Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (15)

Search Parameters:
Keywords = droplet vaporization and dispersion

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
25 pages, 13728 KiB  
Article
The Development of Thermoresponsive Multifunctional Chitosan Films Suitable for Food Packaging
by Nihal Sarier, Anıl Eloglu and Emel Onder
Polysaccharides 2025, 6(1), 17; https://doi.org/10.3390/polysaccharides6010017 - 2 Mar 2025
Cited by 1 | Viewed by 1012
Abstract
We developed bio-based chitosan–gelatin films, CHG-LO films, incorporating lavender essential oil (15–26 wt% LO) and oleic acid (33–47 wt% OA) with smooth surfaces and thicknesses of 0.42–0.99 mm. For their manufacture, the nanoemulsions were prepared to possess uniform dispersion and colloidal stability with [...] Read more.
We developed bio-based chitosan–gelatin films, CHG-LO films, incorporating lavender essential oil (15–26 wt% LO) and oleic acid (33–47 wt% OA) with smooth surfaces and thicknesses of 0.42–0.99 mm. For their manufacture, the nanoemulsions were prepared to possess uniform dispersion and colloidal stability with average droplet sizes of 475–854 nm, polydispersity indices (PDI) of 0.095–0.235, and zeta potentials of 23.7–56.9 mV at 40 °C, where OA served as surfactant and phase change material. The opacities of the CHG-LO films increased by 1.8 to 5.5 times compared to the control group, and their UV-visible light-blocking properties improved. These films demonstrated cyclic thermal buffering character, with heat storage capacities ranging from 14.0 to 36.0 J·g−1 between −26 °C and 20 °C compatible with that of OA. Additionally, they showed reduced water vapor transmission rates and swelling degrees in acidic and neutral environments. The total phenolic contents of the CHG-LO films increased 1.5–4.2 times compared to the control associated with the presence of LO phenolic groups in the structure. DPPH (2,2-diphenyl-1 picrylhydrazyl) and ABTS (2,2′–azino–bis(3–ethylbenzothiazoline–6–sulphonic acid)) scavenging activity test results show that the antioxidant properties of these films improved with increasing LO-OA content up to 2.2 and 1.3 times the control, respectively, and also showed antimicrobial properties. The multifunctional CHG-LO films of this study are promising candidates for temperature-sensitive active packaging in food as well as in pharmaceutical and cosmetic industries. Full article
Show Figures

Graphical abstract

26 pages, 10145 KiB  
Article
Investigating the Impact of Chlorogenic Acid Content and Cellulose Nanoparticles on Sunflower Protein-Based Emulsions and Films
by Andresa Gomes, Lais Brito Cangussu, Rosiane Lopes Cunha, Leandro Soares de Oliveira, Adriana Silva Franca and Ana Letícia Rodrigues Costa
Foods 2025, 14(5), 824; https://doi.org/10.3390/foods14050824 - 27 Feb 2025
Cited by 2 | Viewed by 960
Abstract
This study explores how varying chlorogenic acid levels (low—yellowish, Y; high—greenish, G) in sunflower proteins (SFs) affect the properties of eugenol-loaded oil-in-water emulsions and the resulting films, while examining the interaction of cellulose nanoparticles (from commercial (CNC) and banana peel sources (CNF)) with [...] Read more.
This study explores how varying chlorogenic acid levels (low—yellowish, Y; high—greenish, G) in sunflower proteins (SFs) affect the properties of eugenol-loaded oil-in-water emulsions and the resulting films, while examining the interaction of cellulose nanoparticles (from commercial (CNC) and banana peel sources (CNF)) with the film-forming matrix. This research fills gaps in literature by demonstrating how interactions among proteins, lipids, phenolic compounds, and cellulose nanoparticles influence film properties. The high chlorogenic acid content in SF reduced electrostatic repulsion between protein molecules, causing aggregation, oil droplet flocculation, and increased emulsion viscosity. The mechanical properties of emulsion-based films were significantly lower than those made with SF dispersions. Films made from low chlorogenic acid (yellowish SF) emulsions showed lower tensile strength and Young’s modulus but higher elongation at break compared to those made from high chlorogenic acid (greenish SF) emulsions. Water vapor permeability (WVP) decreased in films containing oil phases, but adding cellulose nanoparticles increased WVP. Despite this, the cellulose nanoparticles could not fully overcome the negative effects of lipid–protein interactions on mechanical properties and WVP. However, films containing eugenol exhibited significant antioxidant activity. The findings provide insights into developing sustainable, active packaging with antioxidant functionality and reduced environmental impact, opening new avenues for applications in food and other sectors requiring eco-friendly materials. Full article
Show Figures

