Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,064)

Search Parameters:
Keywords = double-stranded DNA breaks

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 1716 KB  
Article
Dna2 Responds to Endogenous and Exogenous Replication Stress in Drosophila melanogaster
by Ivan Rivera, Sabah Shammari, Hamiya Sohail, Christian Villegas, Zoha Wasim, Sze Hang Ip, Vada Becker, Kathryn P. Kohl, Eric P. Stoffregen, Christina I. Swanson and Elyse Bolterstein
Genes 2025, 16(10), 1133; https://doi.org/10.3390/genes16101133 - 25 Sep 2025
Abstract
Background/Objectives: DNA2 is a conserved nuclease–helicase that plays a crucial role in DNA replication and repair by responding to replication stress. Previous studies have established the role of DNA2 in Okazaki fragment processing, the recovery of stalled replication forks, and double-strand break [...] Read more.
Background/Objectives: DNA2 is a conserved nuclease–helicase that plays a crucial role in DNA replication and repair by responding to replication stress. Previous studies have established the role of DNA2 in Okazaki fragment processing, the recovery of stalled replication forks, and double-strand break repair. This study investigates the role of Drosophila melanogaster Dna2 in response to exogenous DNA damage and replication stress as well as during developmental stages involving intensive DNA replication. Methods: We used the Drosophila mutant alleles, Dna2D1 and Dna2D2, which differ in the presence of the helicase 1A domain, to assess sensitivity to mutagens that cause various types of replication stress and DNA damage. We examined reproductive fitness through Mendelian ratio calculations, fecundity, egg viability assays, and assessed DNA damage via immunostaining of ovarian germaria. Lifespan assays were also conducted to examine adult survival. Results: Dna2 mutants demonstrated significant sensitivity to replication stress induced by MMS, hydroxyurea, topotecan, and nitrogen mustard. Dna2lS/S1 mutants exhibited higher survival than Dna2lS/D2 upon exposure to topotecan and bleomycin, suggesting a possible helicase-specific role in damage response. Mutants exhibited decreased fecundity, reduced egg viability, and elevated DNA damage in mitotically active germline cells. Adult lifespan was not reduced in Dna2 mutants, implying potential compensatory stress-response mechanisms. Conclusions: Our findings support a requirement of Dna2 in managing replication stress during critical developmental phases in Drosophila. These insights clarify the nuanced contributions of the nuclease and helicase domains of DNA2, suggesting potential domain-specific functions in genomic stability and repair mechanisms. This work provides a foundation that will enable future researchers to further dissect the complex roles of DNA2 in replication and repair pathways. Full article
(This article belongs to the Section Molecular Genetics and Genomics)
Show Figures

Figure 1

19 pages, 11564 KB  
Article
Pluripotent Cells Expressing APOE4 Exhibit a Pronounced Pro-Apoptotic Phenotype Accompanied by Markers of Hyperinflammation and a Blunted NF-κB Response
by Wiebke Schulten, Nele Johanne Czaniera, Anna Lena Buschheuer, Antonia Liermann, Axel Wiegand, Barbara Kaltschmidt and Christian Kaltschmidt
Int. J. Mol. Sci. 2025, 26(19), 9283; https://doi.org/10.3390/ijms26199283 - 23 Sep 2025
Viewed by 185
Abstract
Alzheimer’s disease (AD) is a progressive neurodegenerative disorder that poses an increasing burden on society. It is characterized by the presence of neurofibrillary tangles (NFTs) and amyloid-beta (Aβ) plaques. AD is a multifactorial disease, with one of the strongest genetic risk factors being [...] Read more.
Alzheimer’s disease (AD) is a progressive neurodegenerative disorder that poses an increasing burden on society. It is characterized by the presence of neurofibrillary tangles (NFTs) and amyloid-beta (Aβ) plaques. AD is a multifactorial disease, with one of the strongest genetic risk factors being the APOE4 allele. In this study, we investigated the impact of APOE4 on NF-κB signaling in induced pluripotent stem (iPS) cells. Our results indicate that APOE4 may influence the subcellular localization of the pluripotency marker OCT4, showing a predominantly nuclear localization in APOE4 cells, whereas it appears cytoplasmic in APOE3 cells. Additionally, NF-κB activation via its canonical subunits is blunted in APOE4 cells. Interestingly, APOE4 cells still exhibit increased transcription of key hyperinflammatory markers CCL2, CXCL10 and COX2, which are known NF-κB target genes, and exhibit a significantly higher rate of apoptosis compared to APOE3 cells—independent of TNF-α stimulation. Moreover, an elevated incidence of DNA double-strand breaks was observed in APOE4 cells. However, the precise molecular mechanisms by which APOE4 suppresses NF-κB activation while simultaneously promoting inflammation and apoptosis remain unclear. Further research is required to elucidate these underlying pathways. Full article
(This article belongs to the Special Issue Molecular Mechanisms of Alzheimer’s Disease)
Show Figures

