration, dosing schedules, adverse event profiles, monitoring requirements, drug–drug interactions, and patient-specific factors such as tolerability, cost, and quality of life. This guidance aims to support Canadian clinicians in effectively integrating CDK4/6 inhibitors into clinical practice, ensuring optimal patient outcomes through a multidisciplinary and patient-centric approach. Full article
(This article belongs to the Section Breast Cancer)
Show Figures

Figure 1

32 pages, 1991 KiB  
Review
Synthetic Small-Molecule Ligands Targeted to Adenosine Receptors: Is There Potential Towards Ischemic Heart Disease?
by Qi Xu, Yaw Nana Opoku, Kalwant S. Authi and Agostino Cilibrizzi
Cells 2025, 14(15), 1219; https://doi.org/10.3390/cells14151219 - 7 Aug 2025
Abstract
Ischemic heart disease (IHD) represents a leading cause of global morbidity and mortality. Despite significant advances in treatment achieved over recent decades, as well as various therapeutic strategies available to manage IHD progression currently, the global incidence of this disorder remains high. This [...] Read more.
Ischemic heart disease (IHD) represents a leading cause of global morbidity and mortality. Despite significant advances in treatment achieved over recent decades, as well as various therapeutic strategies available to manage IHD progression currently, the global incidence of this disorder remains high. This review examines essential cell biology aspects of adenosine receptors (ARs), along with the effects of known synthetic small-molecule AR ligands, to provide an up-to-date view on the therapeutic potential towards IHD treatment. In particular, we report here advancements made on a selection of AR synthetic ligands that have demonstrated efficacy in pre-clinical or clinical studies, thereby holding promise as new therapeutic candidates in the field of IHD. Although this work adds further evidence that clinically valid small-molecule therapeutic agents targeting ARs exist, their use represents an emerging area, with most drug prototypes still in the pre-clinical developmental stage and many lacking large-scale clinical trials. The future lies in identifying improved AR synthetic ligands with enhanced efficacy and selectivity, as well as reduced adverse side effects, along with establishing a platform of specific and diversified pre-clinical tests, to inform in turn the resulting clinical investigations. Full article
Show Figures

Figure 1

25 pages, 1054 KiB  
Review
Gut Feeling: Biomarkers and Biosensors’ Potential in Revolutionizing Inflammatory Bowel Disease (IBD) Diagnosis and Prognosis—A Comprehensive Review
by Beatriz Teixeira, Helena M. R. Gonçalves and Paula Martins-Lopes
Biosensors 2025, 15(8), 513; https://doi.org/10.3390/bios15080513 - 7 Aug 2025
Abstract
Inflammatory Bowel Diseases (IBDs) are complex, multifactorial disorders with no known cure, necessitating lifelong care and often leading to surgical interventions. This ongoing healthcare requirement, coupled with the increased use of biological drugs and rising disease prevalence, significantly increases the financial burden on [...] Read more.
Inflammatory Bowel Diseases (IBDs) are complex, multifactorial disorders with no known cure, necessitating lifelong care and often leading to surgical interventions. This ongoing healthcare requirement, coupled with the increased use of biological drugs and rising disease prevalence, significantly increases the financial burden on the healthcare systems. Thus, a number of novel technological approaches have emerged in order to face some of the pivotal questions still associated with IBD. In navigating the intricate landscape of IBD, biosensors act as indispensable allies, bridging the gap between traditional diagnostic methods and the evolving demands of precision medicine. Continuous progress in biosensor technology holds the key to transformative breakthroughs in IBD management, offering more effective and patient-centric healthcare solutions considering the One Health Approach. Here, we will delve into the landscape of biomarkers utilized in the diagnosis, monitoring, and management of IBD. From well-established serological and fecal markers to emerging genetic and epigenetic markers, we will explore the role of these biomarkers in aiding clinical decision-making and predicting treatment response. Additionally, we will discuss the potential of novel biomarkers currently under investigation to further refine disease stratification and personalized therapeutic approaches in IBD. By elucidating the utility of biosensors across the spectrum of IBD care, we aim to highlight their importance as valuable tools in optimizing patient outcomes and reducing healthcare costs. Full article
(This article belongs to the Special Issue Feature Papers of Biosensors)
Show Figures

