Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (57)

Search Parameters:
Keywords = drought stress memory

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 24338 KB  
Article
Carbon-Water Coupling and Ecosystem Resilience to Drought in the Yili-Balkhash Basin, Central Asia
by Zezheng Liu, Dong Cui, Zhicheng Jiang, Jiangchao Yan, Yunhao Wu, Mengdie Wen, Junqi Liu and Luyao Liu
Water 2025, 17(24), 3535; https://doi.org/10.3390/w17243535 - 13 Dec 2025
Viewed by 282
Abstract
The resilience of arid ecosystems to climate change hinges on their carbon-water dynamics. This study investigates the spatiotemporal patterns of ecosystem water use efficiency (WUE) and its resilience in the ecologically vulnerable Yili-Balkhash Basin, a critical watershed in Central Asia. Contrary to a [...] Read more.
The resilience of arid ecosystems to climate change hinges on their carbon-water dynamics. This study investigates the spatiotemporal patterns of ecosystem water use efficiency (WUE) and its resilience in the ecologically vulnerable Yili-Balkhash Basin, a critical watershed in Central Asia. Contrary to a basin-wide trend of increasing WUE, we identify a significant decline in the WUE of high-productivity forest ecosystems. We demonstrate that this decline stems from a fundamental decoupling between the drivers of carbon (GPP) and water (ET) cycles during drought periods. While GPP shows a positive response to atmospheric aridity (vapor pressure deficit), likely driven by co-varying high radiation and temperature, ET remains primarily controlled by soil moisture and surface thermal conditions. This driver asynchrony results in ET-dominated control over WUE across 65.8% of the basin, rendering forests particularly vulnerable. Machine learning-based attribution reveals that ecosystem resilience is not determined by long-term drought legacy but by the combined effects of immediate thermal stress and a one-month ecological memory. Our findings highlight an emerging vulnerability of high-productivity forest ecosystems to atmospheric aridity and underscore the necessity of process-based frameworks for assessing ecosystem stability under a changing climate. Full article
(This article belongs to the Section Hydrology)
Show Figures

Figure 1

18 pages, 4065 KB  
Article
Physiological Responses of Tomato Plants with Varied Susceptibility to Multiple Drought Stress
by Hong Chen, Yi Liu, Fei Ding, Yankai Li, Carl-Otto Ottosen, Xiaoming Song, Fangling Jiang, Zhen Wu, Xiaqing Yu and Rong Zhou
Antioxidants 2025, 14(12), 1448; https://doi.org/10.3390/antiox14121448 - 1 Dec 2025
Viewed by 524
Abstract
Frequent extreme weather events exacerbate agricultural abiotic stress, with drought causing widespread yield loss. Tomato, a globally important vegetable sensitive to water deficit, has been predominantly studied under single-drought scenarios that poorly reflect recurrent field conditions. This study investigated physiological and molecular responses [...] Read more.
Frequent extreme weather events exacerbate agricultural abiotic stress, with drought causing widespread yield loss. Tomato, a globally important vegetable sensitive to water deficit, has been predominantly studied under single-drought scenarios that poorly reflect recurrent field conditions. This study investigated physiological and molecular responses of two tomato genotypes to repeated drought stress. Results showed that the drought-sensitive genotype ‘TGTB’ exhibited faster ABA accumulation and more pronounced ABA-mediated stomatal closure. During the second drought cycle, stomatal pore length and width were significantly smaller than during the first drought, indicating a strong stress memory effect. In contrast, the drought-tolerant ‘LA1598’ showed minimal memory responses. Under extreme drought stress, primed and non-primed ‘TGTB’ plants showed significantly lower H2O2 content than controls, whereas primed ‘LA1598’ plants maintained a significantly lower O2·− production rate than non-primed plants during both extreme drought cycles. Antioxidant enzyme systems contributed to ROS homeostasis, supported by the regulation of key drought-responsive genes. This study demonstrates genotype-dependent memory capacity and reveals that drought priming enhances repeated drought tolerance through ABA-regulated stomatal adjustment. These findings provide a theoretical basis for improving tomato resilience to recurrent drought and supporting breeding of drought-tolerant varieties. Full article
Show Figures

