Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (19)

Search Parameters:
Keywords = double-K fracture model

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 1914 KiB  
Article
Fracture Behavior Assessment of Rubberized Concrete Using Non-Standard Specimens: Experimental Investigation and Model Optimization
by Shuang Gao, Zhenyu Wang, Jiayi Sun, Juan Wang, Yu Hu and Hongyin Xu
Technologies 2025, 13(7), 307; https://doi.org/10.3390/technologies13070307 - 17 Jul 2025
Viewed by 208
Abstract
With the advancement of modern engineering structures, traditional cement concrete is increasingly unable to meet the mechanical performance requirements under complex conditions. To overcome the performance limitations of materials, modified concrete has become a focal point of research. By incorporating modifying materials such [...] Read more.
With the advancement of modern engineering structures, traditional cement concrete is increasingly unable to meet the mechanical performance requirements under complex conditions. To overcome the performance limitations of materials, modified concrete has become a focal point of research. By incorporating modifying materials such as fibers, polymers, or mineral admixtures, the properties of concrete can be significantly enhanced. Among these, rubberized concrete has attracted considerable attention due to its unique performance advantages. This study conducted fracture tests on rubberized concrete using non-standard concrete three-point bending beam specimens of varying dimensions to evaluate its fracture performance. Employing conventional concrete fracture theoretical models, the fracture toughness parameters of rubberized concrete were calculated, and a comparative analysis was performed regarding the applicability of various theoretical calculation formulas to rubberized concrete. The results indicated that the fracture performance of rubberized concrete varied significantly with changes in specimen size. The initial toughness exhibited a consistent size-dependent variation across different theoretical models. The fracture toughness corresponding to crack height ratios between 0.05 and 0.25 showed contradictory trends; however, for crack height ratios between 0.3 and 0.5, the fracture toughness became consistent. This study integrated boundary effect theory and employed Guinea’s theory to propose an optimization coefficient γ for the double-K fracture toughness formula, yielding favorable optimization results. Full article
Show Figures

Figure 1

21 pages, 10450 KiB  
Article
Experimental Investigation on the Fracture Behavior of PET-Modified Engineered High-Ductility Concrete: Effects of PET Powder and Precursor Composition
by Fei Meng, Shen Luo, Jingxian Sun, Cheng Zhang, Leilei Xu, Liqun Zhang, Fumin Qing, Junfeng Zeng, Ruihao Luo and Yongchang Guo
Materials 2025, 18(9), 2132; https://doi.org/10.3390/ma18092132 - 6 May 2025
Viewed by 440
Abstract
The utilization of polyethylene terephthalate (PET) powder as aggregate in the development of environmentally friendly high-ductility composites (P-EHDC) offers a promising pathway for advancing sustainable and high-performance concrete materials. Despite its potential, the fracture behavior of P-EHDC—particularly under the influence of alkali-activated precursors—remains [...] Read more.
The utilization of polyethylene terephthalate (PET) powder as aggregate in the development of environmentally friendly high-ductility composites (P-EHDC) offers a promising pathway for advancing sustainable and high-performance concrete materials. Despite its potential, the fracture behavior of P-EHDC—particularly under the influence of alkali-activated precursors—remains insufficiently explored. In this study, the fracture performance of P-EHDC was evaluated by varying the precursor composition ratios (GGBS:FA = 4:6, 3:7, and 2:8) and PET powder replacement ratios (0%, 15%, 30%, and 45% by volume). Fracture modes, Mode I fracture energy (GF), and crack propagation behavior were analyzed using the J-integral method. All specimens exhibited ductile fracture characteristics, a clear contrast to the brittle failure observed in conventional concrete. The replacement of 15 vol% PET powder significantly increased GF in precursor systems with higher GGBS content (4:6 and 3:7), and 30 vol% was more effective in fly ash-rich systems (2:8). The J-integral method, which offers broader applicability compared to conventional methods such as the double-K fracture model, provided a more comprehensive understanding of the fracture behavior. The results showed that PET powder reduced the matrix fracture toughness, promoted matrix cracking, and weakened the fiber-bridging effect, leading to enhanced energy absorption via fiber pull-out. At low PET powder replacement ratios (e.g., 15 vol%), the cracking threshold of the matrix was not significantly reduced, while more fibers engaged during the crack instability stage to absorb fracture energy through pull-out. This behavior highlights the synergistic toughening effect between PET powder and fibers in the P-EHDC system. The effect became more pronounced when the PET content was below 45 vol% and the precursor matrix contained a higher proportion of GGBS, leading to enhanced ductility. This study introduces a novel approach to fracture behavior analysis in PET-modified alkali-activated composites and provides theoretical support for the toughening design of high-performance, low-carbon concrete materials. Full article
(This article belongs to the Special Issue Towards Sustainable Low-Carbon Concrete)
Show Figures