Figure 1

27 pages, 4071 KiB  
Article
Design and Development of a Sprayable Hydrogel Based on Thermo/pH Dual-Responsive Polymer Incorporating Azadirachta indica (Neem) Extract for Wound Dressing Applications
by Amlika Rungrod, Arthit Makarasen, Suwicha Patnin, Supanna Techasakul and Runglawan Somsunan
Polymers 2025, 17(15), 2157; https://doi.org/10.3390/polym17152157 - 7 Aug 2025
Abstract
Developing a rapidly gel-forming, in situ sprayable hydrogel with wound dressing functionality is essential for enhancing the wound healing process. In this study, a novel sprayable hydrogel-based wound dressing was developed by combining thermo- and pH- responsive polymers including Pluronic F127 (PF127) and [...] Read more.
Developing a rapidly gel-forming, in situ sprayable hydrogel with wound dressing functionality is essential for enhancing the wound healing process. In this study, a novel sprayable hydrogel-based wound dressing was developed by combining thermo- and pH- responsive polymers including Pluronic F127 (PF127) and N-succinyl chitosan (NSC). NSC was prepared by modifying chitosan with succinic anhydride, as confirmed by Fourier-transform infrared spectroscopy and nuclear magnetic resonance spectroscopy. The NSC synthesized using a succinic anhydride-to-chitosan molar ratio of 5:1 exhibited the highest degree of substitution, resulting in a water-soluble polymer effective over a broad pH range. The formulation process of the PF127:NSC sprayable hydrogel was optimized and evaluated based on its sol–gel phase transition behavior, clarity, gelation time, liquid and moisture management, stability, and cytotoxicity. These properties can be suitably tailored by adjusting the concentrations of PF127 and NSC. Moreover, the antioxidant capacity of the hydrogels was enhanced by incorporating Azadirachta indica (neem) extract, a bioactive compound, into the optimized sprayable hydrogel. Both neem release and antioxidant activity increased in a dose-dependent manner. Overall, the developed sprayable hydrogel exhibited favorable sprayability, appropriate gelation properties, controlled drug release, and antioxidant activity, underscoring its promising translational potential as a wound dressing. Full article
Show Figures

Graphical abstract

6 pages, 196 KiB  
Brief Report
One-Shot, One Opportunity: Retrospective Observational Study on Long-Acting Antibiotics for SSTIs in the Emergency Room—A Real-Life Experience
by Giacomo Ciusa, Giuseppe Pipitone, Alessandro Mancuso, Stefano Agrenzano, Claudia Imburgia, Agostino Massimo Geraci, Alberto D’Alcamo, Luisa Moscarelli, Antonio Cascio and Chiara Iaria
Pathogens 2025, 14(8), 781; https://doi.org/10.3390/pathogens14080781 - 6 Aug 2025
Abstract
Background: Skin and soft tissue infections (SSTIs) are a major cause of emergency room (ER) visits and hospitalizations. Long-acting lipoglycopeptides (LALs), such as dalbavancin and oritavancin, offer potential for early discharge and outpatient management, especially in patients at risk for methicillin-resistant Staphylococcus aureus [...] Read more.
Background: Skin and soft tissue infections (SSTIs) are a major cause of emergency room (ER) visits and hospitalizations. Long-acting lipoglycopeptides (LALs), such as dalbavancin and oritavancin, offer potential for early discharge and outpatient management, especially in patients at risk for methicillin-resistant Staphylococcus aureus (MRSA) or with comorbidities. Methods: We conducted a retrospective observational cohort study from March to December 2024 in an Italian tertiary-care hospital. Adult patients treated in the ER with a single dose of dalbavancin (1500 mg) or oritavancin (1200 mg) for SSTIs were included. Demographic, clinical, and laboratory data were collected. Follow-up evaluations were performed at 14 and 30 days post-treatment to assess outcomes. Results: Nineteen patients were enrolled (median age 59 years; 53% female). Most had lower limb involvement and elevated inflammatory markers. Three patients (16%) were septic. Fourteen patients (74%) were discharged without hospital admission; hospitalization in the remaining cases was due to comorbidities rather than SSTI severity. No adverse drug reactions were observed. At 14 days, 84% of patients had clinical resolution; only 10% had recurrence by day 30, with no mortality nor readmission reported. Conclusions: LALs appear effective and well-tolerated in the ER setting, supporting early discharge and reducing healthcare burden. Broader use may require structured care pathways and multidisciplinary coordination. Full article
14 pages, 950 KiB  
Article
Synthesis and Antifungal Evaluation Against Candida spp. of 5-Arylfuran-2-Carboxamide Derivatives
by Salvatore Mirabile, Giovanna Ginestra, Rosamaria Pennisi, Davide Barreca, Giuseppina Mandalari and Rosaria Gitto
Microorganisms 2025, 13(8), 1835; https://doi.org/10.3390/microorganisms13081835 - 6 Aug 2025
Abstract
Candidiasis arises from the proliferation of Candida species in the human body, especially in individuals with compromised immune systems. Efficient therapeutic management of candidiasis is often hampered by the limited availability of potent antifungal drugs and the emergence of drug-resistant strains. We have [...] Read more.
Candidiasis arises from the proliferation of Candida species in the human body, especially in individuals with compromised immune systems. Efficient therapeutic management of candidiasis is often hampered by the limited availability of potent antifungal drugs and the emergence of drug-resistant strains. We have previously identified the N-[(4-sulfamoylphenyl)methyl][1,1′-biphenyl]-4-carboxamide to have fungistatic and fungicidal properties, likely due to the hydrophobic biphenyl–chemical features affecting the structural organization of Candida spp. cell membrane. Here, we designed and synthesized a novel series of twelve 5-arylfuran-2-carboxamide derivatives bearing a new hydrophobic tail as bioisosteric replacement of the diphenyl fragment. Its antifungal effectiveness against C. albicans, C. glabrata, and C. parapsilosis, including ATCC and clinically isolated strains, was assessed for all compounds. The most active compound was N-benzyl-5-(3,4-dichlorophenyl)furan-2-carboxamide (6), with fungistatic and fungicidal effects against C. glabrata and C. parapsilosis strains (MIC = 0.062–0.125 and 0.125–0.250 mg/mL, respectively). No synergistic effects were observed when combined with fluconazole. Interestingly, fluorescent microscopy analysis after staining with SYTO 9 and propidium iodide revealed that compound 6 affected the cell membrane integrity in C. albicans strain 16. Finally, carboxamide 6 exhibited a dose-dependent cytotoxicity on erythrocytes, based on assessing the LDH release. Full article
(This article belongs to the Collection Feature Papers in Antimicrobial Agents and Resistance)
Show Figures

