Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (120)

Search Parameters:
Keywords = double-tube structure

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 9165 KB  
Article
Experimental Study on the Energy Absorption, Ductility, and Stiffness of CFDS Connections for Floating Offshore Structures
by Ji-Hun Park, Min-Su Park and Jung-Woo Lee
Appl. Sci. 2026, 16(1), 196; https://doi.org/10.3390/app16010196 - 24 Dec 2025
Abstract
This study experimentally evaluates the structural performance of Concrete-Filled Double-Skin (CFDS) hybrid connections that are intended as key components of large-scale floating offshore wind substructures. The innovative aspect of this work lies in the direct experimental comparison of five representative connection details—Headed Stud [...] Read more.
This study experimentally evaluates the structural performance of Concrete-Filled Double-Skin (CFDS) hybrid connections that are intended as key components of large-scale floating offshore wind substructures. The innovative aspect of this work lies in the direct experimental comparison of five representative connection details—Headed Stud (HS), Perfobond (PB), L-beam-joint (LJ), L-beam-spacing (LS), and Angle (AN)—with respect to multiple performance indices that are critical under harsh offshore environments. First, full-scale CFDS specimens were fabricated with identical global dimensions while varying only the connection details. The hybrid behavior of the CFDS system arises from the complementary actions of the outer steel tube, which primarily resists tensile forces, and the infilled concrete, which provides dominant compressive resistance and confinement. This composite interaction enhances the stiffness, ductility, and energy absorption capacity of the member under flexural demands, which are essential for floating offshore structures operating under complex marine loading. Second, monotonic bending tests were conducted using a 2000 kN actuator under a cantilever-type configuration, and load–displacement responses were recorded at three locations. Third, the stiffness, ductility, and energy absorption capacity (toughness) were quantified from the measured curves to clarify the deformation and failure characteristics of each connection type. The results show that the PB connection achieved the highest maximum load and exhibited stable ductile behavior with plastic energy dominating the total toughness. The LJ connection provided well-balanced stiffness and deformation capacity with low sensitivity to measurement locations, indicating high reliability for design applications. In contrast, the HS and LS connections experienced localized slip and position-dependent stiffness, while the AN connection showed the lowest load-carrying efficiency. Overall, the findings highlight that connection-level detailing has a decisive influence on the global performance of CFDS hybrid members and provide fundamental data for developing design guidelines for floating offshore structures operating under complex marine loading conditions. Full article
(This article belongs to the Section Civil Engineering)
Show Figures

Figure 1

27 pages, 12124 KB  
Article
Axial Compressive Behavior of Square Double-Skin Hybrid Concrete Bar Columns with Small-Diameter Concrete-Infilled GFRP Tubes
by Jingran He, Yi Liu, Qinling Hong, Runran Li, Ruofan Gao, Bing Fu, Luchuan Ding and Xiaodi Dai
Buildings 2025, 15(21), 3888; https://doi.org/10.3390/buildings15213888 - 27 Oct 2025
Viewed by 386
Abstract
With the increasing demand for lightweight, high-strength, and ductile structural systems in modern infrastructure, the hybrid composite column has emerged as a promising solution to overcome the limitations of single-material members. This paper proposes an innovative variant of double-skin tubular columns (DSTCs), termed [...] Read more.
With the increasing demand for lightweight, high-strength, and ductile structural systems in modern infrastructure, the hybrid composite column has emerged as a promising solution to overcome the limitations of single-material members. This paper proposes an innovative variant of double-skin tubular columns (DSTCs), termed as square double-skin hybrid concrete bar columns (SDHCBCs), composed of one square-shaped outer steel tube, small-diameter concrete-infilled glass FRP tubes (SDCFs), interstitial mortar, and an inner circular steel tube. A series of axial compression tests were conducted on eight SDHCBCs and one reference DSTC to investigate the effects of key parameters, including the thicknesses of the outer steel tube and GFRP tube, the substitution ratio of SDCFs, and their distribution patterns. As a result, significantly enhanced performance is observed in the proposed SDHCBCs, including the following: ultimate axial bearing capacity improved by 79.6%, while the ductility is increased by 328.3%, respectively, compared to the conventional DSTC. A validated finite element model was established to simulate the mechanical behavior of SDHCBCs under axial compression. The model accurately captured the stress distribution and progressive failure modes of each component, offering insights into the complex interaction mechanisms within the hybrid columns. The findings suggest that incorporating SDCFs into hybrid columns is a promising strategy to achieve superior load-carrying performance, with strong potential for application in high-rise and infrastructure engineering. Full article
(This article belongs to the Special Issue Innovations in Composite Material Technologies and Structural Design)
Show Figures

