Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (243)

Search Parameters:
Keywords = drop-velocity distribution

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 2813 KB  
Article
Study on Improving Pulsed-Jet Performance in Cone Filter Cartridges Using a Porous Diffusion Nozzle
by Quanquan Wu, Zhenqiang Xing, Yufan Xu, Yuanbing Tang, Yangyang Li, Yuxiu Wang, Heli Wang, Zhuo Liu, Wenjun Xie, Shukai Sun, Da You and Jianlong Li
Atmosphere 2025, 16(10), 1206; https://doi.org/10.3390/atmos16101206 - 18 Oct 2025
Viewed by 133
Abstract
The new type of gold cone filter cartridge has dual functions of increasing filter area and enhancing pulsed-jet cleaning, but the issue of patchy cleaning remains to be addressed. This study further enhances the pulsed-jet cleaning performance of cone filter cartridges by employing [...] Read more.
The new type of gold cone filter cartridge has dual functions of increasing filter area and enhancing pulsed-jet cleaning, but the issue of patchy cleaning remains to be addressed. This study further enhances the pulsed-jet cleaning performance of cone filter cartridges by employing a porous diffusion nozzle. The temporal and spatial distributions of pulse jet velocity and pressure under the condition of porous nozzles were investigated through numerical modeling. The variation law of pressure on the side wall of the filter cartridge was analyzed. The influence of jet distance of porous nozzles on pulsed-jet pressure and pulsed-jet uniformity was experimentally investigated. Dust filtration and cleaning experiments were conducted, and the filtration pressure drop, dust emission concentration, and comprehensive filtration performance were compared. It was found that the airflow jetted by the porous diffusion nozzle is more divergent than that of the common round nozzle. This results in a larger entrainment of the jet stream, a milder collision of the jet stream with the cartridge cone, and a slower overall velocity reduction. More airflow is generated into the filter cartridge and accumulated; the accumulated static pressure covers a larger range of the upper section of the filter cartridge, with a longer duration of static pressure. In the online dust filtration and cleaning experiment, compared with the condition of the common round nozzle, the porous nozzle can reduce the residual pressure drop by 27.0%, increase the filtration cleaning interval by a factor of 3.80, reduce the average dust emission concentration by 45.2%, and increase the comprehensive performance index QF by 5.2%. The research conclusions can provide references for the design and optimization of industrial filter cartridge dust collectors. Full article
(This article belongs to the Section Air Pollution Control)
Show Figures

Figure 1

20 pages, 7975 KB  
Article
Impact of Wind on Rainfall Measurements Obtained from the OTT Parsivel2 Disdrometer
by Enrico Chinchella, Arianna Cauteruccio and Luca G. Lanza
Sensors 2025, 25(20), 6440; https://doi.org/10.3390/s25206440 - 18 Oct 2025
Viewed by 178
Abstract
The impact of wind on precipitation measurements from the OTT Parsivel2 optical transmission disdrometer is quantified using computational fluid dynamics simulations. The numerical velocity field around the instrument body and above the instrument sensing area (the laser beam) shows significant disturbance that [...] Read more.
The impact of wind on precipitation measurements from the OTT Parsivel2 optical transmission disdrometer is quantified using computational fluid dynamics simulations. The numerical velocity field around the instrument body and above the instrument sensing area (the laser beam) shows significant disturbance that depends heavily on the wind direction. By computing the trajectories of raindrops approaching the instrument, the wind-induced bias is quantified for a wide range of environmental conditions. Adjustments are derived in terms of site-independent catch ratios, which can be used to correct measurements in post-processing. The impact on two integral rainfall variables, the rainfall intensity and radar reflectivity, is calculated in terms of collection and radar retrieval efficiency assuming a sample drop size distribution. For rainfall intensity measurements, the OTT Parsivel2 shows significant bias, even much higher than the wind-induced bias typical of catching-type rain gauges. Large underestimation is shown for wind parallel to the laser beam, while limited bias occurs for wind perpendicular to it. The intermediate case, with wind at 45°, presents non negligible overestimation. Proper alignment of the instrument with the laser beam perpendicular to the prevailing wind direction at the installation site and the use of windshields may significantly reduce the overall wind-induced bias. Full article
(This article belongs to the Special Issue Atmospheric Precipitation Sensors)
Show Figures