Figure 1

16 pages, 4197 KiB  
Review
Conformational Dynamics and Structural Transitions of Arginine Kinase: Implications for Catalysis and Allergen Control
by Sung-Min Kang
Life 2025, 15(8), 1248; https://doi.org/10.3390/life15081248 - 6 Aug 2025
Abstract
Arginine kinase is a key phosphagen kinase in invertebrates that facilitates rapid ATP regeneration by reversibly transferring phosphate groups between phosphoarginine and ADP. Structural studies have shown that the enzyme adopts distinct conformations in its ligand-free and ligand-bound states, known as the “open” [...] Read more.
Arginine kinase is a key phosphagen kinase in invertebrates that facilitates rapid ATP regeneration by reversibly transferring phosphate groups between phosphoarginine and ADP. Structural studies have shown that the enzyme adopts distinct conformations in its ligand-free and ligand-bound states, known as the “open” and “closed” forms, respectively. These conformational changes are crucial for catalytic activity, enabling precise positioning of active-site residues and loop closure during phosphoryl transfer. Transition-state analog complexes have provided additional insights by mimicking intermediate states of catalysis, supporting the functional relevance of the open/closed structural model. Furthermore, studies across multiple species reveal how monomeric and dimeric forms of arginine kinase contribute to its allosteric regulation and substrate specificity. Beyond its metabolic role, arginine kinase is also recognized as a major allergen in crustaceans. Its structural uniqueness and absence in vertebrates make it a promising candidate for selective drug targeting. By integrating crystallographic data with functional context, this review highlights conserved features and species-specific variations of arginine kinase that may inform the design of inhibitors. Such molecules have the potential to serve both as antiparasitic agents and as novel therapeutics to manage crustacean-related allergic responses in humans. Full article
(This article belongs to the Section Proteins and Proteomics)
Show Figures