Figure 1

26 pages, 3219 KB  
Article
Physiological, Productive, and Soil Rhizospheric Microbiota Responses of ‘Santina’ Cherry Trees to Regulated Deficit Irrigation Applied After Harvest
by Tamara Alvear, Macarena Gerding, Richard M. Bastías, Carolina Contreras, Silvia Antileo-Mellado, Andrés Olivos, Mauricio Calderón-Orellana and Arturo Calderón-Orellana
Plants 2025, 14(23), 3611; https://doi.org/10.3390/plants14233611 - 26 Nov 2025
Viewed by 394
Abstract
Chile, the leading exporter of cherries (Prunus avium L.) in the southern hemisphere, faces sustained variations in precipitation patterns and high evaporative demand in its productive areas. The low availability of water during the period of highest environmental demand makes it essential [...] Read more.
Chile, the leading exporter of cherries (Prunus avium L.) in the southern hemisphere, faces sustained variations in precipitation patterns and high evaporative demand in its productive areas. The low availability of water during the period of highest environmental demand makes it essential to reduce or suspend irrigation applications. In this scenario, regulated deficit irrigation (RDI) after harvest is an efficient strategy for optimizing water use without compromising orchard yields. This study was conducted over three consecutive seasons in a traditional commercial orchard of ‘Santina’ cherry trees grafted onto Colt rootstock, evaluating the effect of two levels of RDI, moderate (MDI) and severe (SDI), on productive and ecophysiological parameters. Both treatments resulted in water savings of between 10% and 28%, without negatively affecting yield or fruit quality. The SDI treatment, despite reaching higher levels of cumulative water stress, improved intrinsic water use efficiency while maintaining stable photosynthetic efficiency. In addition, an increase in the abundance of fine roots and beneficial rhizosphere bacteria populations, such as Azospirillum and Bacillus, was observed, suggesting the activation of water resilience mechanisms mediated by plant–microbiota interaction, possibly associated with stress-induced ecological memory and microbial legacy effects. These results position after-harvest RDI as a sustainable tool for coping with climate variability and water scarcity in commercial cherry orchards. Full article
Show Figures

Figure 1

28 pages, 2407 KB  
Review
Emerging Mechanisms of Plant Responses to Abiotic Stress
by Wan Zhao, Xiaojie Chen, Jiahuan Wang, Zhongjie Cheng, Xuhui Ma, Qi Zheng, Zhaoshi Xu and Fuyan Zhang
Plants 2025, 14(22), 3445; https://doi.org/10.3390/plants14223445 - 11 Nov 2025
Viewed by 1890
Abstract
Plants continuously face multiple abiotic stresses, including drought, salinity, heat, cold, and heavy metal, that challenge cellular homeostasis and threaten global crop productivity. Recent research reveals that these stress responses are not isolated but interconnected through shared hormonal, redox, and transcriptional networks. This [...] Read more.
Plants continuously face multiple abiotic stresses, including drought, salinity, heat, cold, and heavy metal, that challenge cellular homeostasis and threaten global crop productivity. Recent research reveals that these stress responses are not isolated but interconnected through shared hormonal, redox, and transcriptional networks. This review provides an integrative synthesis of current advances in stress signaling, emphasizing how perception, transduction, and memory layers are hierarchically organized across distinct stress types. We outline key regulatory hubs—such as ABA-centered hormonal crosstalk, chloroplast-nucleus redox communication, and epigenetic priming—that coordinate systemic tolerance. Furthermore, we highlight emerging evidence for stress-specific modules that operate under combined stresses (e.g., drought–heat, salinity–cold), providing a unified framework for understanding how plants integrate multi-dimensional signals. This synthesis offers a conceptual perspective linking signaling architecture to adaptive outcomes, aiming to inform future strategies for engineering multi-stress-resilient crops. Full article
(This article belongs to the Section Plant Response to Abiotic Stress and Climate Change)
Show Figures