Graphical abstract

25 pages, 5652 KiB  
Article
Vaporization Dynamics of a Volatile Liquid Jet on a Heated Bubbling Fluidized Bed
by Subhasish Mitra and Geoffrey M. Evans
Fluids 2025, 10(1), 19; https://doi.org/10.3390/fluids10010019 - 18 Jan 2025
Viewed by 828
Abstract
In this paper, droplet vaporization dynamics in a heated bubbling fluidized bed was studied. A volatile hydrocarbon liquid jet comprising acetone was injected into a hot bubbling fluidized bed of Geldart A-type glass ballotini particles heated at 150 °C, well above the saturation [...] Read more.
In this paper, droplet vaporization dynamics in a heated bubbling fluidized bed was studied. A volatile hydrocarbon liquid jet comprising acetone was injected into a hot bubbling fluidized bed of Geldart A-type glass ballotini particles heated at 150 °C, well above the saturation temperature of acetone (56 °C). Intense interactions were observed among the evaporating droplets and hot particles during contact with the re-suspension of particles due to a release of vapour. A non-intrusive schlieren imaging method was used to track the hot air and vapour mixture plume in the freeboard region of the bed and the acetone vapour fraction therein was mapped. The jet vaporization dynamics in the bubbling fluidized bed was modelled in a Eulerian–Lagrangian CFD (computational fluid dynamics) modelling framework involving heat and mass transfer sub models. The CFD model indicated a dispersion of the vapour plume from the evaporating droplets which was qualitatively compared with the schlieren images. Further, the CFD simulation predicted a significant reduction (~60 °C) in the local bed temperature at the point of the jet injection, which was indirectly confirmed in an experiment by the presence of particle agglomerates. Full article
Show Figures

Figure 1

23 pages, 41220 KiB  
Article
Surface Coating with Foliar Fertilizers
by Yojana J. P. Carreón, Angel A. Pereyra Zarate, Alondra E. Pérez Sánchez, Orlando Díaz-Hernández and Jorge González-Gutiérrez
Coatings 2024, 14(8), 1007; https://doi.org/10.3390/coatings14081007 - 8 Aug 2024
Cited by 2 | Viewed by 2057
Abstract
Foliar fertilization, an effective agricultural practice, involves the application of nutrients directly through droplets on plant leaves. The mechanisms of mass transport and deposition that arise from the drying of a drop determine the distribution of mass on a surface. Understanding these processes [...] Read more.
Foliar fertilization, an effective agricultural practice, involves the application of nutrients directly through droplets on plant leaves. The mechanisms of mass transport and deposition that arise from the drying of a drop determine the distribution of mass on a surface. Understanding these processes is crucial for optimizing foliar fertilization, ensuring even nutrient distribution, and improving crop yields and quality. This study experimentally investigates deposit formation from the evaporation of fertilizer droplets in various configurations: sessile, vertical, and pendant. We explored the effects of initial droplet volume, vapor pressure, and sorbitol presence on the final deposit morphology. The results reveal distinctive morphological patterns. Sessile drops exhibit two types of deposits—central crystal accumulation with fibrous structures or entirely fibrous structures. In contrast, vertical drops display two zones—fibrous structures at the bottom and small aggregates at the top. On the other hand, pendant drops predominantly feature intertwined crystals with peripheral fibrous structures. We found that high vapor pressures (RH = 60%) inhibit deposit formation within 72 h. Furthermore, the study measures relative evaporation time, showing that sessile droplets exhibit the longest evaporation times, followed by vertical and pendant droplets. Texture analysis, based on GLCM entropy, reveals that deposits generated under low vapor pressure (RH = 20%) show no significant differences in their entropy values, regardless of the droplet configuration and its initial volume. However, at intermediate vapor pressure (RH = 40%), entropy values vary significantly with droplet volume and configuration, being higher in sessile drops and lower in vertical ones. Additionally, we investigated the impact of sorbitol on the coating of sessile fertilizer droplets. We find that configurational entropy decreases exponentially with sorbitol concentration, inducing a morphological transition from fibrous structures to dispersed small aggregates. These findings highlight the complexity of pattern formation in fertilizer deposits and their potential implications for optimizing surface coating processes. Full article
(This article belongs to the Special Issue Recent Advances in Surface Functionalisation)
Show Figures