Figure 1

15 pages, 271 KiB  
Article
Are We Considering All the Potential Drug–Drug Interactions in Women’s Reproductive Health? A Predictive Model Approach
by Pablo Garcia-Acero, Ismael Henarejos-Castillo, Francisco Jose Sanz, Patricia Sebastian-Leon, Antonio Parraga-Leo, Juan Antonio Garcia-Velasco and Patricia Diaz-Gimeno
Pharmaceutics 2025, 17(8), 1020; https://doi.org/10.3390/pharmaceutics17081020 - 6 Aug 2025
Abstract
Background: Drug–drug interactions (DDIs) may occur when two or more drugs are taken together, leading to undesired side effects or potential synergistic effects. Most clinical effects of drug combinations have not been assessed in clinical trials. Therefore, predicting DDIs can provide better patient [...] Read more.
Background: Drug–drug interactions (DDIs) may occur when two or more drugs are taken together, leading to undesired side effects or potential synergistic effects. Most clinical effects of drug combinations have not been assessed in clinical trials. Therefore, predicting DDIs can provide better patient management, avoid drug combinations that can negatively affect patient care, and exploit potential synergistic combinations to improve current therapies in women’s healthcare. Methods: A DDI prediction model was built to describe relevant drug combinations affecting reproductive treatments. Approved drug features (chemical structure of drugs, side effects, targets, enzymes, carriers and transporters, pathways, protein–protein interactions, and interaction profile fingerprints) were obtained. A unified predictive score revealed unknown DDIs between reproductive and commonly used drugs and their associated clinical effects on reproductive health. The performance of the prediction model was validated using known DDIs. Results: This prediction model accurately predicted known interactions (AUROC = 0.9876) and identified 2991 new DDIs between 192 drugs used in different female reproductive conditions and other drugs used to treat unrelated conditions. These DDIs included 836 between drugs used for in vitro fertilization. Most new DDIs involved estradiol, acetaminophen, bupivacaine, risperidone, and follitropin. Follitropin, bupivacaine, and gonadorelin had the highest discovery rate (42%, 32%, and 25%, respectively). Some were expected to improve current therapies (n = 23), while others would cause harmful effects (n = 11). We also predicted twelve DDIs between oral contraceptives and HIV drugs that could compromise their efficacy. Conclusions: These results show the importance of DDI studies aimed at identifying those that might compromise or improve their efficacy, which could lead to personalizing female reproductive therapies. Full article
(This article belongs to the Section Pharmacokinetics and Pharmacodynamics)
19 pages, 332 KiB  
Review
Redefining Treatment Paradigms in Thyroid Eye Disease: Current and Future Therapeutic Strategies
by Nicolò Ciarmatori, Flavia Quaranta Leoni and Francesco M. Quaranta Leoni
J. Clin. Med. 2025, 14(15), 5528; https://doi.org/10.3390/jcm14155528 - 6 Aug 2025
Abstract
Background: Thyroid eye disease (TED) is a rare autoimmune orbital disorder predominantly associated with Graves’ disease. It is characterized by orbital inflammation, tissue remodeling, and potential visual morbidity. Conventional therapies, particularly systemic glucocorticoids, offer only partial symptomatic relief, failing to reverse chronic structural [...] Read more.
Background: Thyroid eye disease (TED) is a rare autoimmune orbital disorder predominantly associated with Graves’ disease. It is characterized by orbital inflammation, tissue remodeling, and potential visual morbidity. Conventional therapies, particularly systemic glucocorticoids, offer only partial symptomatic relief, failing to reverse chronic structural changes such as proptosis and diplopia, and are associated with substantial adverse effects. This review aims to synthesize recent developments in understandings of TED pathogenesis and to critically evaluate emerging therapeutic strategies. Methods: A systematic literature review was conducted using MEDLINE, Embase, and international clinical trial registries focusing on pivotal clinical trials and investigational therapies targeting core molecular pathways involved in TED. Results: Current evidence suggests that TED pathogenesis is primarily driven by the autoimmune activation of orbital fibroblasts (OFs) through thyrotropin receptor (TSH-R) and insulin-like growth factor-1 receptor (IGF-1R) signaling. Teprotumumab, a monoclonal IGF-1R inhibitor and the first therapy approved by the U.S. Food and Drug Administration for TED, has demonstrated substantial clinical benefit, including improvements in proptosis, diplopia, and quality of life. However, concerns remain regarding relapse rates and treatment-associated adverse events, particularly hearing impairment. Investigational therapies, including next-generation IGF-1R inhibitors, small-molecule antagonists, TSH-R inhibitors, neonatal Fc receptor (FcRn) blockers, cytokine-targeting agents, and gene-based interventions, are under development. These novel approaches aim to address both inflammatory and fibrotic components of TED. Conclusions: Teprotumumab has changed TED management but sustained control and toxicity reduction remain challenges. Future therapies should focus on targeted, mechanism-based, personalized approaches to improve long-term outcomes and patient quality of life. Full article
(This article belongs to the Section Ophthalmology)
20 pages, 1677 KiB  
Review
Applications of Nanoparticles in the Diagnosis and Treatment of Ovarian Cancer
by Ahmed El-Mallul, Ryszard Tomasiuk, Tadeusz Pieńkowski, Małgorzata Kowalska, Dilawar Hasan, Marcin Kostrzewa, Dominik Czerwonka, Aleksandra Sado, Wiktoria Rogowska, Igor Z. Zubrzycki and Magdalena Wiacek
Nanomaterials 2025, 15(15), 1200; https://doi.org/10.3390/nano15151200 - 6 Aug 2025
Abstract
Nanotechnology offers innovative methodologies for enhancing the diagnosis and treatment of ovarian cancer by utilizing specialized nanoparticles. The utilization of nanoparticles offers distinct advantages, specifically that these entities enhance the bioavailability of therapeutic agents and facilitate the targeted delivery of pharmacological agents to [...] Read more.
Nanotechnology offers innovative methodologies for enhancing the diagnosis and treatment of ovarian cancer by utilizing specialized nanoparticles. The utilization of nanoparticles offers distinct advantages, specifically that these entities enhance the bioavailability of therapeutic agents and facilitate the targeted delivery of pharmacological agents to neoplastic cells. A diverse array of nanoparticles, including but not limited to liposomes, dendrimers, and gold nanoparticles, function as proficient carriers for drug delivery. Nevertheless, notwithstanding the auspicious potential of these applications, challenges pertaining to toxicity, biocompatibility, and the necessity for comprehensive clinical evaluations pose considerable barriers to the widespread implementation of these technologies. The incorporation of nanotechnology into clinical practice holds the promise of significantly transforming the management of ovarian cancer, offering novel diagnostic tools and therapeutic strategies that enhance patient outcomes and prognoses. In summary, the deployment of nanotechnology in the context of ovarian cancer epitomizes a revolutionary paradigm in medical science, amalgamating sophisticated materials and methodologies to enhance both diagnostic and therapeutic outcomes. Continued research and development endeavors are essential to fully realize the extensive potential of these innovative solutions and address the existing challenges associated with their application in clinical settings. Full article
(This article belongs to the Section Biology and Medicines)
Show Figures