Figure 1

22 pages, 3109 KB  
Article
Genome-Wide Transcriptional Analysis Reveals Gamma-Aminobutyric Acid (GABA) Priming Induces Long-Term Stress Memory in Tomato (Solanum lycopersicum)
by Kincső Decsi, Mostafa Ahmed and Zoltán Tóth
Agriculture 2025, 15(19), 2012; https://doi.org/10.3390/agriculture15192012 - 26 Sep 2025
Cited by 1 | Viewed by 679
Abstract
Addressing damage inflicted by environmental stress is difficult post-occurrence. The use of externally delivered gamma-aminobutyric acid (GABA) priming to healthy plants may serve as an effective preventive measure by stimulating plant defense pathways. A genome-wide transcriptional investigation was performed on tomato plants following [...] Read more.
Addressing damage inflicted by environmental stress is difficult post-occurrence. The use of externally delivered gamma-aminobutyric acid (GABA) priming to healthy plants may serve as an effective preventive measure by stimulating plant defense pathways. A genome-wide transcriptional investigation was performed on tomato plants following GABA priming, with extended data about the stress memory of previously primed plants subjected to drought stress. GABA significantly stimulates starch and sucrose metabolism, amino sugar and nucleotide sugar metabolism, porphyrin metabolism, glycerolipid metabolism, biosynthesis of phenylalanine, tyrosine, and tryptophan, phenylalanine metabolism, ascorbate and aldarate metabolism, pantothenate and CoA biosynthesis, and plant hormone signal transduction pathways. The initial priming effect could be remembered when subsequent environmental stress arose, but its influence intensified in plants that had previously undergone priming. The application of GABA can establish a novel form of preventative defense against the detrimental effects of stresses. It can effectively enhance long-term plant defense by facilitating the development of plant stress memory. Full article
(This article belongs to the Section Crop Genetics, Genomics and Breeding)
Show Figures

Figure 1

35 pages, 938 KB  
Review
Dynamics and Malleability of Plant DNA Methylation During Abiotic Stresses
by Niraj Lodhi and Rakesh Srivastava
Epigenomes 2025, 9(3), 31; https://doi.org/10.3390/epigenomes9030031 - 29 Aug 2025
Cited by 1 | Viewed by 2573
Abstract
Epigenetic regulation, particularly DNA methylation, plays a crucial role in plant adaptation to environmental stresses by modulating gene expression without altering the underlying DNA sequence. In response to major abiotic stresses such as salinity, drought, heat, cold, and heavy metal toxicity, plants undergo [...] Read more.
Epigenetic regulation, particularly DNA methylation, plays a crucial role in plant adaptation to environmental stresses by modulating gene expression without altering the underlying DNA sequence. In response to major abiotic stresses such as salinity, drought, heat, cold, and heavy metal toxicity, plants undergo dynamic changes in DNA methylation patterns. These modifications are orchestrated by DNA methyltransferases and demethylases with variations depending on plant species, genetic background, and ontogenic phase. DNA methylation affects the expression of key genes involved in cellular, physiological, and metabolic processes essential for stress tolerance. Furthermore, it contributes to the establishment of stress memory, which can be transmitted across generations, thereby enhancing long-term plant resilience. The interaction of DNA methylation with other epigenetic mechanisms, including histone modifications, small RNAs, and chromatin remodeling, adds layers of regulatory complexity. Recent discoveries concerning N6-methyladenine have opened new avenues for understanding the epigenetic landscape in plant responses to abiotic stress. Overall, this review addresses the central role of DNA methylation in regulating plant stress responses and emphasizes its potential for application in crop improvement through epigenetic and advanced biotechnological approaches. Full article
(This article belongs to the Collection Epigenetic Control in Plants)
Show Figures