Figure 1

41 pages, 11700 KB  
Article
Effect of Reoxygenation on Radioresistance of Chronically Hypoxic A549 Non-Small Cell Lung Cancer (NSCLC) Cells Following X-Ray and Carbon Ion Exposure
by Hasan Nisar, Bikash Konda, Marie Denise Hoffmann, Frederik M. Labonté, Maryam Arif, Sebastian Diegeler, Claudia Schmitz, Christa Baumstark-Khan, François Chevalier and Christine E. Hellweg
Int. J. Mol. Sci. 2025, 26(18), 9153; https://doi.org/10.3390/ijms26189153 - 19 Sep 2025
Viewed by 180
Abstract
Hypoxia-induced radioresistance in non-small cell lung cancer (NSCLC) hinders radiotherapy efficacy. Fractionated schedules exploit reoxygenation between fractions to reverse this resistance, but the effects of post-irradiation reoxygenation remain unclear and may depend on radiation quality. We investigated survival, cell cycle progression, cytokine secretion, [...] Read more.
Hypoxia-induced radioresistance in non-small cell lung cancer (NSCLC) hinders radiotherapy efficacy. Fractionated schedules exploit reoxygenation between fractions to reverse this resistance, but the effects of post-irradiation reoxygenation remain unclear and may depend on radiation quality. We investigated survival, cell cycle progression, cytokine secretion, and gene expression in hypoxic (1 % O2) and reoxygenated A549 cells irradiated with X-rays or carbon ions. Colony-forming assays revealed an Oxygen Enhancement Ratio (OER) > 1 for both hypoxic and reoxygenated cells after X-rays, indicating persistent radioresistance; carbon ion OER ≈ 1 reflected oxygen-independent cytotoxicity. Hypoxia weakened radiation-induced G2 arrest, and this was unaffected by reoxygenation. IL-6 secretion increased after X-rays and IL-8 after carbon ions exposure; both were enhanced under hypoxia and reoxygenation. RNA sequencing revealed that hypoxia induced a pro-survival, epithelial-to-mesenchymal transition (EMT)-promoting, and immune-evasive transcriptional program, which was largely reversed by reoxygenation but without increased clonogenic killing. These findings indicate that short-term reoxygenation after irradiation can normalize hypoxia-driven transcriptional changes yet does not restore radiosensitivity, supporting the advantage of high-linear energy transfer (LET) carbon ions for targeting resistant hypoxic NSCLC cells. Full article
Show Figures

