Fracture Behavior Assessment of Rubberized Concrete Using Non-Standard Specimens: Experimental Investigation and Model Optimization
Abstract
1. Introduction
2. Comparative Analysis of Existing Fracture Theories
2.1. Boundary Effect Theory
2.2. ASTM Standards
2.3. Method of Tada
2.4. Method of Guinea
2.5. Double-K Fracture Model
2.6. Double-G Fracture Modeling
3. Experimental Method
4. Experimental Results
4.1. Determination of Fracture Parameters Based on the Boundary Effect Theory
4.2. Fracture Toughness Calculation Based on Different Theories
4.3. Optimization and Fitting of the Fracture Toughness Formula
5. Conclusions
- Various concrete fracture theory models, including the dual K, dual G, Tada, Guinea, and boundary effect theories, were applied to calculate parameters such as crack initiation toughness and instability toughness for rubber concrete. A comparative analysis was conducted to evaluate the applicability of each theoretical formula for rubber concrete. The change in crack initiation toughness of rubber concrete under different theories showed consistent trends influenced by size. However, the fracture toughness of rubber concrete was constrained by the applicable range of each theory, leading to contradictory patterns for the crack height ratio between 0.05 and 0.25, while consistent trends were observed when α was between 0.3 and 0.5. Under different theories, the fracture toughness maintained a similar trend with respect to span ratio, although values for span ratios of 2.5 and 3 showed significant discrepancies between the theories.
- Combining boundary effect theory, the study analyzed the variation of tensile strength and fracture toughness with specimen size. Based on the established structural failure curve of rubber concrete varying with specimen size, it was found that rubber concrete exhibits quasi-brittle fracture behavior.
- Fracture tests on rubberized concrete specimens of various sizes were conducted to obtain the peak load of the rubberized concrete samples. For small-sized rubberized concrete fracture specimens, it was found that a λ value between 0.9 and 1.1 yields a relatively reasonable tensile strength value.
- A comprehensive analysis of the fracture toughness values of rubber concrete under various theories shows that Guinea’s theory, which accounts for crack propagation in the instability state and the effect of specimen span, can be effectively applied to the analysis of rubber concrete fracture parameters at different sizes. An optimization coefficient γ for the dual K fracture toughness formula of rubber concrete was proposed based on Guinea’s theory, yielding satisfactory optimization results.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rong, H.; Dong, W.; Wu, Z.M.; Fan, X.L. Experimental investigation on double-k fracture parameters for large initial crack-depth ratio in concrete. Eng. Mech. 2012, 29, 162–167. [Google Scholar]
- Elbialy, S.; Ibrahim, W.; Mahmoud, S.; Ayash, N.M.; Mamdouh, H. Mechanical characteristics and structural performance of rubberized concrete: Experimental and analytical analysis. Case Stud. Constr. Mater. 2024, 21, e03727. [Google Scholar] [CrossRef]
- Luo, S.; Chen, W.; Wang, X. Fracture properties of rubberized self-compacting concrete. J. Hydraul. Eng. 2015, 46, 217–222. [Google Scholar] [CrossRef]
- Turatsinze, A.; Garros, M. On the modulus of elasticity and strain capacity of Self-Compacting Concrete incorporating rubber aggregates. Resour. Conserv. Recycl. 2008, 52, 1209–1215. [Google Scholar] [CrossRef]
- Topcu, I.B.; Avcular, N. Collision behaviors of rubberized concrete. Cem. Concr. Res. 1997, 27, 1893–1898. [Google Scholar] [CrossRef]
- Kang, J.; Ren, H.; Zhang, P. Cracking-resistance and flexural property of rubberized concrete. Acta Mater. Compos. Sin. 2006, 23, 158–162. [Google Scholar] [CrossRef]