Figure 1

19 pages, 9788 KB  
Article
Optimization Analysis of Structural Parameters of Special Metal Sealing for 175 MPa Tube Hanger
by Jianfei Wang, Shaobo Feng, Junhui Wei, Kun Li, Lijin Zhu, Zhenyu Jia and Fudong Liu
Processes 2025, 13(9), 2970; https://doi.org/10.3390/pr13092970 - 18 Sep 2025
Viewed by 485
Abstract
To meet the usage requirements of the wellhead mandrel-type tube hanger of 175 MPa ultra-high pressure, four specially shaped metal sealing structures are selected as the research objects in this paper. The mechanical properties of different metal sealing structures are calculated, respectively, by [...] Read more.
To meet the usage requirements of the wellhead mandrel-type tube hanger of 175 MPa ultra-high pressure, four specially shaped metal sealing structures are selected as the research objects in this paper. The mechanical properties of different metal sealing structures are calculated, respectively, by using finite element software and binary regression analysis software. It was found that the mechanical properties and contact pressure fluctuations of X-shaped and straight U-shaped metal seals were relatively large, and the sealing width was relatively small among the four types of special-shaped metal seals. The mechanical properties and sealing performance of ball-drum-type metal seals and elliptical U-shaped seals were relatively stable, and the contact width was relatively large. For the single U-shaped sealing structure, the optimization rates of the maximum contact pressure and the minimum equivalent stress reached 11.63% and 10.63%, respectively. For the double U-shaped structure, the optimization rates of its maximum contact pressure and minimum equivalent stress both exceed 12%. The tests showed that the metal sealing structure met the pneumatic sealing requirement of 175 MPa. These results provide theoretical guidance for the research and design of a new type of ultra-high-pressure mandrel oil and casing hanger with a long service life and high reliability. Full article
(This article belongs to the Special Issue New Research on Oil and Gas Equipment and Technology, 2nd Edition)
Show Figures

Figure 1

9 pages, 1070 KB  
Case Report
Retained Intrarenal Guidewire Fragment After Endourological Stone Surgery: Antegrade Percutaneous Snare Retrieval and Literature Review
by Timoleon Giannakas, Aris Kaltsas, Ornella Moschovaki-Zeiger, Stavros Grigoriadis and Michael Chrisofos
Reports 2025, 8(3), 178; https://doi.org/10.3390/reports8030178 - 15 Sep 2025
Viewed by 973
Abstract
Background and Clinical Significance: Retained intrarenal foreign bodies are rare adverse events after endourological stone surgery. Guidewire fracture or detachment is uncommon and can trigger infection, obstruction, or encrustation if unrecognized. We report antegrade percutaneous snare retrieval of a retained hydrophilic guidewire [...] Read more.
Background and Clinical Significance: Retained intrarenal foreign bodies are rare adverse events after endourological stone surgery. Guidewire fracture or detachment is uncommon and can trigger infection, obstruction, or encrustation if unrecognized. We report antegrade percutaneous snare retrieval of a retained hydrophilic guidewire tip and provide a concise literature review (seven PubMed-indexed intrarenal cases identified by a structured search) to inform diagnosis, management, and prevention. We also clarify the clinical rationale for an antegrade versus retrograde approach and the sequencing of decompression, definitive stone management, and stenting in the context of sepsis. Case Presentation: A 75-year-old woman with diabetes presented with obstructive left pyelonephritis from ureteral and renal calculi. After urgent percutaneous nephrostomy, she underwent semirigid and flexible ureteroscopic lithotripsy with double-J stenting; the nephrostomy remained. During routine tube removal, the stent was inadvertently extracted. Seven days later she re-presented with fever and flank pain. KUB and non-contrast CT showed a linear 4 cm radiopaque foreign body in the left renal pelvis with dilatation. Under local anesthesia and fluoroscopy, a percutaneous tract was used to deploy a 35 mm gooseneck snare and retrieve the distal tip of a hydrophilic guidewire (Sensor/ZIP-type). Inflammatory markers were normalized; the nephrostomy was removed on day 5; six-week imaging confirmed complete clearance without complications. Conclusions: Retained guidewire fragments should be suspected in postoperative patients with unexplained urinary symptoms or infection. Cross-sectional imaging confirms the diagnosis, while minimally invasive extraction—preferably an antegrade percutaneous approach for rigid or coiled fragments—achieves prompt resolution. This case adds to the seven prior PubMed-indexed intrarenal reports identified in our review, bringing the total to eight, underscoring prevention through pre-/post-use instrument checks, immediate fluoroscopy when withdrawal resistance occurs, and structured device accounting to avoid “never events.” Full article
Show Figures