Figure 1

15 pages, 2187 KB  
Article
The Phenotype of Physcomitrium patens SMC6 Mutant with Interrupted Hinge Interactions
by Karel J. Angelis, Marcela Holá, Radka Vágnerová, Jitka Vaculíková and Jan J. Paleček
Genes 2025, 16(9), 1091; https://doi.org/10.3390/genes16091091 - 16 Sep 2025
Viewed by 252
Abstract
Background/Objectives: The Structural Maintenance of Chromosomes (SMC) proteins form essential heterocomplexes for the preservation of DNA structure and its functions, and hence cell viability. The SMC5/6 dimer is assembled by direct interactions of ATP heads via the kleisin NSE4 bridge and by [...] Read more.
Background/Objectives: The Structural Maintenance of Chromosomes (SMC) proteins form essential heterocomplexes for the preservation of DNA structure and its functions, and hence cell viability. The SMC5/6 dimer is assembled by direct interactions of ATP heads via the kleisin NSE4 bridge and by SMC hinges. The structure might be interrupted by a single point mutation within a conserved motif of the SMC6-hinge. We describe the phenomena associated with the impairment of the SMC5/6 complex with morphology, repair of DNA double strand breaks (DSB), mutagenesis, recombination and gene targeting (GT) in the moss Physcomitrium patens (P. patens). Methods: Using CRISPR/Cas9-directed oligonucleotide replacement, we have introduced two close G to R point mutations in the hinge domain of SMC6 of P. patens and show that both mutations are not toxic and allow viability of mutant lines. Results: The G514R mutation fully prevents the interaction of SMC6 not only with SMC5, but also with NSE5 and NSE6, while the mutation at G517R has no effect. The Ppsmc6_G514R line has aberrant morphology, spontaneous and bleomycin-induced mutagenesis, and maintenance of the number of rDNA copies. The most unique feature is the interference with gene targeting (GT), which is completely abolished. In contrast, the Ppsmc6_G517R line is close to WT in many aspects. Surprisingly, both mutations have no direct effect on the rate of DSB repair in dividing and differentiated cells. Conclusions: Abolished interactions of SMC6 with SMC5 and NSE5,6 partners, which allow DSB repair, but impair other repair and recombination functions, suggests also regulatory role for SMC6. Full article
(This article belongs to the Section Molecular Genetics and Genomics)
Show Figures

Figure 1

17 pages, 5430 KB  
Article
Airborne PM10 Decreases Ku80 Expression and Ku70–Ku80 Heterodimer Levels of the Non-Homologous End Joining Repair Pathway in Lung Epithelial Cells
by Ericka Marel Quezada-Maldonado, Javier Ivan Lozolla-Ortiz, Miguel Santibáñez-Andrade, Rocío Morales-Bárcenas, Claudia M. García-Cuellar and Yesennia Sánchez-Pérez
Int. J. Mol. Sci. 2025, 26(18), 8936; https://doi.org/10.3390/ijms26188936 - 13 Sep 2025
Viewed by 554
Abstract
The global population constantly breathes particulate matter with an aerodynamic diameter of ≤10 µm (PM10)—a human carcinogen linked to lung cancer. Previous studies have indicated that PM10 causes DNA damage, including double-strand breaks (DSBs). In particular, DSBs are primarily repaired [...] Read more.
The global population constantly breathes particulate matter with an aerodynamic diameter of ≤10 µm (PM10)—a human carcinogen linked to lung cancer. Previous studies have indicated that PM10 causes DNA damage, including double-strand breaks (DSBs). In particular, DSBs are primarily repaired by the non-homologous end joining (NHEJ) pathway, which is essential for maintaining genomic stability; however, the effects of PM10 exposure on this pathway are unknown. To address this, A549 lung epithelial cells were exposed to 10 µg/cm2 of PM10 for 6, 12, and 24 h. We determined that DSBs increased with prolonged exposure, and an increase in the frequency of micronuclei was found. Despite the accumulated DNA damage, no changes in the cell cycle were observed. Reductions in the levels of the Ku80 gene and protein, as well as the Ku70–Ku80 heterodimer—which is essential for initiating NHEJ-mediated repair—were observed. Levels of Artemis (which is responsible for processing DNA damage) remained stable, while levels of the XRCC4 gene and protein (responsible for completing repair) decreased. We conclude that PM10 disrupts two key proteins in the NHEJ pathway, impairing the capacity for DSB repair. This could promote the accumulation of DNA damage and induce genomic instability, contributing to the development of cancer. Full article
(This article belongs to the Special Issue Molecular Mechanism in DNA Replication and Repair)
Show Figures