Figure 1

19 pages, 7681 KiB  
Article
A Preliminary Investigation of Radiation-Sensitive Ultrasound Contrast Agents for Photon Dosimetry
by Bram Carlier, Sophie V. Heymans, Sjoerd Nooijens, Gonzalo Collado-Lara, Yosra Toumia, Laurence Delombaerde, Gaio Paradossi, Jan D’hooge, Koen Van Den Abeele, Edmond Sterpin and Uwe Himmelreich
Pharmaceuticals 2024, 17(5), 629; https://doi.org/10.3390/ph17050629 - 14 May 2024
Cited by 1 | Viewed by 1652
Abstract
Radiotherapy treatment plans have become highly conformal, posing additional constraints on the accuracy of treatment delivery. Here, we explore the use of radiation-sensitive ultrasound contrast agents (superheated phase-change nanodroplets) as dosimetric radiation sensors. In a series of experiments, we irradiated perfluorobutane nanodroplets dispersed [...] Read more.
Radiotherapy treatment plans have become highly conformal, posing additional constraints on the accuracy of treatment delivery. Here, we explore the use of radiation-sensitive ultrasound contrast agents (superheated phase-change nanodroplets) as dosimetric radiation sensors. In a series of experiments, we irradiated perfluorobutane nanodroplets dispersed in gel phantoms at various temperatures and assessed the radiation-induced nanodroplet vaporization events using offline or online ultrasound imaging. At 25 °C and 37 °C, the nanodroplet response was only present at higher photon energies (≥10 MV) and limited to <2 vaporization events per cm2 per Gy. A strong response (~2000 vaporizations per cm2 per Gy) was observed at 65 °C, suggesting radiation-induced nucleation of the droplet core at a sufficiently high degree of superheat. These results emphasize the need for alternative nanodroplet formulations, with a more volatile perfluorocarbon core, to enable in vivo photon dosimetry. The current nanodroplet formulation carries potential as an innovative gel dosimeter if an appropriate gel matrix can be found to ensure reproducibility. Eventually, the proposed technology might unlock unprecedented temporal and spatial resolution in image-based dosimetry, thanks to the combination of high-frame-rate ultrasound imaging and the detection of individual vaporization events, thereby addressing some of the burning challenges of new radiotherapy innovations. Full article
(This article belongs to the Special Issue Next-Generation Contrast Agents for Medical Imaging)
Show Figures