Figure 1

24 pages, 4192 KB  
Article
Investigation on Dynamic Thermal Transfer Characteristics of Electromagnetic Rail Spray Cooling in Transient Processes
by Shuo Ma and Hongting Ma
Energies 2025, 18(19), 5254; https://doi.org/10.3390/en18195254 - 3 Oct 2025
Viewed by 298
Abstract
Electromagnetic Railguns Face Severe Ablation and Melting Risks Due to Extremely High Transient Thermal Loads During High-Speed Launching, Directly Impacting Launch Reliability and Service Life. To address this thermal management challenge, this study proposes and validates the effectiveness of spray cooling technology. Leveraging [...] Read more.
Electromagnetic Railguns Face Severe Ablation and Melting Risks Due to Extremely High Transient Thermal Loads During High-Speed Launching, Directly Impacting Launch Reliability and Service Life. To address this thermal management challenge, this study proposes and validates the effectiveness of spray cooling technology. Leveraging its high heat transfer coefficient, exceptional critical heat flux (CHF) carrying capacity, and strong transient cooling characteristics, it is particularly suitable for the unsteady thermal control during the initial launch phase. An experimental platform was established, and a three-dimensional numerical model was developed to systematically analyze the dynamic influence mechanisms of nozzle inlet pressure, flow rate, spray angle, and spray distance on cooling performance. Experimental results indicate that the system achieves maximum critical heat flux (CHF) and rail temperature drop at an inlet pressure of 0.5 MPa and a spray angle of 0°. Numerical simulations further reveal that a 45° spray cone angle simultaneously achieves the maximum temperature drop and optimal wall temperature uniformity. Key parameter sensitivity analysis demonstrates that while increasing spray distance leads to larger droplet diameters, the minimal droplet velocity decay combined with a significant increase in overall momentum markedly enhances convective heat transfer efficiency. Concurrently, increasing spray distance effectively improves rail surface temperature uniformity by optimizing the spatial distribution of droplet size and velocity. Full article
(This article belongs to the Section J: Thermal Management)
Show Figures

Figure 1

13 pages, 3073 KB  
Article
Insights into the Effect of Confinement on Swirling Flow by PIV
by Tao Liu, Chi Zhang, Xin Xue, Shun Zheng and Muwei Yao
Energies 2025, 18(19), 5155; https://doi.org/10.3390/en18195155 - 28 Sep 2025
Viewed by 324
Abstract
Confinement with a rectangular cross-section is commonly used to simulate the role of a swirl combustor, yet its effect on swirling flows remains poorly understood. This study investigates the influence of confinement on the isothermal flow field of a counter-rotating swirler. A particle [...] Read more.
Confinement with a rectangular cross-section is commonly used to simulate the role of a swirl combustor, yet its effect on swirling flows remains poorly understood. This study investigates the influence of confinement on the isothermal flow field of a counter-rotating swirler. A particle image velocimetry (PIV) system was employed to measure the swirling flow field under varying confinement ratios at an air pressure drop equivalent to 3% of atmospheric pressure. The results reveal two distinct flow patterns, delineated by a critical confinement ratio of approximately 8.92. Detailed analyses of the velocity components, contour distributions, and Reynolds shear stresses were conducted. The two flow patterns are attributed to the wall attachment effect and swirling intensity, respectively. Furthermore, the results confirm that the swirling flow field is primarily governed by the confinement ratio. Full article
Show Figures

Figure 1

22 pages, 8367 KB  
Article
Coupling Changes in Pressure and Flow Velocity in Oil Pipelines Supported by Structures
by Chengbin Zhang, Zhaoyang Han, Bin Ma, Zhaofeng Yang, Yinshan Liu, Yaoqiang Hu, Zhenni Wang and Kejie Zhao
Processes 2025, 13(9), 2932; https://doi.org/10.3390/pr13092932 - 13 Sep 2025
Viewed by 576
Abstract
To investigate the time-varying influence of oil viscosity and water content on flow behavior in crossing pipelines, we developed a three-dimensional finite element/CFD model using advanced simulation software with fluid dynamics capabilities. Simulations were performed under varying viscosity and water-cut conditions, and the [...] Read more.
To investigate the time-varying influence of oil viscosity and water content on flow behavior in crossing pipelines, we developed a three-dimensional finite element/CFD model using advanced simulation software with fluid dynamics capabilities. Simulations were performed under varying viscosity and water-cut conditions, and the analyses covered fluid velocity, pressure distribution, and secondary flow characteristics. The results show clear quantitative trends: in the horizontal span, the stabilized centerline velocity reached 2.46 m/s (+23.0% versus the 2.00 m/s inlet). At Node 10, increasing viscosity from 0.306 to 0.603 Pa·s reduced the mean pressure by 11.2 kPa (−11.2% relative to a 0.10 MPa baseline), and a further increase to 1.185 Pa·s produced an additional 4.5 kPa (−4.5%) drop. At Node 1, the low-viscosity case yielded a centerline velocity 1.1× higher than the high-viscosity case (+10.0%). Consistent with these observations, higher viscosity and water cut decreased the average flow velocity and lengthened the duration of pressure fluctuations. These findings provide quantitative insight into the dynamic behavior of multiphase flow and offer a basis for understanding fluid–structure interaction phenomena in crude oil pipeline transport systems. Full article
(This article belongs to the Section Chemical Processes and Systems)
Show Figures