Graphical abstract

16 pages, 1266 KB  
Article
Albumin-Coated Copper Oxide Nanoparticles for Radiosensitization of Human Glioblastoma Cells Under Clinically Relevant X-Ray Irradiation
by Chanyatip Suwannasing, Nittiya Suwannasom, Pattawat Iamcharoen, Rachan Dokkham, Panupong Maun, Pitchayuth Srisai, Hans Bäumler and Ausanai Prapan
Nanomaterials 2025, 15(17), 1376; https://doi.org/10.3390/nano15171376 - 5 Sep 2025
Viewed by 737
Abstract
Glioblastoma (GBM) is the most aggressive and treatment-resistant primary brain tumor in adults. Despite current multimodal therapies, including surgery, radiation, and temozolomide chemotherapy, patient outcomes remain poor. Enhancing tumor radiosensitivity through biocompatible nanomaterials could provide a promising integrative strategy for improving therapeutic effectiveness. [...] Read more.
Glioblastoma (GBM) is the most aggressive and treatment-resistant primary brain tumor in adults. Despite current multimodal therapies, including surgery, radiation, and temozolomide chemotherapy, patient outcomes remain poor. Enhancing tumor radiosensitivity through biocompatible nanomaterials could provide a promising integrative strategy for improving therapeutic effectiveness. This study aims to evaluate the potential of bovine serum albumin-coated copper oxide nanoparticles (BSA@CuO-NPs) to enhance radiosensitivity in U87-MG cells under clinically relevant X-ray irradiation. In brief, BSA@CuO-NPs were synthesized via carbodiimide crosslinking and characterized by DLS, SEM, and zeta potential analysis. U87-MG cells were treated with BSA@CuO-NPs alone or in combination with X-ray irradiation (2 Gy). Cytotoxicity was assessed using the MTT assay, while radiosensitization was evaluated through clonogenic survival analysis. Apoptosis induction and DNA damage were analyzed via Annexin V staining and γ-H2AX immunofluorescence, respectively. The results revealed that BSA@CuO-NPs showed good colloidal stability and biocompatibility compared with uncoated CuO-NPs. When combined with irradiation, BSA@CuO-NPs significantly decreased clonogenic survival (p < 0.05) and increased apoptotic cell death compared to irradiation alone. Immunofluorescence demonstrated increased γ-H2AX focus formation, indicating higher DNA double-strand breaks in the combination group. In conclusion, BSA@CuO-NPs enhance the effects of ionizing radiation by increasing DNA damage and apoptosis in U87-MG cells, indicating their potential as combined radiosensitizers. These results support further research into albumin-coated metal oxide nanoparticles as adjuncts to standard radiotherapy for the management of GBM. One challenge in this context is the effective delivery of nanoparticles to GBM. However, the stability of BSA@CuO-NPs in physiological solutions could help overcome this obstacle. Full article
(This article belongs to the Section Biology and Medicines)
Show Figures

Figure 1

25 pages, 4126 KB  
Article
High-Mobility Group Box Protein 3 (HMGB3) Facilitates DNA Interstrand Crosslink Processing and Double-Strand Break Repair in Human Cells
by Jillian Dangerfield, Anirban Mukherjee, Wade Reh, Anna Battenhouse and Karen M. Vasquez
Genes 2025, 16(9), 1044; https://doi.org/10.3390/genes16091044 - 4 Sep 2025
Viewed by 681
Abstract
Background/Objectives: DNA-damaging agents can contribute to genetic instability, and such agents are often used in cancer chemotherapeutic regimens due to their cytotoxicity. Thus, understanding the mechanisms involved in DNA damage processing can not only enhance our knowledge of basic DNA repair mechanisms [...] Read more.
Background/Objectives: DNA-damaging agents can contribute to genetic instability, and such agents are often used in cancer chemotherapeutic regimens due to their cytotoxicity. Thus, understanding the mechanisms involved in DNA damage processing can not only enhance our knowledge of basic DNA repair mechanisms but may also be used to develop improved chemotherapeutic strategies to treat cancer. The high-mobility group box protein 1 (HMGB1) is a known nucleotide excision repair (NER) cofactor, and its family member HMGB3 has been implicated in chemoresistance in ovarian cancer. Here, we aim to understand the potential role(s) of HMGB3 in processing DNA damage. Methods: A potential role in NER was investigated using HMGB3 knockout human cell lines in response to UV damage. Subsequently, potential roles in DNA interstrand crosslink (ICL) and DNA double-strand break (DSB) repair were investigated using mutagenesis assays, metaphase spreads, foci formation, a variety of DNA repair assays, and TagSeq analyses in human cells. Results: Interestingly, unlike HMGB1, HMGB3 does not appear to play a role in NER. We found evidence to suggest that HMGB3 is involved in the processing of both DSBs and ICLs in human cells. Conclusions: These novel results elucidate a role for HMGB3 in DNA damage repair and, surprisingly, also indicate a distinct role of HMGB3 in DNA damage repair from that of HMGB1. These findings advance our understanding of the role of HMGB3 in chemotherapeutic drug resistance and as a target for new chemotherapeutic strategies in the treatment of cancer. Full article
(This article belongs to the Special Issue DNA Repair, Genomic Instability and Cancer)
Show Figures