Figure 1

16 pages, 1034 KiB  
Article
On Some Theoretical Aspects of The Evaporation Process of a Droplet and Its Optimal Size When Extinguishing Fires
by Sergey Oktyabrinovich Gladkov
Inventions 2023, 8(1), 35; https://doi.org/10.3390/inventions8010035 - 30 Jan 2023
Cited by 1 | Viewed by 1687
Abstract
We are proposing a model mathematical description of droplet evaporation using the kinetic approach. We have obtained the basic equation of the theory by using the law of conserving the full power of the vapor–liquid system, which has not been done before. We [...] Read more.
We are proposing a model mathematical description of droplet evaporation using the kinetic approach. We have obtained the basic equation of the theory by using the law of conserving the full power of the vapor–liquid system, which has not been done before. We have found the range of droplet sizes at which it is stable. We have given a comparison of the obtained results with the known traditional ones. We have given numerical estimates for the critical size of the fine-dispersed phase up to the value of which ordinary evaporation takes place (that is for Knudsen number Kn=lR, inequality Kn1 must be fulfilled, where l is the free path of the molecule and R is the droplet radius). We have given the optimal droplet size which is the most effective from the point of view of technical use in extinguishing flammable oil transformers. Full article
(This article belongs to the Special Issue Recent Advances in Fluid Mechanics and Transport Phenomena)
Show Figures

Figure 1

15 pages, 3382 KiB  
Article
Hybrid Surface Nanostructures Using Chemical Vapor Deposition and Colloidal Self-Assembled Patterns for Human Mesenchymal Stem Cell Culture—A Preliminary Study
by Yung-Chiang Liu, Jhe-Wei Jhang, Kun Liu, Haobo Pan, Hsien-Yeh Chen and Peng-Yuan Wang
Coatings 2022, 12(3), 311; https://doi.org/10.3390/coatings12030311 - 25 Feb 2022
Cited by 5 | Viewed by 3280
Abstract
Surface coatings are critical in biomaterials and biomedical devices. Chemical vapor deposition (CVD) is a well-known technology for the generation of thin films on a surface. However, the granular structures produced using CVD are rare. Recently, we used PPX-C, an excellent insulating material, [...] Read more.
Surface coatings are critical in biomaterials and biomedical devices. Chemical vapor deposition (CVD) is a well-known technology for the generation of thin films on a surface. However, the granular structures produced using CVD are rare. Recently, we used PPX-C, an excellent insulating material, for granular structure coating using CVD. Colloidal self-assembly is also a well-established method to generate granular structures named colloidal self-assembled patterns (cSAPs). In this study, we combined these two technologies to generate hierarchical granular structures and tested the biophysical effect of these hybrid surfaces on human bone marrow mesenchymal stem cells (hBMSCs). Two CVD-derived granular structures were made using water or glycerin droplets (i.e., CVD or GlyCVD surfaces). Water drops generate porous particles, while glycerin drops generate core–shell particles on the surface. These particles were dispersed randomly on the surface with sizes ranging from 1 to 20 μm. These CVD surfaces were hydrophobic (WCA ~ 80–110 degrees). On the other hand, a binary colloidal crystal (BCC), one type of cSAPs, composed of 5 μm Si and 400 nm carboxylated polystyrene (PSC) particles, had a close-packed structure and a hydrophilic surface (WCA ~ 45 degrees). The hybrid surfaces (i.e., CVD-BCC and GlyCVD-BCC) were smooth (Ra ~ 1.1–1.5 μm) and hydrophilic (WCA ~ 50 degrees), indicating a large surface coverage of BCC dominating the surface property. The hybrid surfaces were expected to be slightly negatively charged due to naturally charged CVD particles and negatively charged BCC particles. Cell adhesion was reduced on the hybrid surfaces, leading to an aggregated cell morphology, without reducing cell activity, compared to the flat control after 5 days. qPCR analysis showed that gene expression of type II collagen (COL2) was highly expressed on the GlyCVD-BCC without chemical induction after 3 and 14 days compared to the flat control. This proof-of-concept study demonstrates the potential of combining two technologies to make hybrid structures that can modulate stem cell attachment and differentiation. Full article
(This article belongs to the Special Issue Biointerface Coatings for Biomaterials and Biomedical Applications II)
Show Figures