Figure 1

13 pages, 3942 KB  
Article
Design of a W-Band Low-Voltage TWT Utilizing a Spoof Surface Plasmon Polariton Slow-Wave Structure and Dual-Sheet Beam
by Gangxiong Wu, Ruirui Jiang and Jin Shi
Sensors 2025, 25(18), 5641; https://doi.org/10.3390/s25185641 - 10 Sep 2025
Viewed by 3353
Abstract
This paper presents a W-band low-voltage traveling-wave tube (TWT) incorporating a spoof surface plasmon polariton (SSPP) slow-wave structure (SWS) and a dual-sheet beam. The SSPP-based SWS adopts a periodic double-F-groove configuration, which provides strong field localization, increases the interaction impedance, and reduces the [...] Read more.
This paper presents a W-band low-voltage traveling-wave tube (TWT) incorporating a spoof surface plasmon polariton (SSPP) slow-wave structure (SWS) and a dual-sheet beam. The SSPP-based SWS adopts a periodic double-F-groove configuration, which provides strong field localization, increases the interaction impedance, and reduces the phase velocity, thereby enabling a low synchronization voltage. Owing to its symmetric open geometry, the SWS naturally forms a dual-sheet beam tunnel, which enhances the effective beam current without increasing the aperture size. Eigenmode calculations indicate that, within the 92–97 GHz band, the normalized phase velocity is between 0.198 and 0.208, and the interaction impedance exceeds 2.65 Ω. Moreover, an energy-coupling structure was developed to ensure efficient signal transmission. Three-dimensional particle-in-cell (PIC) simulations predict a peak output power of 366.1 W and an electronic efficiency of 6.15% at 95.5 GHz for a 2 × 250 mA dual-sheet beam at 11.9 kV, with stable amplification and without self-oscillation observed. The proposed low-voltage, high-efficiency W-band TWT offers a manufacturable and easily integrable solution for next-generation millimeter-wave systems, supporting high-capacity wireless backhaul, airborne communication, radar imaging, and sensing platforms where compactness and reduced power-supply demands are critical. Full article
(This article belongs to the Special Issue Recent Development of Millimeter-Wave Technologies)
Show Figures