Figure 1

17 pages, 6163 KiB  
Article
Investigation of Skin–Stringer Assembly Made with Adhesive and Mechanical Methods on Aircraft
by Hacı Abdullah Tasdemir, Berke Alp Mirza and Yunus Hüseyin Erkendirci
Aerospace 2025, 12(5), 383; https://doi.org/10.3390/aerospace12050383 - 29 Apr 2025
Cited by 1 | Viewed by 542
Abstract
New assembly methods for aircraft structural parts, such as skins and stringers, are being investigated to address issues like galvanic corrosion, stress concentration, and weight. For this, many researchers are examining the mechanical and fracture properties of adhesively bonded parts through experimental testing [...] Read more.
New assembly methods for aircraft structural parts, such as skins and stringers, are being investigated to address issues like galvanic corrosion, stress concentration, and weight. For this, many researchers are examining the mechanical and fracture properties of adhesively bonded parts through experimental testing and numerical modelling methods, including Cohesive Zone Modelling (CZM), Compliance-Based Beam Method (CBBM), Double Cantilever Beam (DCB), and End Notched Flexural (ENF) tests. In this study, similarly, DCB and ENF tests were conducted on skin and beam parts bonded with AF163-2K adhesive using CBBM and then modelled and analysed in ABAQUS CAE 2018 software. Four different skin–stringer connection models were analysed, respectively, using only adhesive, only rivets, both adhesive and rivets, and also a reduced number of rivets in the adhesively bonded joint. This study found that adhesive increased initial strength, while rivets improved strength after the adhesive began to crack. Using a hybrid connection that combines both rivets and adhesive has been observed to enhance the overall strength and durability of the assembly. Then, experimental results were compared, and four numerical models for skin–stringer connections (adhesive only, rivets only, adhesive and rivets, and adhesive with reduced rivets) were analysed and discussed. In this context, the results were supported and reported with graphs, tables, and analysis images. Full article
(This article belongs to the Special Issue Advanced Aircraft Structural Design and Applications)
Show Figures