Figure 1

8 pages, 2752 KiB  
Article
Numerical Analysis of Metal Transfer Process in Plasma MIG Welding
by Shinichi Tashiro, Sarizam Bin Mamat, Anthony B Murphy, Toshifumi Yuji and Manabu Tanaka
Metals 2022, 12(2), 326; https://doi.org/10.3390/met12020326 - 12 Feb 2022
Cited by 10 | Viewed by 2351
Abstract
In plasma MIG welding, inert gas introduced from the torch nozzle is ionized in the upstream region of the MIG arc, which is termed “plasma”. This study aims to clarify the effect of the plasma on the metal-transfer process in the plasma MIG [...] Read more.
In plasma MIG welding, inert gas introduced from the torch nozzle is ionized in the upstream region of the MIG arc, which is termed “plasma”. This study aims to clarify the effect of the plasma on the metal-transfer process in the plasma MIG welding through numerical analysis. As a result, the plasma with a temperature of approximately 10,000 K was found to be formed around the wire tip. The MIG arc temperature around the wire tip was 11,000 K at the maximum, which was lower than that of the conventional MIG welding by approximately 1000 K. This difference was caused by the decreased current density around the wire tip due to the influence of the plasma. The droplet temperature was also decreased by 400 K due to this lower current density. The amount of the metal vapor evaporated from the droplet was decreased compared to that of the conventional MIG welding due to the lower droplet temperature. This might lead to a decrease in fume formation generally known in the plasma MIG welding. In the conventional MIG welding, the arc attachment was concentrated around the wire tip, leading to a higher current density. However, in the plasma MIG welding, the plasma transported to the surrounding of the wire tip increases the electric conductivity in that region, due to the influence of the metal vapor mixture. This leads to the dispersion of the arc attachment toward the wire root. Consequently, the current density in the plasma MIG welding was found to decrease compared with that of the conventional MIG welding. The lower current density in plasma MIG welding decreases the Lorenz force acting on the wire neck, thus delaying droplet detachment to make the droplet diameter larger and the metal transfer frequency smaller. The latter was about 20% of that in the conventional MIG welding. Full article
Show Figures

Figure 1

19 pages, 3699 KiB  
Article
Application of Thermal and Cavitation Effects for Heat and Mass Transfer Process Intensification in Multicomponent Liquid Media
by Anatoliy M. Pavlenko and Hanna Koshlak
Energies 2021, 14(23), 7996; https://doi.org/10.3390/en14237996 - 30 Nov 2021
Cited by 31 | Viewed by 3137
Abstract
In this paper, the authors consider the processes of dynamic interaction between the boiling particles of the dispersed phase of the emulsion leading to the large droplet breakup. Differences in the consideration of forces that determine the breaking of non-boiling and boiling droplets [...] Read more.
In this paper, the authors consider the processes of dynamic interaction between the boiling particles of the dispersed phase of the emulsion leading to the large droplet breakup. Differences in the consideration of forces that determine the breaking of non-boiling and boiling droplets have been indicated in the study. They have been determined by the possibility of using the model to define the processes of displacement, deformation, or fragmentation of the inclusion of the dispersed phase under the influence of a set of neighboring particles. The dynamics of bubbles in a compressible liquid with consideration for interfacial heat and mass transfer has also been analyzed in the paper. The effect of standard and system parameters on the intensity of cavitation processes is considered. Physical transformations during the cavitation treatment of liquid are caused not only by shock waves and radiated pressure pulses but also by extreme thermal effects. At the stage of ultimate bubble compression, vapor inside the bubble and the liquid in its vicinity transform into the supercritical fluid state. The model analyzes microflow features in the inter-bubble space and quantitatively calculates local values of the velocity and pressure fields, as well as dynamic effects. Full article
(This article belongs to the Special Issue Heat Transfer and Heat Recovery Systems)
Show Figures