Figure 1

25 pages, 8085 KB  
Article
Neural Network-Based Prediction of Compression Behaviour in Steel–Concrete Composite Adapter for CFDST Lattice Turbine Tower
by Shi-Chao Wei, Hao Wen, Ji-Zhi Zhao, Yu-Sen Liu, Yong-Jun Duan and Cheng-Po Wang
Buildings 2025, 15(17), 3103; https://doi.org/10.3390/buildings15173103 - 29 Aug 2025
Viewed by 689
Abstract
The prestressed concrete-filled double skin steel tube (CFDST) lattice tower has emerged as a promising structural solution for large-capacity wind turbine systems due to its superior load-bearing capacity and economic efficiency. The steel–concrete composite adapter (SCCA) is a key component that connects the [...] Read more.
The prestressed concrete-filled double skin steel tube (CFDST) lattice tower has emerged as a promising structural solution for large-capacity wind turbine systems due to its superior load-bearing capacity and economic efficiency. The steel–concrete composite adapter (SCCA) is a key component that connects the upper tubular steel tower to the lower lattice segment, transferring axial loads. However, the compressive behaviour of the SCCA remains underexplored due to its complex multi-shell configuration and steel–concrete interaction. This study investigates the axial compression behaviour of SCCAs through refined finite element simulations, identifying diagonal extrusion as the typical failure mode. The analysis clarifies the distinct roles of the outer and inner shells in confinement, highlighting the dominant influence of outer shell thickness and concrete strength. A sensitivity-based parametric study highlights the significant roles of outer shell thickness and concrete strength. To address the high cost of FE simulations, a 400-sample database was built using Latin Hypercube Sampling and engineering-grade material inputs. Using this dataset, five neural networks were trained to predict SCCA capacity. The Dropout model exhibited the best accuracy and generalization, confirming the feasibility of physics-informed, data-driven prediction for SCCAs and outperforming traditional empirical approaches. A graphical prediction tool was also developed, enabling rapid capacity estimation and design optimization for wind turbine structures. This tool supports real-time prediction and multi-objective optimization, offering practical value for the early-stage design of composite adapters in lattice turbine towers. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

27 pages, 9202 KB  
Article
Enhancement in Corrosion and Wear Resistance of FeCoNiCrAl High-Entropy Alloy Coating Through Dual Heat Treatment with 3:1 N2/H2 Atmosphere
by Miqi Wang, Buxiang Li, Chi He, Jing Sun, Liyuan Li, Aihui Liu and Fang Shi
Coatings 2025, 15(9), 986; https://doi.org/10.3390/coatings15090986 - 23 Aug 2025
Viewed by 886
Abstract
This work investigated the effect of high-nitrogen/low-hydrogen mixed atmosphere heat treatment on the electrochemical corrosion and wear resistance of plasma-sprayed FeCoNiCrAl high-entropy alloy (HEA) coatings. The HEA coatings were sequentially prepared through annealing at 400, 600, and 800 °C for 6 h. The [...] Read more.
This work investigated the effect of high-nitrogen/low-hydrogen mixed atmosphere heat treatment on the electrochemical corrosion and wear resistance of plasma-sprayed FeCoNiCrAl high-entropy alloy (HEA) coatings. The HEA coatings were sequentially prepared through annealing at 400, 600, and 800 °C for 6 h. The heat treatment method was conducted in a vacuum tube furnace under 0.1 MPa total pressure, with gas flow rates set to 300 sccm N2 and 100 sccm H2. The XRD results indicated that the as-deposited coating exhibited α-Fe (BBC) and Al0.9Ni4.22 (FCC) phases, with an Fe0.64N0.36 nitride phase generated after 800 °C annealing. The electrochemical measurements suggested that an exceptional corrosion performance with higher thicknesses of passive film and double-layer capacitance can be detected based on the point defect model (PDM) and effective capacitance model. Wear tests revealed that the friction coefficient at 800 °C decreased by 3.84% compared to that in the as-sprayed state due to the formation of a dense nitride layer. Molecular orbital theory pointed out that the formation of bonding molecular orbitals, resulting from the overlap of valence electron orbitals of different atomic species in the HEA coating system, stabilized the structure by promoting atomic interactions. The wear mechanism associated with stress redistribution and energy balance from compositional synergy is proposed in this work. Full article
(This article belongs to the Section Corrosion, Wear and Erosion)
Show Figures