Figure 1

24 pages, 14557 KB  
Article
Numerical Investigation of Hydrogen Production via Methane Steam Reforming in Tubular Packed Bed Reactors Integrated with Annular Metal Foam Gas Channels
by Yifan Han, Zihui Zhang, Zhen Wang and Guanmin Zhang
Energies 2025, 18(17), 4758; https://doi.org/10.3390/en18174758 - 7 Sep 2025
Viewed by 790
Abstract
Methane steam reforming is the most widely adopted hydrogen production technology. To address the challenges associated with the large radial thermal resistance and low mass transfer rates inherent in the tubular packed bed reactors during the MSR process, this study proposes a structural [...] Read more.
Methane steam reforming is the most widely adopted hydrogen production technology. To address the challenges associated with the large radial thermal resistance and low mass transfer rates inherent in the tubular packed bed reactors during the MSR process, this study proposes a structural design optimization that integrates annular metal foam gas channels along the inner wall of the reforming tubes. Utilizing multi-physics simulation methods and taking the conventional tubular reactor as a baseline, a comparative analysis was performed on physical parameters that characterize flow behavior, heat transfer, and reaction in the reforming process. The integration of the annular channels induces a radially non-uniform distribution of flow resistance in the tubes. Since the metal foam exhibits lower resistance, the fluid preferentially flows through the annular channels, leading to a diversion effect that enhances both convective heat transfer and mass transfer. The diversion effect redirects the central flow toward the near-wall region, where the higher reactant concentration promotes the reaction. Additionally, the higher thermal conductivity of the metal foam strengthens radial heat transfer, further accelerating the reaction. The effects of operating parameters on performance were also investigated. While a higher inlet velocity tends to hinder the reaction, in tubes integrated with annular channels, it enhances the diversion effect and convective heat transfer. This offsets the adverse impact, maintaining high methane conversion with lower pressure drop and thermal resistance than the conventional tubular reactor does. Full article
(This article belongs to the Special Issue Computational Fluid Dynamics (CFD) Study for Heat Transfer)
Show Figures

Figure 1

20 pages, 1683 KB  
Article
Migration Laws of Acidic Gas Overflow in High Temperature and High Pressure Gas Wells
by Haiqing Guo, Junhui Wei, Pengcheng Wang, Xuliang Zhang, Hao Qin, Qingfeng Li and Ming Tang
Processes 2025, 13(9), 2833; https://doi.org/10.3390/pr13092833 - 4 Sep 2025
Viewed by 572
Abstract
Most existing ultra-deep gas wells are characterized by high temperature, high pressure, and high sulfur content. During development, they face serious challenges such as unclear mechanisms of acid gas-induced blowouts and difficulties in wellbore pressure inversion, posing significant challenges to well control operations. [...] Read more.
Most existing ultra-deep gas wells are characterized by high temperature, high pressure, and high sulfur content. During development, they face serious challenges such as unclear mechanisms of acid gas-induced blowouts and difficulties in wellbore pressure inversion, posing significant challenges to well control operations. To reveal the reasons behind the tendency of acidic gases to trigger blowouts and to clarify the impact of different concentrations of acidic gases on the flow behavior of annular fluids, this study considers the effects of solubility and phase changes on the physical properties of acidic gases. A method replacing critical parameters with pseudo-critical parameters is used to analyze the variation trends of gas density, solubility, and other properties along the well depth. A mathematical model for the annular flow of acidic gas overflow incorporating solubility phase change effects is established. The model is numerically solved using a four-point difference scheme, exploring the essential characteristics of gas flow in the annulus after overflow, and discussing the distribution patterns of physical properties of acidic gases, as well as dynamic parameters such as wellbore pressure and temperature along the well depth. Numerical simulations show that the physical properties of acidic gases change significantly with well depth: the more acidic gas present in the wellbore, the smaller the deviation factor, and the greater the density and viscosity, with parameter changes exceeding 40% near the pseudo-critical point for binary mixtures with 40% H2S. Compared to pure methane, mixed fluids containing acidic gas experience more than 20% volume expansion near the wellhead for ternary mixtures with 20% CO2 and 20% H2S, and the flow velocity increases by more than 10% for mixtures with ≥30% acidic gas content, leading to a higher risk of a sudden pressure drop during well control. This study clarifies the migration patterns of acidic gas overflow in HPHT (high pressure, high temperature) gas wells, providing valuable guidance for optimizing well control design, improving well control emergency plans, and developing well-killing measures. Full article
(This article belongs to the Special Issue Oil and Gas Drilling Processes: Control and Optimization, 2nd Edition)
Show Figures