Figure 1

16 pages, 3721 KiB  
Article
Droplet Evaporation in a Gas-Droplet Mist Dilute Turbulent Flow behind a Backward-Facing Step
by Maksim A. Pakhomov and Viktor I. Terekhov
Water 2021, 13(17), 2333; https://doi.org/10.3390/w13172333 - 26 Aug 2021
Cited by 4 | Viewed by 2688
Abstract
The mean and fluctuation flow patterns and heat transfer in a turbulent droplet-laden dilute flow behind a two-dimensional single-side backward-facing step are numerically studied. Numerical simulations are performed for water droplets, with the inlet droplet diameters d1 = 1–100 μm; they have [...] Read more.
The mean and fluctuation flow patterns and heat transfer in a turbulent droplet-laden dilute flow behind a two-dimensional single-side backward-facing step are numerically studied. Numerical simulations are performed for water droplets, with the inlet droplet diameters d1 = 1–100 μm; they have a mass fraction of ML1 = 0–0.1. There is almost no influence of a small number of droplets on the mean gas flow and coefficient of wall friction. A substantial heat transfer augmentation in a droplet-laden mist-separated flow is shown. Heat transfer increases both in the recirculating flow and flow relaxation zones for fine, dispersed droplets, and the largest droplets augment heat transfer after the reattachment point. The largest heat transfer enhancement in a droplet-laden flow is obtained for small particles. Full article
(This article belongs to the Special Issue Gas-Liquid Two-Phase Flow in the Pipe or Channel)
Show Figures

Figure 1

23 pages, 8342 KiB  
Article
Experimental and CFD Simulations of the Aerosol Flow in the Air Ventilating the Underground Excavation in Terms of SARS-CoV-2 Transmission
by Tomasz Janoszek, Zbigniew Lubosik, Lucjan Świerczek, Andrzej Walentek and Jerzy Jaroszewicz
Energies 2021, 14(16), 4743; https://doi.org/10.3390/en14164743 - 4 Aug 2021
Cited by 5 | Viewed by 2409
Abstract
The paper presents the results of experimental and model tests of transport of dispersed fluid droplets forming a cloud of aerosol in a stream of air ventilating a selected section of the underground excavation. The excavation selected for testing is part of the [...] Read more.
The paper presents the results of experimental and model tests of transport of dispersed fluid droplets forming a cloud of aerosol in a stream of air ventilating a selected section of the underground excavation. The excavation selected for testing is part of the ventilation network of the Experimental Mine Barbara of the Central Mining Institute. For given environmental conditions, such as temperature, pressure, relative humidity, and velocity of air, the distribution of aerosol droplet changes in the mixture of air and water vapor along the excavation at a distance was measured at 10 m, 25 m, and 50 m from the source of its emission. The source of aerosol emission in the excavation space was a water nozzle that was located 25 m from the inlet (inlet) of the excavation. The obtained results of in situ tests were related to the results of numerical calculations using computational fluid dynamics (CFD). Numerical calculations were performed using Ansys-Fluent and Ansys-CFX software. The dimensions and geometry of the excavation under investigation are presented. The authors describe the adopted assumptions and conditions for the numerical model and discuss the results of the numerical solution. Full article
(This article belongs to the Special Issue COVID-19 and Sustainable Energy Transitions)
Show Figures

Figure 1

24 pages, 10434 KiB  
Article
The Influence of Droplet Dispersity on Droplet Vaporization in the High-Temperature Wet Gas Flow in the Case of Combined Heating
by Gintautas Miliauskas, Egidijus Puida, Robertas Poškas and Povilas Poškas
Sustainability 2021, 13(7), 3833; https://doi.org/10.3390/su13073833 - 31 Mar 2021
Cited by 1 | Viewed by 2230
Abstract
The change in the thermal and energy state of the water droplet is defined numerically. The influence of droplet dispersity on the interaction of the transfer processes was evaluated. In influence of the Stefan flow was considered as well. The internal heat transfer [...] Read more.
The change in the thermal and energy state of the water droplet is defined numerically. The influence of droplet dispersity on the interaction of the transfer processes was evaluated. In influence of the Stefan flow was considered as well. The internal heat transfer of the droplet was defined by the combined heat transfer through effective conductivity and radiation model. The results of the numerical modeling of heat and mass transfer in water droplets in a wet flue gas flow of 1000 °C highlight the influence of the variation in heat transfer regimes in the droplet on the interaction of the transfer processes in consistently varying phase change regimes. The results of the investigation shows that the inner heat convection diminishes intensively in the transitional phase change regime because of a rapid slowdown of the slipping droplet in the gas. The radiation absorption in the droplet clearly decreases only at the final stage of equilibrium evaporation. The highlighted regularities of the interaction between combined transfer processes in water droplets are also valid for liquid fuel and other semi-transparent liquids sprayed into high-temperature flue gas flow. However, a qualitative evaluation should consider individual influence of dispersity that different liquids have. Full article
Show Figures