Figure 1

17 pages, 4515 KB  
Article
Longitudinal Bending Mechanical Performance of Double-O-Tube (DOT) Shield Tunnel
by Senyong Wang, Lehua Peng, Yuan Zhang and Rongzhu Liang
Buildings 2025, 15(16), 2934; https://doi.org/10.3390/buildings15162934 - 19 Aug 2025
Viewed by 543
Abstract
The longitudinal equivalent bending stiffness is a critical parameter for assessing the longitudinal responses of Double-O-Tube (DOT) shield tunnels under adjacent construction activities. Based on a longitudinal equivalent continuous model and the characteristics of the DOT shield tunnel cross-section, an analytical solution for [...] Read more.
The longitudinal equivalent bending stiffness is a critical parameter for assessing the longitudinal responses of Double-O-Tube (DOT) shield tunnels under adjacent construction activities. Based on a longitudinal equivalent continuous model and the characteristics of the DOT shield tunnel cross-section, an analytical solution for the longitudinal equivalent bending stiffness (LEBS) of the DOT shield tunnel has been derived. Given that the cross-section of the DOT shield tunnel is an irregular structure, two scenarios are considered: one in which the neutral axis is located at the waist of the tunnel and another where it is situated at the lower arch. Using the structural design of the DOT shield tunnel for Shanghai Metro Line M8 as a case study, the effects of bolt number, segment thickness, segment width, and pillar height on the longitudinal equivalent bending stiffness have been investigated. Additionally, formulas for calculating the deformation and stress indices of the DOT shield tunnel have been established. The results indicate that increasing the number of bolts and widening the segments can enhance the longitudinal equivalent bending stiffness efficiency (LEBSE), resulting in an upward shift of the neutral axis. Conversely, as the segment thickness increases, the LEBSE decreases linearly while the neutral axis moves downward; however, the value of LEBS itself increases. With an increase in the pillar height angle, the neutral axis shifts upward, leading to an increase in the LEBS. When the pillar height angle is increased from 10° to 45°, the LEBSE decreases rapidly, followed by a gradual increase with further elevation in the pillar height angle. When the tunnel curvature radius exceeds 15,000 m, the bolts, segments, and joint openings remain in a safe state. However, when the curvature radius decreases to 5233 m, the maximum tensile stress on the bolts reaches their yield limit, and the joint openings exceed the warning threshold. Full article
(This article belongs to the Special Issue Soil–Structure Interactions for Civil Infrastructure)
Show Figures

Figure 1

20 pages, 6578 KB  
Article
Hydration Heat Effect and Temperature Control Measures of Long-Span U-Shaped Aqueducts
by Pingan Liu, Yupeng Ou, Tiehu Wang, Fei Yue, Yingming Zhen and Xun Zhang
CivilEng 2025, 6(3), 42; https://doi.org/10.3390/civileng6030042 - 14 Aug 2025
Viewed by 769
Abstract
This study presents a comprehensive analysis of hydration heat-induced temperature and stress fields in a U-shaped aqueduct during the casting phase, integrating field measurements and numerical simulations. The key findings are as follows: (1) Thermal Evolution Characteristics: Both experimental and numerical results demonstrated [...] Read more.
This study presents a comprehensive analysis of hydration heat-induced temperature and stress fields in a U-shaped aqueduct during the casting phase, integrating field measurements and numerical simulations. The key findings are as follows: (1) Thermal Evolution Characteristics: Both experimental and numerical results demonstrated consistent thermal behavior, characterized by a rapid temperature rise, subsequent rapid cooling, and eventual stabilization near ambient conditions. The peak temperature is observed at the centroid of the bearing section’s base slab, reaching 83.8 °C in field tests and 87.0 °C in simulations. (2) Stress Field Analysis: Numerical modeling reveals critical stress conditions in the outer concrete layers within high-temperature zones. The maximum tensile stress reaches 6.37 MPa, exceeding the allowable value of the tensile strength of the current concrete (1.85 MPa) by 244%, indicating a significant risk of thermal cracking. (3) Temperature Gradient and Cooling Rate Anomalies: Both methodologies identify non-compliance with critical control criteria. Internal-to-surface temperature differentials exceed the 25 °C threshold. Daily cooling rates at monitored locations surpass 2.0 °C/d during the initial 5–6 days of the cooling phase, elevating cracking risks associated with excessive thermal gradients. (4) Mitigation Strategy Proposal: Implementation of a hydration heat control system is recommended; compared to single-layer systems, the proposed mid-depth double-layer steel pipe cooling system (1.2 m/s flow) reduced peak temperature by 23.8 °C and improved cooling efficiency by 28.7%. The optimized water circulation maintained thermal balance between concrete and cooling water, achieving water savings and cost reduction while ensuring structural quality. (5) The cooling system proposed in this paper has certain limitations in terms of applicable environment and construction difficulty. Future research can combine with a BIM system to dynamically control the tube cooling system in real time. Full article
(This article belongs to the Section Construction and Material Engineering)
Show Figures