Figure 1

31 pages, 10630 KiB  
Article
Fracture Toughness of Ordinary Plain Concrete Under Three-Point Bending Based on Double-K and Boundary Effect Fracture Models
by Huating Chen, Yifan Zhuo, Dewang Li and Yan Huang
Materials 2024, 17(21), 5387; https://doi.org/10.3390/ma17215387 - 4 Nov 2024
Cited by 2 | Viewed by 1365
Abstract
Fracture tests are a necessary means to obtain the fracture properties of concrete, which are crucial material parameters for the fracture analysis of concrete structures. This study aims to fill the gap of insufficient test results on the fracture toughness of widely used [...] Read more.
Fracture tests are a necessary means to obtain the fracture properties of concrete, which are crucial material parameters for the fracture analysis of concrete structures. This study aims to fill the gap of insufficient test results on the fracture toughness of widely used ordinary C40~C60 concrete. A three-point bending fracture test was conducted on 28 plain concrete and 6 reinforced concrete single-edge notched beam specimens with various depths of prefabricated notches. The results are reported, including the failure pattern, crack initiation load, peak load, and complete load versus crack mouth opening displacement curves. The cracking load showed significant variation due to differences in notch prefabrication and aggregate distribution, while the peak load decreased nonlinearly with an increase in the notch-to-height ratio. The reinforced concrete beams showed a significantly higher peak load than the plain concrete beams, attributed to the restraint of steel reinforcement, but the measured cracking load was comparable. A compliance versus notch-to-height ratio curve was derived for future applications, such as estimating crack length in crack growth rate tests. Finally, fracture toughness was determined based on the double-K fracture model and the boundary effect model. The average fracture toughness value for C50 concrete from this study was 2.0 MPa·m, slightly smaller than that of lower-strength concrete, indicating the strength and ductility dependency of concrete fracture toughness. The fracture toughness calculated from the two models is consistent, and both methods employ a closed-form solution and are practical to use. The derived fracture toughness was insensitive to the discrete parameters in the boundary effect model. The insights gained from this study significantly contribute to our understanding of the fracture toughness properties of ordinary structural concrete, highlighting its potential to shape future studies and applications in the field. Full article
(This article belongs to the Special Issue Mechanical Research of Reinforced Concrete Materials (2nd Edition))
Show Figures

Graphical abstract

17 pages, 4548 KiB  
Article
Fracture Behavior of Crack-Damaged Concrete Beams Reinforced with Ultra-High-Performance Concrete Layers
by Zenghui Guo, Xuejun Tao, Zhengwei Xiao, Hui Chen, Xixi Li and Jianlin Luo
J. Compos. Sci. 2024, 8(9), 355; https://doi.org/10.3390/jcs8090355 - 10 Sep 2024
Viewed by 1888
Abstract
Reinforcing crack-damaged concrete structures with ultra-high-performance concrete (UHPC) proves to be more time-, labor-, and cost-efficient than demolishing and rebuilding under the dual-carbon strategy. In this study, the extended finite element method (XFEM) in ABAQUS was first employed to develop a numerical model [...] Read more.
Reinforcing crack-damaged concrete structures with ultra-high-performance concrete (UHPC) proves to be more time-, labor-, and cost-efficient than demolishing and rebuilding under the dual-carbon strategy. In this study, the extended finite element method (XFEM) in ABAQUS was first employed to develop a numerical model of UHPC-reinforced single-notched concrete (U+SNC) beams, analyze their crack extension behavior, and obtain the parameters necessary for calculating fracture toughness. Subsequently, the fracture toughness and instability toughness of U+SNC were calculated using the improved double K fracture criterion. The effects of varying crack height ratios (a/h) of SNC, layer thicknesses (d) of UHPC reinforcement, and fiber contents in UHPC (VSF) on the fracture properties of U+SNC beams were comprehensively investigated. The results indicate that (1) the UHPC reinforcement layer significantly enhances the load-carrying capacity and crack resistance of the U+SNC beams. Crack extension in the reinforced beams occurs more slowly than in the unreinforced beams; |(2) the fracture performance of the U+BNC beams increases exponentially with d. Considering both the reinforcement effect benefit and beam deadweight, the optimal cost-effective performance is achieved when d is 20 mm; (3) with constant d, increasing a/h favors the reinforcement effect of UHPC on the beams; (4) as VSF increases, the crack extension stage in the U+BNC beam becomes more gradual, with higher toughness and flexural properties; therefore, the best mechanical properties are achieved at a VSF of 3%. Full article
(This article belongs to the Special Issue Theoretical and Computational Investigation on Composite Materials)
Show Figures