Figure 1

17 pages, 4138 KiB  
Article
Cellulose Nanocrystals to Improve Stability and Functional Properties of Emulsified Film Based on Chitosan Nanoparticles and Beeswax
by Endarto Yudo Wardhono, Mekro Permana Pinem, Indar Kustiningsih, Sri Agustina, François Oudet, Caroline Lefebvre, Danièle Clausse, Khashayar Saleh and Erwann Guénin
Nanomaterials 2019, 9(12), 1707; https://doi.org/10.3390/nano9121707 - 28 Nov 2019
Cited by 28 | Viewed by 5165
Abstract
The framework of this work was to develop an emulsion-based edible film based on a chitosan nanoparticle matrix with cellulose nanocrystals (CNCs) as a stabilizer and reinforcement filler. The chitosan nanoparticles were synthesized based on ionic cross-linking with sodium tripolyphosphate and glycerol as [...] Read more.
The framework of this work was to develop an emulsion-based edible film based on a chitosan nanoparticle matrix with cellulose nanocrystals (CNCs) as a stabilizer and reinforcement filler. The chitosan nanoparticles were synthesized based on ionic cross-linking with sodium tripolyphosphate and glycerol as a plasticizer. The emulsified film was prepared through a combination system of Pickering emulsification and water evaporation. The oil-in-water emulsion was prepared by dispersing beeswax into an aqueous colloidal suspension of chitosan nanoparticles using high-speed homogenizer at room temperature. Various properties were characterized, including surface morphology, stability, water vapor barrier, mechanical properties, compatibility, and thermal behaviour. Experimental results established that CNCs and glycerol improve the homogeneity and stability of the beeswax dispersed droplets in the emulsion system which promotes the water-resistant properties but deteriorates the film strength at the same time. When incorporating 2.5% w/w CNCs, the tensile strength of the composite film reached the maximum value, 74.9 MPa, which was 32.5% higher than that of the pure chitosan film, while the optimum one was at 62.5 MPa, and was obtained by the addition of 25% w/w beeswax. All film characterizations demonstrated that the interaction between CNCs and chitosan molecules improved their physical and thermal properties. Full article
(This article belongs to the Section Nanocomposite Materials)
Show Figures

Figure 1

11 pages, 2274 KiB  
Article
Three-Dimensional Graphene Composite Containing Graphene-SiO2 Nanoballs and Its Potential Application in Stress Sensors
by Bowei Zhao, Tai Sun, Xi Zhou, Xiangzhi Liu, Xiaoxia Li, Kai Zhou, Lianhe Dong and Dapeng Wei
Nanomaterials 2019, 9(3), 438; https://doi.org/10.3390/nano9030438 - 15 Mar 2019
Cited by 17 | Viewed by 3992
Abstract
Combining functional nanomaterials composite with three-dimensional graphene (3DG) is a promising strategy for improving the properties of stress sensors. However, it is difficult to realize stress sensors with both a wide measurement range and a high sensitivity. In this paper, graphene-SiO2 balls [...] Read more.
Combining functional nanomaterials composite with three-dimensional graphene (3DG) is a promising strategy for improving the properties of stress sensors. However, it is difficult to realize stress sensors with both a wide measurement range and a high sensitivity. In this paper, graphene-SiO2 balls (GSB) were composed into 3DG in order to solve this problem. In detail, the GSB were prepared by chemical vapor deposition (CVD) method, and then were dispersed with graphene oxide (GO) solution to synthesize GSB-combined 3DG composite foam (GSBF) through one-step hydrothermal reduction self-assembly method. The prepared GSBF owes excellent mechanical (95% recoverable strain) and electrical conductivity (0.458 S/cm). Furthermore, it exhibits a broad sensing range (0–10 kPa) and ultrahigh sensitivity (0.14 kPa−1). In addition, the water droplet experiment demonstrates that GSBF is a competitive candidate of high-performance materials for stress sensors. Full article
(This article belongs to the Special Issue Multifunctional Graphene-Based Nanocomposites)
Show Figures