Figure 1

29 pages, 8184 KB  
Article
Experimental and Mechanism Study on Axial Compressive Performance of Double Steel Tube Columns Filled with Recycled Concrete Containing Abandoned Brick Aggregate
by Yuanyuan Sun, Dongxu Hou, Yanbiao Shi, Yamei Sun, Fancheng Meng and Dong Chen
Buildings 2025, 15(14), 2424; https://doi.org/10.3390/buildings15142424 - 10 Jul 2025
Viewed by 764
Abstract
Recycled concrete is widely recognized as favorable for environmental protection and sustainable development. However, recycled concrete, especially containing abandoned brick aggregate, is rarely used in main structural members due to its inherent defects. Concrete-filled double steel tube columns (CFDSTCs), consisting of an outer [...] Read more.
Recycled concrete is widely recognized as favorable for environmental protection and sustainable development. However, recycled concrete, especially containing abandoned brick aggregate, is rarely used in main structural members due to its inherent defects. Concrete-filled double steel tube columns (CFDSTCs), consisting of an outer and an inner steel tube with concrete filling the entire section, are effective in load bearing and deformation resistance. The structural application of abandoned brick aggregate, resulting from urbanization renewal, might be widened through CFDSTCs. This paper presents an experimental and analytical study aiming to investigate the axial compressive behavior of recycled-brick-aggregate-concrete-filled double steel tube columns (RBCDSTs). A total of six specimens were tested under concentric compression, including five RBCDSTs and one concrete-filled single steel tube column. The varied parameters included the replacement ratios (0% and 25%) of brick aggregate and the thickness ratio of the inner and outer steel tubes (0.75, 1, and 1.25). Theoretical analysis was also carried out. A new constitutive model of RBCDST was proposed and used in finite element analysis. The investigation indicated that, under the current conditions, the presence of the inner steel tube only increased the strength by 0.14%. When the inner and outer diameter ratio is 0.73, using a 25% replacement rate of bricks in the entire cross-section or only in the ring area of the cross-section will result in 21.1% and 10.1% strength decreases, respectively. For every 0.6% increase in the diameter-to-thickness ratio of the outer tube, the strength of RBCDST increases 16.3% on average. Full article
Show Figures

Figure 1

17 pages, 1027 KB  
Review
Photon Detector Technology for Laser Ranging: A Review of Recent Developments
by Zhihui Li, Xin Jin, Changfu Yuan and Kai Wang
Coatings 2025, 15(7), 798; https://doi.org/10.3390/coatings15070798 - 8 Jul 2025
Cited by 2 | Viewed by 3610
Abstract
Laser ranging technology holds a key position in the military, aerospace, and industrial fields due to its high precision and non-contact measurement characteristics. As a core component, the performance of the photon detector directly determines the ranging accuracy and range. This paper systematically [...] Read more.
Laser ranging technology holds a key position in the military, aerospace, and industrial fields due to its high precision and non-contact measurement characteristics. As a core component, the performance of the photon detector directly determines the ranging accuracy and range. This paper systematically reviews the technological development of photonic detectors for laser ranging, with a focus on analyzing the working principles and performance differences of traditional photodiodes [PN (P-N junction photodiode), PIN (P-intrinsic-N photodiode), and APD (avalanche photodiode)] (such as the high-frequency response characteristics of PIN and the internal gain mechanism of APD), as well as their applications in short- and medium-range scenarios. Additionally, this paper discusses the unique advantages of special structures such as transmitting junction-type and Schottky-type detectors in applications like ultraviolet light detection. This article focuses on photon counting technology, reviewing the technological evolution of photomultiplier tubes (PMTs), single-photon avalanche diodes (SPADs), and superconducting nanowire single-photon detectors (SNSPDs). PMT achieves single-photon detection based on the external photoelectric effect but is limited by volume and anti-interference capability. SPAD achieves sub-decimeter accuracy in 100 km lidars through Geiger mode avalanche doubling, but it faces challenges in dark counting and temperature control. SNSPD, relying on the characteristics of superconducting materials, achieves a detection efficiency of 95% and a dark count rate of less than 1 cps in the 1550 nm band. It has been successfully applied in cutting-edge fields such as 3000 km satellite ranging (with an accuracy of 8 mm) and has broken through the near-infrared bottleneck. This study compares the differences among various detectors in core indicators such as ranging error and spectral response, and looks forward to the future technical paths aimed at improving the resolution of photon numbers and expanding the full-spectrum detection capabilities. It points out that the new generation of detectors represented by SNSPD, through material and process innovations, is promoting laser ranging to leap towards longer distances, higher precision, and wider spectral bands. It has significant application potential in fields such as space debris monitoring. Full article
Show Figures