Figure 1

16 pages, 4914 KB  
Article
Drought–Rewatering Cycles: Impact on Non-Structural Carbohydrates and C:N:P Stoichiometry in Pinus yunnanensis Seedlings
by Weisong Zhu, Yuanxi Liu, Zhiqi Li, Jialan Chen and Junwen Wu
Plants 2025, 14(15), 2448; https://doi.org/10.3390/plants14152448 - 7 Aug 2025
Cited by 1 | Viewed by 791
Abstract
The ongoing global climate change has led to an increase in the frequency and complexity of drought events. Pinus yunnanensis, a native tree species in southwest China that possesses significant ecological and economic value, exhibits a high sensitivity to drought stress, particularly [...] Read more.
The ongoing global climate change has led to an increase in the frequency and complexity of drought events. Pinus yunnanensis, a native tree species in southwest China that possesses significant ecological and economic value, exhibits a high sensitivity to drought stress, particularly in its seedlings. This study investigates the response mechanisms of non-structural carbohydrates (NSCs, defined as the sum of soluble sugars and starch) and the stoichiometric characteristics of carbon (C), nitrogen (N), and phosphorus (P) to repeated drought conditions in Pinus yunnanensis seedlings. We established three treatment groups in a potting water control experiment involving 2-year-old Pinus yunnanensis seedlings: normal water supply (CK), a single drought (D1), and three drought–rewatering cycles (D3). The findings indicated that the frequency of drought occurrences, organ responses, and their interactions significantly influenced the non-structural carbohydrate (NSC) content and its fractions, as well as the C/N/P content and its stoichiometric ratios. Under D3 treatment, stem NSC content increased by 24.97% and 29.08% compared to CK and D1 groups (p < 0.05), respectively, while root NSC content increased by 41.35% and 49.46% versus CK and D1 (p < 0.05). The pronounced accumulation of soluble sugars and starch in stems and roots under D3 suggests a potential stress memory effect. Additionally, NSC content in the stems increased significantly by 77.88%, while the roots enhanced their resource acquisition by dynamically regulating the C/P ratio, which increased by 23.26% (p < 0.05). Needle leaf C content decreased (18.77%) but P uptake increased (8%) to maintain basal metabolism (p < 0.05). Seedling growth was N-limited (needle N/P < 14) and the degree of N limitation was exacerbated by repeated droughts. Phenotypic plasticity indices and principal component analysis revealed that needle nitrogen and phosphorus, soluble sugars in needles, stem C/N ratio (0.61), root C/N ratio (0.53), and stem C/P ratio were crucial for drought adaptation. This study elucidates the physiological mechanisms underlying the resilience of Pinus yunnanensis seedlings to recurrent droughts, as evidenced by their organ-specific strategies for allocating carbon, nitrogen, and phosphorus, alongside the dynamic regulation of nitrogen storage compounds (NSCs). These findings provide a robust theoretical foundation for implementing drought-resistant afforestation and ecological restoration initiatives targeting Pinus yunnanensis in southwestern China. Full article
Show Figures

Figure 1

12 pages, 1033 KB  
Article
Hydration-Dehydration Effects on Germination Tolerance to Water Stress of Eight Cistus Species
by Belén Luna
Plants 2025, 14(14), 2237; https://doi.org/10.3390/plants14142237 - 19 Jul 2025
Viewed by 886
Abstract
Seeds in soil are often exposed to cycles of hydration and dehydration, which can prime them by triggering physiological activation without leading to germination. While this phenomenon has been scarcely studied in wild species, it may play a critical role in enhancing drought [...] Read more.
Seeds in soil are often exposed to cycles of hydration and dehydration, which can prime them by triggering physiological activation without leading to germination. While this phenomenon has been scarcely studied in wild species, it may play a critical role in enhancing drought resilience and maintaining seed viability under the warmer conditions predicted by climate change. In this study, I investigated the effects of hydration–dehydration cycles on germination response under water stress in eight Cistus species typical of Mediterranean shrublands. First, seeds were exposed to a heat shock to break physical dormancy, simulating fire conditions. Subsequently, they underwent one of two hydration–dehydration treatments (24 or 48 h) and were germinated under a range of water potentials (0, –0.2, –0.4, –0.6, and –0.8 MPa). Six out of eight species showed enhanced germination responses following hydration–dehydration treatments, including higher final germination percentages, earlier germination onset (T0), or increased tolerance to water stress. These findings highlight the role of water availability as a key factor regulating germination in Cistus species and evidence a hydration memory mechanism that may contribute in different ways to post-fire regeneration in Mediterranean ecosystems. Full article
(This article belongs to the Section Plant Response to Abiotic Stress and Climate Change)
Show Figures