Figure 1

13 pages, 3235 KB  
Article
Effect of Nozzle Structure on Energy Separation Performance in Vortex Tubes
by Ming Tang, Gongyu Jin, Jiali Zhang, Fuxing Guo, Fengyu Jia and Bo Wang
Energies 2025, 18(17), 4694; https://doi.org/10.3390/en18174694 - 4 Sep 2025
Viewed by 795
Abstract
Vortex tubes are used in specialized scenarios where conventional refrigeration systems are impractical, such as tool cooling in CNC machines. The internal flow within a vortex tube is highly complex, with numerous factors influencing its energy separation process, and the coefficient of performance [...] Read more.
Vortex tubes are used in specialized scenarios where conventional refrigeration systems are impractical, such as tool cooling in CNC machines. The internal flow within a vortex tube is highly complex, with numerous factors influencing its energy separation process, and the coefficient of performance for refrigeration is relatively low. To investigate the impact of nozzle type on energy separation performance, vortex tubes with straight-type, converging-type, and converging–diverging-type nozzles were designed. Numerical simulation was conducted to explore their velocity, pressure, and temperature distribution at an inlet pressure of 0.7 MPa and a cold mass fraction of 0.1~0.9. The cooling effect, temperature separation effect, cold outlet mass flow rate, and refrigeration capacity of vortex tubes were assessed. The converging–diverging nozzle increases the gas velocity at the nozzle outlet while it does not significantly enlarge the airflow velocity in the vortex chamber. As the cold mass fraction rises, the cooling performance and cooling capacity of three vortex tubes first increase and then decrease. The maximum cooling effect and cooling capacity of vortex tubes are achieved at cold mass fractions of 0.3 and 0.7, respectively. Under identical conditions, the vortex tube with a converging nozzle achieves the highest cooling effect with a temperature drop of 36.6 K, whereas the vortex tube with converging–diverging nozzles possesses the largest gas flow rate, and the cooling capacity reaches 542.4 W. The vortex tube with straight nozzles exhibits the worst refrigeration performance with a cooling effect of 33.6 K and a cooling capacity of 465.9 W. It is indicated that optimizing the nozzle structure of the vortex tube to reduce flow resistance contributes to enhancing both the gas velocity entering the swirl chamber and the resultant refrigeration performance. Full article
Show Figures

Figure 1

16 pages, 6280 KB  
Article
Increasing Residence Time in Random Packed Beds of Spheres with a Helical Flow Deflector
by Maciej Marek
Processes 2025, 13(9), 2828; https://doi.org/10.3390/pr13092828 - 3 Sep 2025
Viewed by 564
Abstract
Random packed beds (RPBs) of various particles are widely used in chemical reactors to enhance the contact between the reactants or the catalyst. This numerical study investigates the prospects of using a helical flow deflector spanning the whole cross-section of the reactor and [...] Read more.
Random packed beds (RPBs) of various particles are widely used in chemical reactors to enhance the contact between the reactants or the catalyst. This numerical study investigates the prospects of using a helical flow deflector spanning the whole cross-section of the reactor and the height of the random packing to control residence time distribution (RTD) in RPBs of spherical particles. The packed bed geometry is generated via sequential particle deposition, while flow equations are solved for the real geometry of the packing without additional modelling terms. The results demonstrate that in laminar conditions the flow deflector significantly increases flow tortuosity and residence time (even a few times for small helix pitches) when the effective velocity in the RPB is kept fixed. The relationship between the helix pitch and tortuosity, pressure drop, and RTD is quantified, revealing that residence time scale similarly to tortuosity while the increase in pressure drop is more pronounced. The study provides a validated framework for optimising helical deflector designs in RPBs (at least in the laminar regime), with implications for reactor efficiency. Full article
(This article belongs to the Section Chemical Processes and Systems)
Show Figures