Graphical abstract

24 pages, 2752 KB  
Review
Challenges in the Design and Development of Slow-Wave Structure for THz Traveling-Wave Tube: A Tutorial Review
by Patibandla Anilkumar, Shaomeng Wang and Yubin Gong
Electronics 2025, 14(13), 2624; https://doi.org/10.3390/electronics14132624 - 29 Jun 2025
Cited by 3 | Viewed by 2142
Abstract
As solid-state devices continue to advance, vacuum electron devices maintain critical importance due to their superior high-frequency power handling, long-term reliability, and operational efficiency. Among these, traveling-wave tubes (TWTs) excel in high-power microwave (HPM) applications, offering exceptional bandwidth and gain. However, developing THz-range [...] Read more.
As solid-state devices continue to advance, vacuum electron devices maintain critical importance due to their superior high-frequency power handling, long-term reliability, and operational efficiency. Among these, traveling-wave tubes (TWTs) excel in high-power microwave (HPM) applications, offering exceptional bandwidth and gain. However, developing THz-range TWT slow-wave structures (SWSs) presents significant design challenges. This work systematically outlines the SWS design methodology while addressing key obstacles and their solutions. As a demonstration, a staggered double vane (SDV) SWS operating at 1 THz (980–1080 GHz) achieves 650 mW output power, 23.35 dB gain, 0.14% electronic efficiency, and compact 21 mm length. Comparative analysis with deformed quasi-sine waveguide (D-QSWG) SWS confirms the SDV design’s superior performance for THz applications. Full article
(This article belongs to the Section Microwave and Wireless Communications)
Show Figures

Figure 1

24 pages, 10324 KB  
Article
A Versatile Platform for Designing and Fabricating Multi-Material Perfusable 3D Microvasculatures
by Nathaniel Harris, Charles Miller and Min Zou
Micromachines 2025, 16(6), 691; https://doi.org/10.3390/mi16060691 - 8 Jun 2025
Cited by 1 | Viewed by 2115
Abstract
Perfusable microvasculature is critical for advancing in vitro tissue models, particularly for neural applications where limited diffusion impairs organoid growth and fails to replicate neurovascular function. This study presents a versatile fabrication platform that integrates mesh-driven design, two-photon lithography (TPL), and modular interfacing [...] Read more.
Perfusable microvasculature is critical for advancing in vitro tissue models, particularly for neural applications where limited diffusion impairs organoid growth and fails to replicate neurovascular function. This study presents a versatile fabrication platform that integrates mesh-driven design, two-photon lithography (TPL), and modular interfacing to create multi-material, perfusable 3D microvasculatures. Various 2D and 3D capillary paths were test-printed using both polygonal and lattice support strategies. A double-layered capillary scaffold based on the Hilbert curve was used for comparative materials testing. Methods for printing rigid (OrmoComp), moderately stiff hydrogel (polyethylene glycol diacrylate, PEGDA 700), and soft elastomeric (photocurable polydimethylsiloxane, PDMS) materials were developed and evaluated. Cone support structures enabled high-fidelity printing of the softer materials. A compact heat-shrink tubing interface provided leak-free perfusion without bulky fittings. Physiologically relevant flow velocities and Dextran diffusion through the scaffold were successfully demonstrated. Cytocompatibility assays confirmed that all TPL-printed scaffold materials supported human neural stem cell viability. Among peripheral components, lids fabricated via fused deposition modeling designed to hold microfluidic needle adapters exhibited good biocompatibility, while those made using liquid crystal display-based photopolymerization showed significant cytotoxicity despite indirect exposure. Overall, this platform enables creation of multi-material microvascular systems facilitated by TPL technology for complex, 3D neurovascular modeling, blood–brain barrier studies, and integration into vascularized organ-on-chip applications. Full article
(This article belongs to the Special Issue Microfluidic Chips for Biomedical Applications)
Show Figures