Figure 1

15 pages, 1642 KB  
Review
Molecular Mechanisms of Plant Stress Memory: Roles of Non-Coding RNAs and Alternative Splicing
by Mariz Sintaha
Plants 2025, 14(13), 2021; https://doi.org/10.3390/plants14132021 - 2 Jul 2025
Cited by 4 | Viewed by 2186
Abstract
The ability of plants to protect themselves from stress-related damages is termed “adaptability” and the phenomenon of showing better performance in subsequent stress is termed “stress memory”. This phenomenon has been reported in various stresses such as drought, heat, salinity, cold, and heavy [...] Read more.
The ability of plants to protect themselves from stress-related damages is termed “adaptability” and the phenomenon of showing better performance in subsequent stress is termed “stress memory”. This phenomenon has been reported in various stresses such as drought, heat, salinity, cold, and heavy metal toxicity. Histone modification leading to chromatin remodeling and accumulation of phosphorylated RNA polymerase on the promoters of memory genes is a well-known mechanism of plant stress memory. Recent studies have revealed the role of non-coding RNAs (ncRNAs) and alternative splicing (AS) in memory-specific gene expression and transgenerational inheritance of stress memory. MicroRNAs (miRNAs) inhibit specific genes to enable plants to respond better in subsequent drought and heat stress, while long non-coding RNAs (lncRNAs) play roles in epigenetic regulation of memory gene expression in cold and salt stress. Small interfering RNAs (siRNAs) lead to DNA methylation during the memory response of biotic, salt, and heavy metal stress. Simultaneously, stress-responsive isoforms of tolerant genes are found to be expressed as a memory response in subsequent heat stress. This review highlights the stress-type-specific roles of ncRNAs and AS in establishing, maintaining, and transmitting stress memory, offering insights into their potential for improving crop resilience through genetic and epigenetic priming strategies. Full article
Show Figures

Figure 1

18 pages, 1304 KB  
Article
Exogenous Proline Modulates Physiological Responses and Induces Stress Memory in Wheat Under Repeated and Delayed Drought Stress
by Jan Pecka, Kamil Kraus, Martin Zelený and Helena Hniličková
Agronomy 2025, 15(6), 1370; https://doi.org/10.3390/agronomy15061370 - 3 Jun 2025
Viewed by 1769
Abstract
Drought stress negatively affects plant metabolism and growth, triggering complex defence mechanisms to limit damage. This study evaluated the effectiveness of a single foliar application of 1 mM L-proline (Pro) in winter wheat (Triticum aestivum L., cv. Bohemie) in two separate experiments [...] Read more.
Drought stress negatively affects plant metabolism and growth, triggering complex defence mechanisms to limit damage. This study evaluated the effectiveness of a single foliar application of 1 mM L-proline (Pro) in winter wheat (Triticum aestivum L., cv. Bohemie) in two separate experiments differing in the time interval between application and drought—7 days (experiment 1) and 35 days (experiment 2). Net photosynthetic rate (A), transpiration rate (E), stomatal conductance (gs), leaf water potential (Ψw), intrinsic water use efficiency (WUEi), endogenous proline content (Pro), malondialdehyde content (MDA), and maximum quantum yield of photosystem II (Fv/Fm) were measured. In experiment 1, drought markedly reduced net photosynthetic rate, transpiration rate, stomatal conductance, and leaf water potential in both drought-stressed treatments, namely, without priming plants (S) and with Pro priming plants (SPro). Pro and MDA content increased under stress. Higher E and gs in the SPro treatment indicated more effective stomatal regulation and a distinct water use strategy. Pro content was significantly lower in SPro compared to S, whereas differences in MDA levels between these treatments were not statistically significant. The second drought period (D2) led to more pronounced limitations in gas exchange in both S and SPro. Enhanced osmoregulation was reflected by lower Ψw (S < SPro) and higher Pro accumulation in S (S > SPro). The effect of exogenous Pro persisted in the form of reduced endogenous Pro synthesis and improved photosystem II protection. Rehydration of stressed plants restored all monitored physiological parameters, and Pro-treated plants exhibited a more efficient recovery of gas exchange. Experiment 2 demonstrated a long-lasting priming effect that improved the preparedness of plants for future drought events. In the SPro treatment, this stress memory supported more efficient osmoregulation, reduced lipid peroxidation, improved protection of photosystem II integrity, and a more effective restart of gas exchange following rehydration. Our findings highlight the potential of exogenous proline as a practical tool for enhancing crop resilience to climate-induced drought stress. Full article
Show Figures