Graphical abstract

18 pages, 3348 KB  
Article
Numerical Study and Structural Optimization of Guided Bearing Heat Exchanger with Impurity-Contained Cooling Water
by Zheng Jiang, Lei Wang, Shen Hu and Tianren Huang
Water 2025, 17(17), 2609; https://doi.org/10.3390/w17172609 - 3 Sep 2025
Viewed by 945
Abstract
The cooling medium of the guide bearing heat exchanger in hydro generator sets comes from the upstream dam area, which contains numerous impurities even though it has undergone preliminary treatment. These impurities settle, accumulate, and adhere and form scaling layers in the heat [...] Read more.
The cooling medium of the guide bearing heat exchanger in hydro generator sets comes from the upstream dam area, which contains numerous impurities even though it has undergone preliminary treatment. These impurities settle, accumulate, and adhere and form scaling layers in the heat exchanger, seriously affecting its heat transfer performance. This paper presents an innovative investigation of heat exchanger performance under impurity-laden cooling water conditions and proposes an optimization by replacing the conventional round tube structure with a spiral flat tube structure. Numerical simulations are conducted to analyze the flow velocity, pressure, impurity deposition, and temperature distribution of the cooler under actual operating conditions. The results show that the optimized cooler achieves improved velocity uniformity with a lower standard deviation, effectively reducing sediment accumulation. Compared to the prototype, the maximum pressure increases by 55.2% (from 0.562 MPa to 0.872 MPa), which enhances turbulence and improves heat transfer. The sediment volume fraction is significantly reduced by 49% in low-flow operating conditions and 73.7% in high-flow operating conditions. Furthermore, the maximum temperature drops by 5.43 °C, indicating improved thermal performance. These findings confirm the effectiveness of the spiral flat tube design in impurity-rich environments. Full article
(This article belongs to the Special Issue Research Status of Operation and Management of Hydropower Station)
Show Figures

Figure 1

11 pages, 659 KB  
Article
Spectrum Analysis of Thermally Driven Curvature Inversion in Strained Graphene Ripples for Energy Conversion Applications via Molecular Dynamics
by James M. Mangum, Md R. Kabir, Tamzeed B. Amin, Syed M. Rahman, Ashaduzzaman and Paul M. Thibado
Nanomaterials 2025, 15(17), 1332; https://doi.org/10.3390/nano15171332 - 29 Aug 2025
Cited by 1 | Viewed by 728
Abstract
The extraordinary mechanical flexibility, high electrical conductivity, and nanoscale instability of freestanding graphene make it an excellent candidate for vibration energy harvesting. When freestanding graphene is stretched taut and subject to external forces, it will vibrate like a drum head. Its vibrations occur [...] Read more.
The extraordinary mechanical flexibility, high electrical conductivity, and nanoscale instability of freestanding graphene make it an excellent candidate for vibration energy harvesting. When freestanding graphene is stretched taut and subject to external forces, it will vibrate like a drum head. Its vibrations occur at a fundamental frequency along with higher-order harmonics. Alternatively, when freestanding graphene is compressed, it will arch slightly out of the plane or buckle under the load. Remaining flat under compression would be energetically too costly compared to simple bond rotations. Buckling up or down, also known as ripple formation, naturally creates a bistable situation. When the compressed system vibrates between its two low-energy states, it must pass through the high-energy middle. The greater the compression, the higher the energy barrier. The system can still oscillate but the frequency will drop far below the fundamental drum-head frequency. The low frequencies combined with the large-scale movement and the large number of atoms coherently moving are key factors addressed in this study. Ten ripples with increasing compressive strain were built, and each was studied at five different temperatures. Increasing the temperature has a similar effect as increasing the compressive strain. Analysis of the average time between curvature inversion events allowed us to quantify the energy barrier height. When the low-frequency bistable data were time-averaged, the authors found that the velocity distribution shifts from the expected Gaussian to a heavy-tailed Cauchy (Lorentzian) distribution, which is important for energy harvesting applications. Full article
Show Figures