Figure 1

25 pages, 15152 KiB  
Article
Effects of Mix Components on Fracture Properties of Seawater Volcanic Scoria Aggregate Concrete
by Yijie Huang, Lina Zheng, Peng Li, Qing Wang and Yukun Zhang
Materials 2024, 17(16), 4100; https://doi.org/10.3390/ma17164100 - 19 Aug 2024
Viewed by 1122
Abstract
The fracture mechanism and macro-properties of SVSAC were studied using a novel test system combined with numerical simulations, which included three-point bending beam tests, the digital image correlation (DIC) technique, scanning electron microscopy (SEM), and ABAQUS analyses. In total, 9 groups and 36 [...] Read more.
The fracture mechanism and macro-properties of SVSAC were studied using a novel test system combined with numerical simulations, which included three-point bending beam tests, the digital image correlation (DIC) technique, scanning electron microscopy (SEM), and ABAQUS analyses. In total, 9 groups and 36 specimens were fabricated by considering two critical parameters: initial notch-to-depth ratios (a0/h) and concrete mix components (seawater and volcanic scoria coarse aggregate (VSCA)). Changes in fracture parameters, such as the load-crack mouth opening displacement curve (P-CMOD), load-crack tip opening displacement curve (P-CTOD), and fracture energy (Gf), were obtained. The typical double-K fracture parameters (i.e., initial fracture toughness (KICini) and unstable fracture toughness (KICun)) and tension-softening (σ-CTOD) curve were analyzed. The test results showed that the initial cracking load (Pini), Gf, and characteristic length (Lch) of the SVSAC increased with decreasing a0/h. Compared with the ordinary concrete (OC) specimen, the P-CMOD and P-CTOD curves of the specimen changed after using seawater and VSCA. The evolution of the crack propagation length was obtained through the DIC technique, indicating cracks appeared earlier and the fracture properties of specimen decreased after using VSCA. Generally, the KICun and KICini of SVSAC were 36.17% and 8.55% lower than those of the OC specimen, respectively, whereas the effects of a0/h were negligible. The reductions in Pini, Gf, and Lch of the specimen using VSCA were 10.94%, 32.66%, and 60.39%, respectively; however, seawater efficiently decreased the negative effect of VSCA on the fracture before the cracking width approached 0.1 mm. Furthermore, the effects of specimen characteristics on the fracture mechanism were also studied through numerical simulations, indicating the size of the beam changed the fracture toughness. Finally, theoretical models of the double-K fracture toughness and the σ-CTOD relations were proposed, which could prompt their application in marine structures. Full article
Show Figures

Figure 1

21 pages, 2990 KiB  
Article
Investigating Formation Factor–Hydraulic Conductivity Relations in Complex Geologic Environments: A Case Study in Taiwan
by Shih-Meng Hsu, Guan-Yu Liu, Ming-Chia Dong, Yi-Fan Liao and Jia-Sheng Li
Water 2023, 15(20), 3621; https://doi.org/10.3390/w15203621 - 16 Oct 2023
Cited by 1 | Viewed by 1945
Abstract
The development of cost-effective methods for estimating hydraulic conductivity profiles has been an ongoing effort in the field of engineering practice, which can be used to increase availability to clarify the hydrogeological complexity of fractured rock aquifers for the aid of solving groundwater-related [...] Read more.
The development of cost-effective methods for estimating hydraulic conductivity profiles has been an ongoing effort in the field of engineering practice, which can be used to increase availability to clarify the hydrogeological complexity of fractured rock aquifers for the aid of solving groundwater-related problems. A new methodology is presented, which combines electrical well logs, fluid conductivity logs, double-packer hydraulic tests, Archie’s law, and the Kozeny–Carman-Bear equation to investigate relations between formation factor (F) and hydraulic conductivity (K). Available geophysical and hydraulic test data measured from 88 boreholes in fractured rock formations in Taiwan were collected to perform the correlation studies. The correlation investigation outcomes indicate that the established F-K relations have the potential to serve as the transformation function for estimating hydraulic conductivity through the geological directly. To improve F-K relations in response to the effect of clay mineralogy, two proposed clustering techniques (the natural gamma ray threshold method and the modified Archie’s law method) successfully play an important role in filtering clayed data. The prevalence of clay content in most of Taiwan’s fractured rock formations has been found, which implies that careful consideration of clay-related issues in complex geologic formations is essential while applying Archie’s law theory. Finally, the predictive models for estimating hydraulic conductivity have been developed for three types of lithology (sandstone, schist, and slate). Full article
(This article belongs to the Special Issue Groundwater Exploration and Hydrogeophysical Research)
Show Figures