Figure 1

18 pages, 5526 KB  
Article
Size-Dependent Interactions of γH2AX and p53 Proteins with Graphene Quantum Dots
by Hassan Arif, Sachi Mehta and Isaac Macwan
Micro 2025, 5(3), 41; https://doi.org/10.3390/micro5030041 - 30 Aug 2025
Viewed by 501
Abstract
p53 protein is a nuclear phosphoprotein that is a critical tumor suppressor, playing a key role in regulating the cell cycle and initiating apoptosis in response to DNA damage. As a transcription factor, it also activates genes involved in DNA repair and cell [...] Read more.
p53 protein is a nuclear phosphoprotein that is a critical tumor suppressor, playing a key role in regulating the cell cycle and initiating apoptosis in response to DNA damage. As a transcription factor, it also activates genes involved in DNA repair and cell cycle arrest. H2AX is a histone H2A variant, which is vital for detecting DNA double-strand breaks. When phosphorylated at Serine 139, it forms γH2AX, which recruits DNA repair proteins to damage sites. The interaction between p53 and γH2AX is central to the DNA damage response, where p53 activates repair pathways and γH2AX flags the DNA lesions. It is known that impairing γH2AX while preserving p53 activity may slow cancer progression. Towards understanding this, graphene quantum dots (GQDs) offer a promising solution for tracking γH2AX and analyzing DNA damage, where they can help visualize it by investigating how p53 contributes to DNA repair at sites marked by γH2AX. This study examines the interactions between γH2AX and p53 with three different-sized two-layered GQDs (2 × 3 nm, 5 × 6 nm, and 8 × 9 nm) using the Molecular Dynamics (MD) approach. Our analysis revealed that both proteins adsorbed strongly to the 5 × 6 nm and 8 × 9 nm GQDs, with 5 × 6 nm GQD having the highest stability, making it a key candidate for future biosensing and cancer research, whereas the 8 × 9 nm GQD has the greatest potential to denature the proteins. Full article
(This article belongs to the Section Microscale Biology and Medicines)
Show Figures

Figure 1

15 pages, 772 KB  
Review
Mutational Signatures in Radiation-Induced Cancer: A Review of Experimental Animal and Human Studies
by Kazuhiro Daino, Chizuru Tsuruoka, Atsuko Ishikawa, Shizuko Kakinuma and Tatsuhiko Imaoka
Biology 2025, 14(9), 1142; https://doi.org/10.3390/biology14091142 - 29 Aug 2025
Viewed by 621
Abstract
Ionizing radiation can damage DNA, leading to mutations, and is a risk factor for cancer. Based on the assumption that all radiation exposure poses a risk in linear proportion to its dose, ionizing radiation is considered a non-threshold carcinogen. However, most epidemiological studies [...] Read more.
Ionizing radiation can damage DNA, leading to mutations, and is a risk factor for cancer. Based on the assumption that all radiation exposure poses a risk in linear proportion to its dose, ionizing radiation is considered a non-threshold carcinogen. However, most epidemiological studies have had insufficient statistical power to detect excess cancer risks from low-dose radiation exposure. Therefore, research is needed to identify radiation signatures that distinguish radiation-induced cancers from spontaneously developed cancers. In rodent cancer models, interstitial chromosomal deletions of specific tumor-suppressor gene loci are characteristically found in cancers from irradiated animals. In humans, a high frequency of small deletions and chromosome rearrangements, such as large deletions, inversions, and translocations, has also been reported in second cancers that develop in patients who received radiotherapy and in thyroid cancers diagnosed in residents after the Chornobyl accident. These genomic alterations are likely to be generated as a consequence of the processing of radiation-induced DNA double-strand breaks. Particularly, chromosome rearrangements that occur at loci directly linked to tumor formation after ionizing-radiation exposure are potentially useful as biomarkers and as therapeutic targets for radiation-induced cancer. Here we provide an overview of the radiation-induced mutational signatures observed in animal and human cancers. Full article
Show Figures