Figure 1

19 pages, 4040 KB  
Article
Study on Self-Healing Effect of Concrete Based on Epoxy Resin Adhesive
by Jianguo Lv, Shenlong Niu, Wei Zhang and Yongshuai Sun
Materials 2025, 18(12), 2679; https://doi.org/10.3390/ma18122679 - 6 Jun 2025
Cited by 2 | Viewed by 945
Abstract
The issues concerning the stability and durability of concrete structures have garnered increasing attention. This study, through theoretical analysis and experimental investigation, explores the application of epoxy resin adhesives in self-healing concrete. A three-point bending test was conducted on the self-healing system, employing [...] Read more.
The issues concerning the stability and durability of concrete structures have garnered increasing attention. This study, through theoretical analysis and experimental investigation, explores the application of epoxy resin adhesives in self-healing concrete. A three-point bending test was conducted on the self-healing system, employing C30 concrete as the substrate, with glass double tubes 80 mm in length and 1 mm in wall thickness, possessing an inner diameter of 10 mm, serving as the resin reservoirs, and modified epoxy resins serving as the healing agents. The experimental data indicate that the healing system has a certain degree of strength recovery effect on the concrete matrix, yet the recovery rate is suboptimal, and there are areas for improvement. Furthermore, this paper investigates the optimization of the epoxy resin adhesive formulation and its efficacy in self-healing concrete applications. Full article
(This article belongs to the Section Construction and Building Materials)
Show Figures

Figure 1

22 pages, 3703 KB  
Article
Seismic Performance of Recycled Aggregate Concrete-Filled Steel Tube Column–Composite Beam Frames with Column-End Stirrup Confinement
by Zhi Yang, Xingnian Chen, Hongchang Xu, Baoye Hui, Jia Huang, Liping Wang, Said Ikram Sadat and Faxing Ding
Materials 2025, 18(11), 2458; https://doi.org/10.3390/ma18112458 - 23 May 2025
Cited by 1 | Viewed by 951
Abstract
The application of recycled concrete in building structures can not only effectively reduce the generation of construction waste and reduce the excessive dependence on natural aggregates but can also promote the sustainable use of resources and meet the national “double carbon” strategic requirements. [...] Read more.
The application of recycled concrete in building structures can not only effectively reduce the generation of construction waste and reduce the excessive dependence on natural aggregates but can also promote the sustainable use of resources and meet the national “double carbon” strategic requirements. This study investigates the effect of the recycled aggregate replacement ratio on the seismic performance of concrete-filled steel tube column–composite beam frames. Five finite element models were developed, considering varying recycled aggregate replacement ratios and the presence or absence of column-end stirrup-confined reinforcement. Dynamic response analyses were conducted. The results reveal that replacing natural aggregates with recycled aggregates reduces the stiffness of concrete-filled steel tube columns by weakening the core concrete, negatively impacting seismic performance and increasing structural stiffness damage. Column-end stirrup-confined reinforcement reduces interface slip between the core concrete and the steel tube by directly restraining the core concrete, thereby enhancing the bending stiffness of the concrete-filled steel tube column and improving the seismic performance of the structure. The seismic performance of recycled concrete frames with column-end stirrup-confined reinforcement is superior to that of conventional concrete frames, demonstrating that column-end reinforcement can effectively mitigate the adverse effects of recycled aggregate replacement on the structure’s seismic performance. Full article
(This article belongs to the Special Issue Advances in Modern Cement-Based Materials for Composite Structures)
Show Figures

Figure 1

Back to TopTop