Figure 1

4 pages, 5004 KiB  
Proceeding Paper
Investigation of Progressive Delamination Growth Characterization in Composite Materials
by Nadeem Aslam, Muhammad Haroon, Muhammad Arsalan Munawar, Shummaila Rasheed and Manzar Masud
Eng. Proc. 2023, 45(1), 35; https://doi.org/10.3390/engproc2023045035 - 13 Sep 2023
Viewed by 718
Abstract
Composite-materials-based structures are extensively used in aerospace structures owing to their high strength-to-weight ratio and high specific modulus. There are different types of failures in a composite material subjected to multiple types of loading, but delamination is the most important one and occurs [...] Read more.
Composite-materials-based structures are extensively used in aerospace structures owing to their high strength-to-weight ratio and high specific modulus. There are different types of failures in a composite material subjected to multiple types of loading, but delamination is the most important one and occurs where the material fractures into layers. In this current research, a cohesive zone method approach is applied to investigate the fracture mechanics due to delamination. Finite element analysis was used for the delamination characterization in composite materials in which 2D and 3D models of double cantilever beams (DCBs) were used. ABAQUS Software was used for analysis completion. It is observed that the cohesive element’s size must be 0.5 mm or less in order to forecast delamination precisely for double cantilever beams. It was also determined that the initial stiffness could not be less, or else the damage initiation cannot be forecast correctly. The value for initial stiffness used in this research was 106 kJ/m2. Full article
Show Figures

Figure 1

18 pages, 17124 KiB  
Article
Application of Bilinear Softening Laws and Fracture Toughness of Foamed Concrete
by Malik Ridwan Maulana, Hilton Ahmad and Sugiman Sugiman
Constr. Mater. 2023, 3(3), 287-304; https://doi.org/10.3390/constrmater3030019 - 3 Aug 2023
Cited by 1 | Viewed by 1736
Abstract
This study examined the fracture and failed performance of foamed concrete materials by testing normalized notched beams under three-point bending via three methods: inverse analysis, digital image correlation (DIC), and finite element modeling (FEM). It also discussed both experimental and FEM characteristics. However, [...] Read more.
This study examined the fracture and failed performance of foamed concrete materials by testing normalized notched beams under three-point bending via three methods: inverse analysis, digital image correlation (DIC), and finite element modeling (FEM). It also discussed both experimental and FEM characteristics. However, inverse analysis is only applicable for specimens with a notch height of 30 mm. Bilinear softening of the tested beams was estimated to identify the fracture energy (GF), critical crack length (ac), and elastic modulus (E). Additionally, the fracture toughness was calculated by adopting the double-K method (initiation fracture, unstable fracture, and cohesive fracture). Two-dimensional FEA modeling of the fracture was conducted using the traction-separation law (TSL), incorporating the extended finite element method (XFEM) and cohesive zone (CZM) techniques. A finite element sensitivity for the XFEM and CZM was performed, with the global mesh size of 2 and the damage stabilization cohesion of 1 × 10−5 showed good convergence and were used in other models. Further comparison of the DIC experiment findings with those from the FEM demonstrated good agreement in terms of crack propagation simulation. Full article
(This article belongs to the Special Issue Modelling and Analysis of Concrete Degradation)
Show Figures