Graphical abstract

13 pages, 1824 KB  
Article
Reactive Oxygen Species Yield near Gold Nanoparticles Under Ultrahigh-Dose-Rate Electron Beams: A Monte Carlo Study
by Chloe Doen Kim and James C. L. Chow
Nanomaterials 2025, 15(17), 1303; https://doi.org/10.3390/nano15171303 - 23 Aug 2025
Viewed by 1190
Abstract
Ultrahigh dose rate (UHDR) radiotherapy, also known as FLASH radiotherapy (FLASH-RT), has shown potential for increasing tumor control while sparing normal tissue. In parallel, gold nanoparticles (GNPs) have been extensively explored as radiosensitizers due to their high atomic number and ability to enhance [...] Read more.
Ultrahigh dose rate (UHDR) radiotherapy, also known as FLASH radiotherapy (FLASH-RT), has shown potential for increasing tumor control while sparing normal tissue. In parallel, gold nanoparticles (GNPs) have been extensively explored as radiosensitizers due to their high atomic number and ability to enhance the generation of reactive oxygen species (ROS) through water radiolysis. In this study, we investigate the synergistic effects of UHDR electron beams and GNP-mediated radiosensitization using Monte Carlo (MC) simulations based on the Geant4-DNA code. A spherical water phantom with embedded GNPs of varying sizes (5–100 nm) was irradiated using pulsed electron beams (100 keV and 1 MeV) at dose rates of 60, 100, and 150 Gy/s. The chemical yield of ROS near the GNPs was quantified and compared to an equivalent water nanoparticle model, and the yield enhancement factor (YEF) was used to evaluate radiosensitization. Results demonstrated that YEF increased with smaller GNP sizes and at lower UHDR, particularly for 1 MeV electrons. A maximum YEF of 1.25 was observed at 30 nm from the GNP surface for 5 nm particles at 60 Gy/s. The elevated ROS concentration near GNPs under FLASH conditions is expected to intensify DNA damage, especially double-strand breaks, due to increased hydroxyl radical interactions within nanometric distances of critical biomolecular targets. These findings highlight the significance of nanoparticle size and beam parameters in optimizing ROS production for FLASH-RT. The results provide a computational basis for future experimental investigations into the combined use of GNPs and UHDR beams in nanoparticle-enhanced radiotherapy. Full article
Show Figures

Graphical abstract

12 pages, 1773 KB  
Brief Report
Effects of Aging on Z-DNA-Induced Genetic Instability In Vivo
by Tonia T. Li, Alexandra D’Amico, Laura Christensen and Karen M. Vasquez
Genes 2025, 16(8), 942; https://doi.org/10.3390/genes16080942 - 11 Aug 2025
Viewed by 594
Abstract
Repetitive DNA sequences are abundant in genomes and can adopt alternative DNA structures (i.e., non-B DNA). One such structure, Z-DNA, has been shown to stimulate genetic instability in a variety of organisms, including human cells and mice. Z-DNA-forming sequences are enriched at mutation [...] Read more.
Repetitive DNA sequences are abundant in genomes and can adopt alternative DNA structures (i.e., non-B DNA). One such structure, Z-DNA, has been shown to stimulate genetic instability in a variety of organisms, including human cells and mice. Z-DNA-forming sequences are enriched at mutation hotspots in human cancer genomes, implicating them in cancer etiology. Aging is a known risk factor for the development of cancer, and genetic instability is a hallmark of both aging and cancer. However, how aging affects the mutagenic potential of Z-DNA has not yet been investigated. Here, we explored the effects of aging on the mutagenic processing of Z-DNA using a transgenic mouse model. Surprisingly, Z-DNA-induced mutations decreased or remained unchanged with increasing age. Cleavage of Z-DNA was unaffected with increasing age, suggesting that downstream repair processing, such as double-strand break repair processes, may be involved in the age-related changes in Z-DNA-induced mutagenesis in mice. Full article
(This article belongs to the Section Molecular Genetics and Genomics)
Show Figures