Figure 1

19 pages, 1768 KB  
Article
Verification of Seed-Priming-Induced Stress Memory by Genome-Wide Transcriptomic Analysis in Wheat (Triticum aestivum L.)
by Kincső Decsi, Mostafa Ahmed, Donia Abdul-Hamid, Roquia Rizk and Zoltán Tóth
Agronomy 2025, 15(6), 1365; https://doi.org/10.3390/agronomy15061365 - 2 Jun 2025
Cited by 1 | Viewed by 1227
Abstract
In line with the latest challenges, agriculture has many options to protect against stress conditions. Seed-priming treatment was applied to winter wheat genotype AG Hurrem with Dr. Green seed-priming fertilizer, which is a commonly used seed fertilizer containing macro- and microelements. Genome-wide transcriptomic [...] Read more.
In line with the latest challenges, agriculture has many options to protect against stress conditions. Seed-priming treatment was applied to winter wheat genotype AG Hurrem with Dr. Green seed-priming fertilizer, which is a commonly used seed fertilizer containing macro- and microelements. Genome-wide transcriptomic analysis was performed to examine the effects of treatments. In seed-primed plants, defense response pathways such as purine and thiamine metabolism, glutathione pathway, and phenylpropanoid biosynthesis were activated. At the same time, photosynthesis and some cellular respiration processes were downregulated and suppressed. Furthermore, in samples of plants previously exposed to priming and subsequently to drought stress, biochemical pathways activated during seed priming showed positive modulation, thus confirming the long-term traces of the priming effects of previous treatments and their repeated inducibility in the genome, i.e., the presumed existence of stress memory. The in silico analyses were also supported by laboratory antioxidant enzyme activity measurements. The priming technique and the preventive approach that can be offered with it may be a promising option for developing sustainable agricultural production in the future. Full article
Show Figures

Figure 1

28 pages, 2265 KB  
Review
A Brief Overview of the Epigenetic Regulatory Mechanisms in Plants
by Theodoros Tresas, Ioannis Isaioglou, Andreas Roussis and Kosmas Haralampidis
Int. J. Mol. Sci. 2025, 26(10), 4700; https://doi.org/10.3390/ijms26104700 - 14 May 2025
Cited by 4 | Viewed by 4159
Abstract
Plants continuously adapt to their environments by responding to various intrinsic and extrinsic signals. They face numerous biotic and abiotic stresses such as extreme temperatures, drought, or pathogens, requiring complex regulatory mechanisms to control gene activity and adapt their proteome for survival. Epigenetic [...] Read more.
Plants continuously adapt to their environments by responding to various intrinsic and extrinsic signals. They face numerous biotic and abiotic stresses such as extreme temperatures, drought, or pathogens, requiring complex regulatory mechanisms to control gene activity and adapt their proteome for survival. Epigenetic regulation plays a crucial role in these adaptations, potentially leading to both heritable and non-heritable changes across generations. This process enables plants to adjust their gene expression profiles and acclimate effectively. It is also vital for plant development and productivity, affecting growth, yield, and seed quality, and enabling plants to “remember” environmental stimuli and adapt accordingly. Key epigenetic mechanisms that play significant roles include DNA methylation, histone modification, and ubiquitin ligase complex activity. These processes, which have been extensively studied in the last two decades, have led to a better understanding of the underlying mechanisms and expanded the potential for improving agriculturally and economically important plant traits. DNA methylation is a fundamental process that regulates gene expression by altering chromatin structure. The addition of methyl groups to cytosines by DNA methylases leads to gene suppression, whereas DNA demethylases reverse this effect. Histone modifications, on the other hand, collectively referred to as the “histone code”, influence chromatin structure and gene activity by promoting either gene transcription or gene silencing. These modifications are either recognized, added, or removed by a variety of enzymes that act practically as an environmental memory, having a significant impact on plant development and the responses of plants to environmental stimuli. Finally, ubiquitin ligase complexes, which tag specific histones or regulatory proteins with ubiquitin, are also crucial in plant epigenetic regulation. These complexes are involved in protein degradation and play important roles in regulating various cellular activities. The intricate interplay between DNA methylation, histone modifications, and ubiquitin ligases adds complexity to our understanding of epigenetic regulation. These mechanisms collectively control gene expression, generating a complex and branching network of interdependent regulatory pathways. A deeper understanding of this complex network that helps plants adapt to environmental changes and stressful conditions will provide valuable insights into the regulatory mechanisms involved. This knowledge could pave the way for new biotechnological approaches and plant breeding strategies aimed at enhancing crop resilience, productivity, and sustainable agriculture. Full article
(This article belongs to the Section Molecular Plant Sciences)
Show Figures