Figure 1

10 pages, 2495 KiB  
Communication
Role of Metastable Austenite on Crack Resistance of Quenching and Partitioning Sheet Steels
by Riming Wu, Yi Xu and Kuicen Li
Metals 2023, 13(4), 762; https://doi.org/10.3390/met13040762 - 14 Apr 2023
Cited by 4 | Viewed by 1648
Abstract
The controversial phase, metastable austenite, is deliberately retained in advanced quenching and partitioning (Q&P) sheet steels. Superficially, the plasticity of Q&P steels is enhanced through the transformation induced plasticity (TRIP) effect to a large extent. However, the role of retained austenite on the [...] Read more.
The controversial phase, metastable austenite, is deliberately retained in advanced quenching and partitioning (Q&P) sheet steels. Superficially, the plasticity of Q&P steels is enhanced through the transformation induced plasticity (TRIP) effect to a large extent. However, the role of retained austenite on the crack resistance of Q&P sheet steels is ambiguous to date. Tension of double edge notched (DEN) specimens, with different notch radii, was conducted to investigate the role of retained austenite on crack resistance. The fracture toughness of Q&P steels, critical J-integral values Jc, were 402.97 kJ·m−2 (notch radius = 0.18 mm) and 584.11 kJ·m−2 (notch radius = 1 mm). The increase rate in the plastic deformation zone (PDZ) at notch ahead modeled by finite element (FE) methods dramatically decreased with the notch root radius ρ. It reflects a relatively high sensitivity of notch ductility of Q&P steels in relation to notch radius. Propagating microcracks, regularly initiated at phase boundaries in Q&P steels, were found to be effectively impeded by adjacent retained austenite through energy absorption in the form of strain induced martensite transformation (SIMT). Full article
Show Figures

Figure 1

15 pages, 4070 KiB  
Article
Hot Tensile Deformation Behavior and Constitutive Models of GH3230 Superalloy Double-Sheet
by Yiqi Chen, Hong Li, Song Zhang, Jiao Luo, Junfei Teng, Yanlong Lv and Miaoquan Li
Materials 2023, 16(2), 803; https://doi.org/10.3390/ma16020803 - 13 Jan 2023
Cited by 6 | Viewed by 2026
Abstract
In this paper, the hot tensile deformation of a GH3230 superalloy double-sheet was conducted under deformation temperatures ranging from 1123~1273 K and strain rates ranging from 0.001~0.2 s−1. The flow behavior of the GH3230 superalloy double-sheet was analyzed in detail. The [...] Read more.
In this paper, the hot tensile deformation of a GH3230 superalloy double-sheet was conducted under deformation temperatures ranging from 1123~1273 K and strain rates ranging from 0.001~0.2 s−1. The flow behavior of the GH3230 superalloy double-sheet was analyzed in detail. The hot tensile deformation process of the GH3230 superalloy double-sheet includes four stages of elastic deformation, strain hardening, steady state and fracture. The true stress decreases with the increasing deformation temperature and decreasing strain rate. The variation of the strain rate sensitivity index and strain hardening index with processing parameters were discussed. The average apparent activation energy for hot tensile deformation is 408.53 ± 46.96 kJ·mol−1. A combined Johnson-Cook and Hensel-Spittle model considering the couple effect of strain hardening, strain rate hardening and thermal softening was established to describe the hot tensile behavior of the GH3230 alloy double-sheet. Compared to Johnson-Cook model and Hensel-Spittle model, this model has the highest predicting accuracy. The average absolute relative error of true stress between the experimental and the predicted is only 2.35%. Full article
(This article belongs to the Special Issue Feature Papers in "Metals and Alloys" Section)
Show Figures