Figure 1

19 pages, 1833 KB  
Article
Exploring the Underlying Mechanisms of Reduced Elasticity in PA6/PA66 Bicomponent Melt-Spun Fibers: An Investigation of Viscoelastic Properties and Simulation Analysis
by Ali Abbas, Shengming Zhang, Huaping Wang, Jing Wu, Peng Ji and Chaosheng Wang
Polymers 2025, 17(17), 2312; https://doi.org/10.3390/polym17172312 - 27 Aug 2025
Viewed by 685
Abstract
This study conducts a detailed viscoelastic simulation of the side-by-side PA6/PA66 bicomponent melt spinning process to investigate the mechanisms behind reduced fiber elasticity. A two-dimensional (2D) axisymmetric finite element model was developed using ANSYS Polyflow, incorporating the Phan–Thien–Tanner (PTT) constitutive equation and a [...] Read more.
This study conducts a detailed viscoelastic simulation of the side-by-side PA6/PA66 bicomponent melt spinning process to investigate the mechanisms behind reduced fiber elasticity. A two-dimensional (2D) axisymmetric finite element model was developed using ANSYS Polyflow, incorporating the Phan–Thien–Tanner (PTT) constitutive equation and a non-isothermal crystallization model. Simulation outcomes were validated with experimental and published data, showing close agreement in fiber radius, velocity, and temperature profiles (within 8% deviation). Results indicate that the dominance of the higher-viscosity PA66 phase induces uneven stress distributions and localized crystallization, leading to decreased elastic recovery. Higher winding speeds amplify this effect. This work offers a predictive framework for optimizing industrial melt spinning conditions to improve elasticity in bicomponent fibers. Key results indicate that the dominance of the PA66 component—due to its higher melt viscosity—leads to uneven stress distribution, elevated tensile stress, and localized crystallinity peaks along the spin line. These factors collectively contribute to reduced elastic recovery in the fiber. Moreover, increased winding speeds amplify axial stress and crystallinity disparities, further exacerbating the stiffness of the final product. In contrast, better elasticity was associated with lower pressure drop, balanced crystallinity, and minimized axial velocity differences between the two polymer phases. The findings offer valuable insights into optimizing industrial melt spinning processes to enhance fiber elasticity. This research not only improves fundamental understanding of viscoelastic flow behavior in bicomponent spinning but also provides a predictive framework for tailoring mechanical properties of fibers through process and material parameter adjustments. Full article
(This article belongs to the Section Polymer Processing and Engineering)
Show Figures

Figure 1

20 pages, 2665 KB  
Article
Subjective Perception and Cooling Effect for Dynamic Ventilation with Fluctuating Air Velocity
by Chunfeng Lao, Jing Ling, Jing Li, Jinghua Jiang, Sheng Zhang, Yan Yan, Yue Yin and Mingliang Gu
Buildings 2025, 15(16), 2871; https://doi.org/10.3390/buildings15162871 - 14 Aug 2025
Viewed by 503
Abstract
Dynamic ventilation has proven effective in enhancing indoor thermal comfort. However, previous studies often expose participants to inconsistent thermal environments, potentially compromising the accuracy of subjective evaluations. To address this limitation, this study implemented dynamic ventilation with fluctuating air velocity in an accurately [...] Read more.
Dynamic ventilation has proven effective in enhancing indoor thermal comfort. However, previous studies often expose participants to inconsistent thermal environments, potentially compromising the accuracy of subjective evaluations. To address this limitation, this study implemented dynamic ventilation with fluctuating air velocity in an accurately controlled environmental chamber. Objective measurements of indoor air velocity and air temperature distribution are conducted, and subjective thermal sensation votes are collected under thermally consistent environments among participants. During the experiment, all participants experience similar dynamic thermal environments. The results show that participants experience thermal comfort under dynamic ventilation. Dynamic ventilation enhances convective heat transfer between the human body and the surrounding air and stimulates cutaneous cold receptors. The pronounced cooling effect of dynamic airflow contributes to a reduction in skin temperature on the head, chest, upper arm, forearm, hand, and thigh, with a temperature drop ranging from 1.3% to 2.8%. In addition, dynamic ventilation significantly reduces draft risk, with the proportion of participants reporting a dissatisfied sensation decreasing from 10% to 0%. This study demonstrates the advantages of dynamic ventilation in improving thermal comfort and minimizing draft risk under controlled and uniform environmental conditions for all participants. Full article
(This article belongs to the Special Issue Development of Indoor Environment Comfort)
Show Figures