Figure 1

16 pages, 2974 KB  
Article
Memory Induced by Recurrent Drought Stress in Chirca (Acanthostyles buniifolius)
by Tamara Heck, Gustavo Maia Souza, Marcus Vinícius Fipke, Rubens Antonio Polito, Andrisa Balbinot, Fabiane Pinto Lamego, Edinalvo Rabaioli Camargo and Luis Antonio de Avila
Plants 2025, 14(4), 555; https://doi.org/10.3390/plants14040555 - 11 Feb 2025
Cited by 3 | Viewed by 931
Abstract
To thrive as a successful weed in natural pastures, a plant must have not only highly competitive ability, but also the resilience to endure environmental stress and rapidly reclaim space once those stressors diminish and the other non-stress-tolerant plants die. Acanthostyles buniifolius [(Hook. [...] Read more.
To thrive as a successful weed in natural pastures, a plant must have not only highly competitive ability, but also the resilience to endure environmental stress and rapidly reclaim space once those stressors diminish and the other non-stress-tolerant plants die. Acanthostyles buniifolius [(Hook. ex Hook. & Arn.) R.M.King & H.Rob.], known as chirca, is a widely spread weed in South American natural pastures. It is known for its remarkable ability to withstand environmental stress and flourish in environments with prevalent stressors. The study evaluated the memory effect of water stress (drought) in chirca plants. The experiment was conducted in a greenhouse in a randomized block design with three replications. Treatments included Control = control plants without water deficit kept at 100% of the soil water-holding capacity (WHC); Primed plants = plants that were primed with water stress at 141 days after emergence (DAE) and received recurrent stress at 164 DAE; Naïve plants: plants that only experienced water stress at 164 DAE. To reach water stress, plants were not watered until the soil reached 15% of the soil’s WHC, which occurred ten days after water suppression in the priming stress and nine days after water suppression in the second stress. During periods without restriction, the pots were watered daily at 100% of the WHC. Primed plants exposed to water deficit better-maintained water status compared to the naïve plants; glycine betaine is an important defense mechanism against water deficit in chirca; naïve plants have a higher concentration of proline than plants under recurrent stress, demonstrating the greater need for protection against oxidative damage and needs greater osmotic regulation. Recurrent water deficits can prepare chirca plants for future drought events. These results show that chirca is a very adaptative weed and may become a greater threat to pastures in South America due to climate change, especially if drought becomes more frequent and severe. Full article
(This article belongs to the Section Plant Response to Abiotic Stress and Climate Change)
Show Figures

Figure 1

19 pages, 4141 KB  
Article
DNA Methylation Participates in Drought Stress Memory and Response to Drought in Medicago ruthenica
by Na Zi, Weibo Ren, Huiqin Guo, Feng Yuan, Yaling Liu and Ellen Fry
Genes 2024, 15(10), 1286; https://doi.org/10.3390/genes15101286 - 30 Sep 2024
Cited by 14 | Viewed by 3257
Abstract
Background: Drought is currently a global environmental problem, which inhibits plant growth and development and seriously restricts crop yields. Many plants exposed to drought stress can generate stress memory, which provides some advantages for resisting recurrent drought. DNA methylation is a mechanism [...] Read more.
Background: Drought is currently a global environmental problem, which inhibits plant growth and development and seriously restricts crop yields. Many plants exposed to drought stress can generate stress memory, which provides some advantages for resisting recurrent drought. DNA methylation is a mechanism involved in stress memory formation, and many plants can alter methylation levels to form stress memories; however, it remains unclear whether Medicago ruthenica exhibits drought stress memory, as the epigenetic molecular mechanisms underlying this process have not been described in this species. Methods: We conducted methylome and transcriptome sequencing to identify gene methylation and expression changes in plants with a history of two drought stress exposures. Results: Methylation analysis showed that drought stress resulted in an approximately 4.41% decrease in M. ruthenica genome methylation levels. The highest methylation levels were in CG dinucleotide contexts, followed by CHG contexts, with CHH contexts having the lowest levels. Analysis of associations between methylation and transcript levels showed that most DNA methylation was negatively correlated with gene expression except methylation within CHH motifs in gene promoter regions. Genes were divided into four categories according to the relationship between methylation and gene expression; the up-regulation of hypo-methylated gene expression accounted for the vast majority (692 genes) and included genes encoding factors key for abscisic acid (ABA) and proline synthesis. The hypo-methylation of the promoter and body regions of these two gene groups induced increased gene transcription levels. Conclusions: In conclusion, DNA methylation may contribute to drought stress memory formation and maintenance in M. ruthenica by increasing the transcription levels of genes key for ABA and proline biosynthesis. Full article
(This article belongs to the Section Genes & Environments)
Show Figures