Figure 1

13 pages, 2053 KiB  
Article
Analysis of Crack Formation and Growth in Tunnel Linings Using Double-K Fracture Criterion
by Chengjun Huang, Xinrui Li and Ming Wen
Appl. Sci. 2022, 12(3), 1064; https://doi.org/10.3390/app12031064 - 20 Jan 2022
Cited by 5 | Viewed by 3186
Abstract
Empirical criteria and fracture/damage mechanics are used to evaluate the safety of lining cracks in the conventional methods. However, the former lacks a scientific basis, and the latter requires complicated mechanical calculations. To overcome the above shortcomings, this paper proposes a new method [...] Read more.
Empirical criteria and fracture/damage mechanics are used to evaluate the safety of lining cracks in the conventional methods. However, the former lacks a scientific basis, and the latter requires complicated mechanical calculations. To overcome the above shortcomings, this paper proposes a new method to perform crack analysis of plain concrete linings, based on the double-K fracture criterion. The proposed method uses two crack width indices, i.e., initiation and unstable fracture widths, to divide the fracture process of lining into three stages: initiation stage, stable propagation stage, and instability propagation stage. These two crack width indices are calculated by the equivalent transformation of fracture toughness. Using the proposed criterion, the safety state of the concrete lining can be determined by comparing the field measurement width and crack width indices. A specific code based on the extended finite element method (XFEM) is developed to simulate the fracture process of concrete lining. Several numerical experiments are carried out to evaluate the proposed fracture criterion. The results show that the two fracture indices of the proposed criterion can accurately identify two demarcation points of the three stages of the lining fracture process, including the nonlinear starting point and the unstable fracture point of the load–displacement curve. Compared with conventional methods, the proposed method uses the geometric parameter to estimate the mechanical state of cracks, so the complicated mechanical calculation can be avoided. Full article
(This article belongs to the Special Issue Deep Rock Mass Engineering: Excavation, Monitoring, and Control)
Show Figures

Figure 1

21 pages, 10163 KiB  
Article
Advanced Evaluation of the Freeze–Thaw Damage of Concrete Based on the Fracture Tests
by Barbara Kucharczyková, Hana Šimonová, Dalibor Kocáb and Libor Topolář
Materials 2021, 14(21), 6378; https://doi.org/10.3390/ma14216378 - 25 Oct 2021
Cited by 4 | Viewed by 2092
Abstract
This paper presents the results of an experimental program aimed at the assessment of the freeze–thaw (F–T) resistance of concrete based on the evaluation of fracture tests accompanied by acoustic emission measurements. Two concretes of similar mechanical characteristics were manufactured for the experiment. [...] Read more.
This paper presents the results of an experimental program aimed at the assessment of the freeze–thaw (F–T) resistance of concrete based on the evaluation of fracture tests accompanied by acoustic emission measurements. Two concretes of similar mechanical characteristics were manufactured for the experiment. The main difference between the C1 and C2 concrete was in the total number of air voids and in the A300 parameter, where both parameters were higher for C1 by about 35% and 52%, respectively. The evaluation of the fracture characteristics was performed on the basis of experimentally recorded load–deflection and load–crack mouth opening displacement diagrams using two different approaches: linear fracture mechanics completed with the effective crack model and the double-K model. The results show that both approaches gave similar results, especially if the nonlinear behavior before the peak load was considered. According to the results, it can be stated that continuous AE measurement is beneficial for the assessment of the extent of concrete deterioration, and it suitably supplements the fracture test evaluation. A comparison of the results of fracture tests with the resonance method and splitting tensile strength test shows that all testing methods led to the same conclusion, i.e., the C1 concrete was more F–T-resistant than C2. However, the fracture test evaluation provided more detailed information about the internal structure deterioration due to the F–T exposure. Full article
Show Figures