Figure 1

36 pages, 543 KB  
Review
Homologous Recombination Deficiency in Ovarian and Breast Cancers: Biomarkers, Diagnosis, and Treatment
by Bhaumik Shah, Muhammad Hussain and Anjali Seth
Curr. Issues Mol. Biol. 2025, 47(8), 638; https://doi.org/10.3390/cimb47080638 - 8 Aug 2025
Viewed by 3071
Abstract
Homologous recombination deficiency (HRD) is a pivotal biomarker in precision oncology, driving therapeutic strategies for ovarian and breast cancers through impaired DNA double-strand break repair. This narrative review synthesizes recent advances (2021–2025) in HRD’s biological basis, prevalence, detection methods, and clinical implications, focusing [...] Read more.
Homologous recombination deficiency (HRD) is a pivotal biomarker in precision oncology, driving therapeutic strategies for ovarian and breast cancers through impaired DNA double-strand break repair. This narrative review synthesizes recent advances (2021–2025) in HRD’s biological basis, prevalence, detection methods, and clinical implications, focusing on high-grade serous ovarian carcinoma (HGSOC; ~50% HRD prevalence) and triple-negative breast cancer (TNBC; 50–70% prevalence). HRD arises from genetic (BRCA1/2, RAD51C/D, PALB2) and epigenetic alterations (e.g., BRCA1 methylation), leading to genomic instability detectable via scars (LOH, TAI, LST) and mutational signatures (e.g., COSMIC SBS3). Advanced detection integrates genomic assays (Myriad myChoice CDx, Caris HRD, FoundationOne CDx), functional assays (RAD51 foci), and epigenetic profiling, with tools like HRProfiler and GIScar achieving >90% sensitivity. HRD predicts robust responses to PARP inhibitors (PARPi) and platinum therapies, extending progression-free survival by 12–36 months in HGSOC. However, resistance mechanisms (BRCA reversion, SETD1A/EME1, SOX5) and assay variability (60–70% non-BRCA concordance) pose challenges. We propose a conceptual framework in Section 10, integrating multi-omics, methylation analysis, and biallelic reporting to enhance detection and therapeutic stratification. Regional variations (e.g., Asian cohorts) and disparities in access underscore the need for standardized, cost-effective diagnostics. Future priorities include validating novel biomarkers (SBS39, miR-622) and combination therapies (PARPi with ATR inhibitors) to overcome resistance and broaden HRD’s applicability across cancers. Full article
(This article belongs to the Special Issue DNA Damage and Repair in Health and Diseases)
18 pages, 2516 KB  
Article
Joint Metabolomics and Transcriptomics Reveal Rewired Glycerophospholipid and Arginine Metabolism as Components of BRCA1-Induced Metabolic Reprogramming in Breast Cancer Cells
by Thomas Lucaora and Daniel Morvan
Metabolites 2025, 15(8), 534; https://doi.org/10.3390/metabo15080534 - 7 Aug 2025
Viewed by 703
Abstract
Background/Objectives: The breast cancer susceptibility gene 1 (BRCA1) is a tumor suppressor gene whose mutations are associated with increased susceptibility to develop breast or ovarian cancer. BRCA1 mainly exerts its protective effects through DNA double-strand break repair. Although not itself [...] Read more.
Background/Objectives: The breast cancer susceptibility gene 1 (BRCA1) is a tumor suppressor gene whose mutations are associated with increased susceptibility to develop breast or ovarian cancer. BRCA1 mainly exerts its protective effects through DNA double-strand break repair. Although not itself a transcriptional factor, BRCA1, through its multiple protein interaction domains, exerts transcriptional coregulation. In addition, BRCA1 expression alters cellular metabolism including inhibition of de novo fatty acid synthesis, changes in cellular bioenergetics, and activation of antioxidant defenses. Some of these actions may contribute to its global oncosuppressive effects. However, the breadth of metabolic pathways reprogrammed by BRCA1 is not fully elucidated. Methods: Breast cancer cells expressing BRCA1 were investigated by multiplatform metabolomics, metabolism-related transcriptomics, and joint metabolomics/transcriptomics data processing techniques, namely two-way orthogonal partial least squares and pathway analysis. Results: Joint analyses revealed the most important metabolites, genes, and pathways of metabolic reprogramming in BRCA1-expressing breast cancer cells. The breadth of metabolic reprogramming included fatty acid synthesis, bioenergetics, HIF-1 signaling pathway, antioxidation, nucleic acid synthesis, and other pathways. Among them, rewiring of glycerophospholipid (including phosphatidylcholine, -serine and -inositol) metabolism and increased arginine metabolism have not been reported yet. Conclusions: Rewired glycerophospholipid and arginine metabolism were identified as components of BRCA1-induced metabolic reprogramming in breast cancer cells. The study helps to identify metabolites that are candidate biomarkers of the BRCA1 genotype and metabolic pathways that can be exploited in targeted therapies. Full article
(This article belongs to the Section Cell Metabolism)
Show Figures