Figure 1

23 pages, 6157 KB  
Article
Stomatal and Non-Stomatal Leaf Responses during Two Sequential Water Stress Cycles in Young Coffea canephora Plants
by Danilo F. Baroni, Guilherme A. R. de Souza, Wallace de P. Bernado, Anne R. Santos, Larissa C. de S. Barcellos, Letícia F. T. Barcelos, Laísa Z. Correia, Claudio M. de Almeida, Abraão C. Verdin Filho, Weverton P. Rodrigues, José C. Ramalho, Miroslava Rakočević and Eliemar Campostrini
Stresses 2024, 4(3), 575-597; https://doi.org/10.3390/stresses4030037 - 9 Sep 2024
Cited by 4 | Viewed by 2341
Abstract
Understanding the dynamics of physiological changes involved in the acclimation responses of plants after their exposure to repeated cycles of water stress is crucial to selecting resilient genotypes for regions with recurrent drought episodes. Under such background, we tried to respond to questions [...] Read more.
Understanding the dynamics of physiological changes involved in the acclimation responses of plants after their exposure to repeated cycles of water stress is crucial to selecting resilient genotypes for regions with recurrent drought episodes. Under such background, we tried to respond to questions as: (1) Are there differences in the stomatal-related and non-stomatal responses during water stress cycles in different clones of Coffea canephora Pierre ex A. Froehner? (2) Do these C. canephora clones show a different response in each of the two sequential water stress events? (3) Is one previous drought stress event sufficient to induce a kind of “memory” in C. canephora? Seven-month-old plants of two clones (’3V’ and ‘A1’, previously characterized as deeper and lesser deep root growth, respectively) were maintained well-watered (WW) or fully withholding the irrigation, inducing soil water stress (WS) until the soil matric water potential (Ψmsoil) reached ≅ −0.5 MPa (−500 kPa) at a soil depth of 500 mm. Two sequential drought events (drought-1 and drought-2) attained this Ψmsoil after 19 days and were followed by soil rewatering until a complete recovery of leaf net CO2 assimilation rate (Anet) during the recovery-1 and recovery-2 events. The leaf gas exchange, chlorophyll a fluorescence, and leaf reflectance parameters were measured in six-day frequency, while the leaf anatomy was examined only at the end of the second drought cycle. In both drought events, the WS plants showed reduction in stomatal conductance and leaf transpiration. The reduction in internal CO2 diffusion was observed in the second drought cycle, expressed by increased thickness of spongy parenchyma in both clones. Those stomatal and anatomical traits impacted decreasing the Anet in both drought events. The ‘3V’ was less influenced by water stress than the ‘A1’ genotype in Anet, effective quantum yield in PSII photochemistry, photochemical quenching, linear electron transport rate, and photochemical reflectance index during the drought-1, but during the drought-2 event such an advantage disappeared. Such physiological genotype differences were supported by the medium xylem vessel area diminished only in ‘3V’ under WS. In both drought cycles, the recovery of all observed stomatal and non-stomatal responses was usually complete after 12 days of rewatering. The absence of photochemical impacts, namely in the maximum quantum yield of primary photochemical reactions, photosynthetic performance index, and density of reaction centers capable of QA reduction during the drought-2 event, might result from an acclimation response of the clones to WS. In the second drought cycle, the plants showed some improved responses to stress, suggesting “memory” effects as drought acclimation at a recurrent drought. Full article
(This article belongs to the Topic Plant Responses to Environmental Stress)
Show Figures

Graphical abstract

Back to TopTop