Figure 1

20 pages, 1545 KiB  
Review
Nanomedicine as a Promising Treatment Approach for Obesity
by Abeer Alanazi, Alexander Craven, Spiridon V. Spirou, Maria Jose Santos-Martinez, Carlos Medina and Oliviero L. Gobbo
J. Nanotheranostics 2025, 6(3), 21; https://doi.org/10.3390/jnt6030021 - 5 Aug 2025
Viewed by 15
Abstract
Obesity is a chronic disorder associated with serious comorbidities such as diabetes, cardiovascular disease, and cancer. Conventional pharmacological treatments often suffer from limited efficacy, poor selectivity, and undesirable side effects, highlighting the need for more effective alternatives. Nanomedicine offers a promising approach by [...] Read more.
Obesity is a chronic disorder associated with serious comorbidities such as diabetes, cardiovascular disease, and cancer. Conventional pharmacological treatments often suffer from limited efficacy, poor selectivity, and undesirable side effects, highlighting the need for more effective alternatives. Nanomedicine offers a promising approach by overcoming these limitations through targeted drug delivery and enhanced therapeutic precision. This review examines key nanotechnological strategies in obesity management, including targeting white adipose tissue (WAT) and the vascular marker prohibitin, promoting WAT browning, and utilizing photothermal therapy and magnetic hyperthermia as nanotheranostic tools. We discuss major nanomedicine platforms—such as liposomes, nanoemulsions, and polymeric nanoparticles—alongside emerging applications in gene nanotherapy and herbal formulations. Potential toxicity concerns are also addressed. In summary, nanomedicine holds substantial potential to revolutionize obesity treatment through targeted, effective, and multifunctional therapeutic strategies. Full article
Show Figures