Figure 1

17 pages, 11672 KiB  
Article
The Analysis of Micro-Scale Deformation and Fracture of Carbonized Elastomer-Based Composites by In Situ SEM
by Eugene S. Statnik, Semen D. Ignatyev, Andrey A. Stepashkin, Alexey I. Salimon, Dilyus Chukov, Sergey D. Kaloshkin and Alexander M. Korsunsky
Molecules 2021, 26(3), 587; https://doi.org/10.3390/molecules26030587 - 22 Jan 2021
Cited by 10 | Viewed by 3570
Abstract
Carbonized elastomer-based composites (CECs) possess a number of attractive features in terms of thermomechanical and electromechanical performance, durability in aggressive media and facile net-shape formability, but their relatively low ductility and strength limit their suitability for structural engineering applications. Prospective applications such as [...] Read more.
Carbonized elastomer-based composites (CECs) possess a number of attractive features in terms of thermomechanical and electromechanical performance, durability in aggressive media and facile net-shape formability, but their relatively low ductility and strength limit their suitability for structural engineering applications. Prospective applications such as structural elements of micro-electro-mechanical systems MEMS can be envisaged since smaller principal dimensions reduce the susceptibility of components to residual stress accumulation during carbonization and to brittle fracture in general. We report the results of in situ in-SEM study of microdeformation and fracture behavior of CECs based on nitrile butadiene rubber (NBR) elastomeric matrices filled with carbon and silicon carbide. Nanostructured carbon composite materials were manufactured via compounding of elastomeric substance with carbon and SiC fillers using mixing rolling mill, vulcanization, and low-temperature carbonization. Double-edge notched tensile (DENT) specimens of vulcanized and carbonized elastomeric composites were subjected to in situ tensile testing in the chamber of the scanning electron microscope (SEM) Tescan Vega 3 using a Deben microtest 1 kN tensile stage. The series of acquired SEM images were analyzed by means of digital image correlation (DIC) using Ncorr open-source software to map the spatial distribution of strain. These maps were correlated with finite element modeling (FEM) simulations to refine the values of elastic moduli. Moreover, the elastic moduli were derived from unloading curve nanoindentation hardness measurements carried out using a NanoScan-4D tester and interpreted using the Oliver–Pharr method. Carbonization causes a significant increase of elastic moduli from 0.86 ± 0.07 GPa to 14.12 ± 1.20 GPa for the composite with graphite and carbon black fillers. Nanoindentation measurements yield somewhat lower values, namely, 0.25 ± 0.02 GPa and 9.83 ± 1.10 GPa before and after carbonization, respectively. The analysis of fractography images suggests that crack initiation, growth and propagation may occur both at the notch stress concentrator or relatively far from the notch. Possible causes of such response are discussed, namely, (1) residual stresses introduced by processing; (2) shape and size of fillers; and (3) the emanation and accumulation of gases in composites during carbonization. Full article
Show Figures

Figure 1

20 pages, 3522 KiB  
Article
Mechanical Fracture and Fatigue Characteristics of Fine-Grained Composite Based on Sodium Hydroxide-Activated Slag Cured under High Relative Humidity
by Hana Šimonová, Barbara Kucharczyková, Vlastimil Bílek, Lucie Malíková, Petr Miarka and Martin Lipowczan
Appl. Sci. 2021, 11(1), 259; https://doi.org/10.3390/app11010259 - 29 Dec 2020
Cited by 11 | Viewed by 2442
Abstract
A typical example of an alternative binder to commonly used Portland cement is alkali-activated binders that have high potential as a part of a toolkit for sustainable construction materials. One group of these materials is alkali-activated slag. There is a lack of information [...] Read more.
A typical example of an alternative binder to commonly used Portland cement is alkali-activated binders that have high potential as a part of a toolkit for sustainable construction materials. One group of these materials is alkali-activated slag. There is a lack of information about its long-term properties. In addition, its mechanical properties are characterized most often in terms of compressive strength; however, it is not sensitive enough to sufficiently cover the changes in microstructure such as microcracking, and thus, it poses a potential risk for practical utilization. Consequently, the present study deals with the determination of long-term mechanical fracture and fatigue parameters of the fine-grained composites based on this interesting binder. The mechanical fracture parameters are primarily obtained through the direct evaluation of fracture test data via the effective crack model, the work-of-fracture method, the double-K fracture model, and complemented by parameter identification using the inverse analysis. The outcome of cyclic/fatigue fracture tests is represented by a Wöhler curve. The results presented in this article represent the complex information about material behavior and valuable input parameters for material models used for numerical simulations of crack propagation in this quasi-brittle material. Full article
(This article belongs to the Special Issue Concrete and Mortar with Non-conventional Materials)
Show Figures

Figure 1

Back to TopTop