Figure 1

10 pages, 1283 KB  
Communication
Optimized Ribonucleoprotein Complexes Enhance Prime Editing Efficiency in Zebrafish
by Lang Qin and Qiupeng Lin
Animals 2025, 15(15), 2295; https://doi.org/10.3390/ani15152295 - 6 Aug 2025
Viewed by 687
Abstract
Prime editing (PE) has emerged as a transformative genome editing technology, enabling precise base substitutions, insertions, and deletions without inducing double-strand DNA breaks (DSBs). However, its application in zebrafish remains limited by low efficiency. Here, we leveraged PE7, a state-of-the-art PE system, combined [...] Read more.
Prime editing (PE) has emerged as a transformative genome editing technology, enabling precise base substitutions, insertions, and deletions without inducing double-strand DNA breaks (DSBs). However, its application in zebrafish remains limited by low efficiency. Here, we leveraged PE7, a state-of-the-art PE system, combined with La-accessible prime editing guide RNAs (pegRNAs), to enhance editing efficiency in zebrafish. By co-incubating PE7 protein with La-accessible pegRNAs to form ribonucleoprotein (RNP) complexes and microinjecting these complexes into zebrafish embryos, we achieved up to 15.99% editing efficiency at target loci—an improvement of 6.81- to 11.46-fold over PE2. Additionally, we observed 16.60% 6 bp insertions and 13.18% 10 bp deletions at the adgrf3b locus, representing a 3.13-fold increase over PE2. Finally, we used PE to introduce desired edits at the tyr locus, successfully generating zebrafish with the tyr P302L mutation that exhibited melanin reduction. These findings demonstrate that PE7 significantly enhances prime editing efficiency in fish, providing novel tools for functional gene studies and genetic breeding in aquatic species. Full article
Show Figures

Figure 1

18 pages, 1263 KB  
Review
Fertility Protection in Female Cancer Patients: From Molecular Mechanisms of Gonadotoxic Therapies to Pharmacotherapeutic Possibilities
by Weronika Zajączkowska, Maria Buda, Witold Kędzia and Karina Kapczuk
Int. J. Mol. Sci. 2025, 26(15), 7314; https://doi.org/10.3390/ijms26157314 - 29 Jul 2025
Viewed by 908
Abstract
Chemotherapeutic agents and radiotherapy are highly effective in treating malignancies. However, they carry a significant risk of harming the gonads and may lead to endocrine dysfunction and reproductive issues. This review outlines the molecular mechanisms of gonadotoxic therapies, focusing on radiation, alkylating agents, [...] Read more.
Chemotherapeutic agents and radiotherapy are highly effective in treating malignancies. However, they carry a significant risk of harming the gonads and may lead to endocrine dysfunction and reproductive issues. This review outlines the molecular mechanisms of gonadotoxic therapies, focusing on radiation, alkylating agents, and platinum compounds. It discusses the loss of PMFs due to gonadotoxic exposure, including DNA double-strand breaks, oxidative stress, and dysregulated signaling pathways like PI3K/PTEN/Akt/mTOR and TAp63-mediated apoptosis. Furthermore, it explores strategies to mitigate gonadal damage, including GnRH agonists, AMH, imatinib, melatonin, sphingolipid metabolites, G-CSF, mTOR inhibitors, AS101, and LH. These therapies, paired with existing fertility preservation methods, could safeguard reproductive and hormonal functions and improve the quality of life for young cancer patients. Despite the progress made in recent years in understanding gonadotoxic mechanisms, gaps remain due to questionable reliance on mouse models and the lack of models replicating human ovarian dynamics. Long-term studies are vital for wider analyses and exploration of protective strategies based on various animal models and clinical trials. It is essential to verify that these substances do not hinder the anti-cancer effectiveness of treatments or cause lasting DNA changes in granulosa cells, raising the risk of miscarriages and infertility. Full article
(This article belongs to the Section Molecular Oncology)
Show Figures

Figure 1

Back to TopTop