Figure 1

33 pages, 640 KiB  
Review
Future Pharmacotherapy for Bipolar Disorders: Emerging Trends and Personalized Approaches
by Giuseppe Marano, Francesco Maria Lisci, Gianluca Boggio, Ester Maria Marzo, Francesca Abate, Greta Sfratta, Gianandrea Traversi, Osvaldo Mazza, Roberto Pola, Gabriele Sani, Eleonora Gaetani and Marianna Mazza
Future Pharmacol. 2025, 5(3), 42; https://doi.org/10.3390/futurepharmacol5030042 - 4 Aug 2025
Viewed by 151
Abstract
Background: Bipolar disorder (BD) is a chronic and disabling psychiatric condition characterized by recurring episodes of mania, hypomania, and depression. Despite the availability of mood stabilizers, antipsychotics, and antidepressants, long-term management remains challenging due to incomplete symptom control, adverse effects, and high relapse [...] Read more.
Background: Bipolar disorder (BD) is a chronic and disabling psychiatric condition characterized by recurring episodes of mania, hypomania, and depression. Despite the availability of mood stabilizers, antipsychotics, and antidepressants, long-term management remains challenging due to incomplete symptom control, adverse effects, and high relapse rates. Methods: This paper is a narrative review aimed at synthesizing emerging trends and future directions in the pharmacological treatment of BD. Results: Future pharmacotherapy for BD is likely to shift toward precision medicine, leveraging advances in genetics, biomarkers, and neuroimaging to guide personalized treatment strategies. Novel drug development will also target previously underexplored mechanisms, such as inflammation, mitochondrial dysfunction, circadian rhythm disturbances, and glutamatergic dysregulation. Physiological endophenotypes, such as immune-metabolic profiles, circadian rhythms, and stress reactivity, are emerging as promising translational tools for tailoring treatment and reducing associated somatic comorbidity and mortality. Recognition of the heterogeneous longitudinal trajectories of BD, including chronic mixed states, long depressive episodes, or intermittent manic phases, has underscored the value of clinical staging models to inform both pharmacological strategies and biomarker research. Disrupted circadian rhythms and associated chronotypes further support the development of individualized chronotherapeutic interventions. Emerging chronotherapeutic approaches based on individual biological rhythms, along with innovative monitoring strategies such as saliva-based lithium sensors, are reshaping the future landscape. Anti-inflammatory agents, neurosteroids, and compounds modulating oxidative stress are emerging as promising candidates. Additionally, medications targeting specific biological pathways implicated in bipolar pathophysiology, such as N-methyl-D-aspartate (NMDA) receptor modulators, phosphodiesterase inhibitors, and neuropeptides, are under investigation. Conclusions: Advances in pharmacogenomics will enable clinicians to predict individual responses and tolerability, minimizing trial-and-error prescribing. The future landscape may also incorporate digital therapeutics, combining pharmacotherapy with remote monitoring and data-driven adjustments. Ultimately, integrating innovative drug therapies with personalized approaches has the potential to enhance efficacy, reduce adverse effects, and improve long-term outcomes for individuals with bipolar disorder, ushering in a new era of precision psychiatry. Full article
Show Figures

Figure 1

25 pages, 1751 KiB  
Review
Large Language Models for Adverse Drug Events: A Clinical Perspective
by Md Muntasir Zitu, Dwight Owen, Ashish Manne, Ping Wei and Lang Li
J. Clin. Med. 2025, 14(15), 5490; https://doi.org/10.3390/jcm14155490 - 4 Aug 2025
Viewed by 202
Abstract
Adverse drug events (ADEs) significantly impact patient safety and health outcomes. Manual ADE detection from clinical narratives is time-consuming, labor-intensive, and costly. Recent advancements in large language models (LLMs), including transformer-based architectures such as Bidirectional Encoder Representations from Transformers (BERT) and Generative Pretrained [...] Read more.
Adverse drug events (ADEs) significantly impact patient safety and health outcomes. Manual ADE detection from clinical narratives is time-consuming, labor-intensive, and costly. Recent advancements in large language models (LLMs), including transformer-based architectures such as Bidirectional Encoder Representations from Transformers (BERT) and Generative Pretrained Transformer (GPT) series, offer promising methods for automating ADE extraction from clinical data. These models have been applied to various aspects of pharmacovigilance and clinical decision support, demonstrating potential in extracting ADE-related information from real-world clinical data. Additionally, chatbot-assisted systems have been explored as tools in clinical management, aiding in medication adherence, patient engagement, and symptom monitoring. This narrative review synthesizes the current state of LLMs in ADE detection from a clinical perspective, organizing studies into categories such as human-facing decision support tools, immune-related ADE detection, cancer-related and non-cancer-related ADE surveillance, and personalized decision support systems. In total, 39 articles were included in this review. Across domains, LLM-driven methods have demonstrated promising performances, often outperforming traditional approaches. However, critical limitations persist, such as domain-specific variability in model performance, interpretability challenges, data quality and privacy concerns, and infrastructure requirements. By addressing these challenges, LLM-based ADE detection could enhance pharmacovigilance practices, improve patient safety outcomes, and optimize clinical workflows. Full article
(This article belongs to the Section Pharmacology)
Show Figures

Figure 1

Back to TopTop