Figure 1

44 pages, 11672 KiB  
Article
Radar Path Delay Effects in Volcanic Gas Plumes: The Case of Láscar Volcano, Northern Chile
by Stefan Bredemeyer, Franz-Georg Ulmer, Thor H. Hansteen and Thomas R. Walter
Remote Sens. 2018, 10(10), 1514; https://doi.org/10.3390/rs10101514 - 21 Sep 2018
Cited by 16 | Viewed by 4996
Abstract
Modern volcano monitoring commonly involves Interferometric Synthetic Aperture Radar (InSAR) measurements to identify ground motions caused by volcanic activity. However, InSAR is largely affected by changes in atmospheric refractivity, in particular by changes which can be attributed to the distribution of water (H [...] Read more.
Modern volcano monitoring commonly involves Interferometric Synthetic Aperture Radar (InSAR) measurements to identify ground motions caused by volcanic activity. However, InSAR is largely affected by changes in atmospheric refractivity, in particular by changes which can be attributed to the distribution of water (H2O) vapor in the atmospheric column. Gas emissions from continuously degassing volcanoes contain abundant water vapor and thus produce variations in the atmospheric water vapor content above and downwind of the volcano, which are notably well captured by short-wavelength X-band SAR systems. These variations may in turn cause differential phase errors in volcano deformation estimates due to excess radar path delay effects within the volcanic gas plume. Inversely, if these radar path delay effects are better understood, they may be even used for monitoring degassing activity, by means of the precipitable water vapor (PWV) content in the plume at the time of SAR acquisitions, which may provide essential information on gas plume dispersion and the state of volcanic and hydrothermal activity. In this work we investigate the radar path delays that were generated by water vapor contained in the volcanic gas plume of the persistently degassing Láscar volcano, which is located in the dry Atacama Desert of Northern Chile. We estimate water vapor contents based on sulfur dioxide (SO2) emission measurements from a scanning UV spectrometer (Mini-DOAS) station installed at Láscar volcano, which were scaled by H2O/SO2 molar mixing ratios obtained during a multi-component Gas Analyzer System (Multi-GAS) survey on the crater rim of the volcano. To calculate the water vapor content in the downwind portion of the plume, where an increase of water vapor is expected, we further applied a correction involving estimation of potential evaporation rates of water droplets governed by turbulent mixing of the condensed volcanic plume with the dry atmosphere. Based on these estimates we obtain daily average PWV contents inside the volcanic gas plume of 0.2–2.5 mm equivalent water column, which translates to a slant wet delay (SWD) in DInSAR data of 1.6–20 mm. We used these estimates in combination with our high resolution TerraSAR-X DInSAR observations at Láscar volcano, in order to demonstrate the occurrence of repeated atmospheric delay patterns that were generated by volcanic gas emissions. We show that gas plume related refractivity changes are significant and detectable in DInSAR measurements. Implications are two-fold: X-band satellite radar observations also contain information on the degassing state of a volcano, while deformation signals need to be interpreted with care, which has relevance for volcano observations at Láscar and for other sites worldwide. Full article
(This article belongs to the Special Issue Remote Sensing of Volcanic Processes and Risk)
Show Figures

Graphical abstract

Back to TopTop