Figure 1

19 pages, 6581 KB  
Article
Simulation Study on Erosion of Gas–Solid Two-Phase Flow in the Wellbore near Downhole Chokes in Tight Gas Wells
by Cheng Du, Ruikang Ke, Xiangwei Bai, Rong Zheng, Yao Huang, Dan Ni, Guangliang Zhou and Dezhi Zeng
Processes 2025, 13(8), 2430; https://doi.org/10.3390/pr13082430 - 31 Jul 2025
Viewed by 493
Abstract
In order to study the problem of obvious wall thinning in the wellbore caused by proppant backflow and sand production under throttling conditions in tight gas wells. Based on the gas-phase control equation, particle motion equation, and erosion model, the wellbore erosion model [...] Read more.
In order to study the problem of obvious wall thinning in the wellbore caused by proppant backflow and sand production under throttling conditions in tight gas wells. Based on the gas-phase control equation, particle motion equation, and erosion model, the wellbore erosion model is established. The distribution law of pressure, temperature, and velocity trace fields under throttling conditions is analyzed, and the influences of different throttling pressures, particle diameters, and particle mass flows on wellbore erosion are analyzed. The flow field at the nozzle changes drastically, and there is an obvious pressure drop, temperature drop, and velocity rise. When the surrounding gas is completely mixed, the physical quantity gradually stabilizes. The erosion shape of the wellbore outlet wall has a point-like distribution. The closer to the throttle valve outlet, the more intense the erosion point distribution is. Increasing the inlet pressure and particle mass flow rate will increase the maximum erosion rate, and increasing the particle diameter will reduce the maximum erosion rate. The particle mass flow rate has the greatest impact on the maximum erosion rate, followed by the particle diameter. The erosion trend was predicted using multiple regression model fitting of the linear interaction term. The research results can provide a reference for the application of downhole throttling technology and wellbore integrity in tight gas exploitation. Full article
(This article belongs to the Section Process Control and Monitoring)
Show Figures

Graphical abstract

13 pages, 3880 KB  
Article
Low-Velocity Impact Damage Behavior and Failure Mechanism of 2.5D SiC/SiC Composites
by Jianyong Tu, Xingmiao Duan, Xingang Luan, Dianwei He and Laifei Cheng
J. Compos. Sci. 2025, 9(8), 388; https://doi.org/10.3390/jcs9080388 - 22 Jul 2025
Viewed by 632
Abstract
Continuous SiC fiber-reinforced SiC matrix composites (SiC/SiC), as structural heat protection integrated materials, are often used in parts for large-area heat protection and sharp leading edges, and there are a variety of low-velocity impact events in their service. In this paper, a drop [...] Read more.
Continuous SiC fiber-reinforced SiC matrix composites (SiC/SiC), as structural heat protection integrated materials, are often used in parts for large-area heat protection and sharp leading edges, and there are a variety of low-velocity impact events in their service. In this paper, a drop hammer impact test was conducted using narrow strip samples to simulate the low-velocity impact damage process of sharp-edged components. During the test, different impact energies and impact times were set to focus on investigating the low-velocity impact damage characteristics of 2.5D SiC/SiC composites. To further analyze the damage mechanism, computed tomography (CT) was used to observe the crack propagation paths and distribution states of the composites before and after impact, while scanning electron microscopy (SEM) was employed to characterize the differences in the micro-morphology of their fracture surfaces. The results show that the in-plane impact behavior of a 2.5D needled SiC/SiC composite strip samples differs from the conventional three-stage pattern. In addition to the three stages observed in the energy–time curve—namely in the quasi-linear elastic region, the severe load drop region, and the rebound stage after peak impact energy—a plateau stage appears when the impact energy is 1 J. During the impact process, interlayer load transfer is achieved through the connection of needled fibers, which continuously provide significant structural support, with obvious fiber pull-out and debonding phenomena. When the samples are subjected to two impacts, damage accumulation occurs inside the material. Under conditions with the same total energy, multiple impacts cause more severe damage to the material compared to a single impact. Full article
(This article belongs to the Special Issue Functional Composites: Fabrication, Properties and Applications)
Show Figures

Figure 1

Back to TopTop