- Garcia-Troncoso, N.; Acosta-Calderon, S.; Flores-Rada, J.; Baykara, H.; Cornejo, M.H.; Riofrio, A.; Vargas-Moreno, K. Effects of Recycled Rubber Particles Incorporated as Partial Sand Replacement on Fresh and Hardened Properties of Cement-Based Concrete: Mechanical, Microstructural and Life Cycle Analyses. Materials 2023, 16, 63. [Google Scholar] [CrossRef] [PubMed]
- Ghaleh, M.B.; Asadi, P.; Eftekhar, M.R. Life cycle assessment based method for the environmental and mechanical evaluation of waste tire rubber concretes. Sci. Rep. 2025, 15, 10687. [Google Scholar] [CrossRef] [PubMed]
- Afifudin, H.; Nadzarah, W.; Hamidah, M.; Hana, H.N. Microbial Participation in the Formation of Calcium Silicate Hydrated (CSH) from Bacillus subtilis. Procedia Eng. 2011, 20, 159–165. [Google Scholar] [CrossRef]
- Daghash, S.M.; Servio, P.; Rey, A.D. From Infrared Spectra to Macroscopic Mechanical Properties of sH Gas Hydrates through Atomistic Calculations. Molecules 2020, 25, 5568. [Google Scholar] [CrossRef] [PubMed]
- He, J.; Liu, R.; Liu, F.; Wu, M.; Wen, Q. Freeze–thaw resistance mechanisms of rubber-cement soil: Insights from a macro- and micro-level perspective. Environ. Technol. 2025, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Albiajawi, M.I.; Alkasawneh, R.W.; Mostafa, S.A.; Johari, I.; Embong, R.; Muthusamy, K. Performance of sustainable concrete containing recycled latex gloves and silicone catheter under elevated temperature. J. King Saud Univ.-Eng. Sci. 2024, 36, 186–198. [Google Scholar] [CrossRef]
- Pham, T.M.; Elchalakani, M.; Hao, H.; Lai, J.; Ameduri, S.; Tran, T.M. Durability characteristics of lightweight rubberized concrete. Constr. Build. Mater. 2019, 224, 584–599. [Google Scholar] [CrossRef]
- Feng, W.; Liu, F.; Yang, F.; Li, L.; Jing, L. Experimental study on dynamic split tensile properties of rubber concrete. Constr. Build. Mater. 2018, 165, 675–687. [Google Scholar] [CrossRef]
- Xie, J.; Fang, C.; Lu, Z.; Li, Z.; Li, L. Effects of the addition of silica fume and rubber particles on the compressive behaviour of recycled aggregate concrete with steel fibres. J. Clean. Prod. 2018, 197, 656–667. [Google Scholar] [CrossRef]
- Xu, S.L.; Reinhardt, H.W. Determination of double-K criterion for crack propagation in quasi-brittle fracture. Int. J. Fract. 1999, 98, 111–149. [Google Scholar] [CrossRef]
- Wu, Z.M.; Xu, S.L.; Wang, J.L.; Liu, Y. Double-K Fracture Parameter of Concrete and Its Size Effect by Using Three point Bending Beam Method. J. Hydroelectr. Eng. 2000, 71, 16–24. [Google Scholar] [CrossRef]
- Fan, X.; Hu, S.; Lu, J. Study on the fracture properties of different type concretes. Concrete 2012, 3, 46–51. [Google Scholar] [CrossRef]
- Duan, K.; Hu, X.; Wittmann, F.H. Scaling of quasi-brittle fracture: Boundary and size effect. Mech. Mater. 2006, 38, 128–141. [Google Scholar] [CrossRef]
- Guan, J.; Hu, X.; Wang, Y.; Li, Q.; Wu, Z. Effect of fracture toughness and tensile strength on fracture based on boundary effect theory. J. Hydraul. Eng. 2016, 47, 1298–1306. [Google Scholar] [CrossRef]
- Yin, X.; Li, Q.; Wang, Q.; Reinhardt, H.-W.; Xu, S. The double-K fracture model: A state-of-the-art review. Eng. Fract. Mech. 2023, 277, 108988. [Google Scholar] [CrossRef]
- Hu, X.Z.; Guan, J.F.; Wang, Y.S.; Yang, S. Comparison of boundary and size effect models based on new developments. Eng. Fract. Mech. 2017, 175, 146–167. [Google Scholar] [CrossRef]
- Guan, Q.; Xu, Y.; Wang, J.; Wu, Q.; Zhang, P. Meso-scale fracture modelling and fracture properties of rubber concrete considering initial defects. Theor. Appl. Fract. Mech. 2023, 125, 103834. [Google Scholar] [CrossRef]
- Chen, Z.; Li, L.; Xiong, Z. Investigation on the interfacial behaviour between the rubber-cement matrix of the rubberized concrete. J. Clean. Prod. 2019, 209, 1354–1364. [Google Scholar] [CrossRef]
- Kim, D.; Lee, S.; Park, C. Bonding Characteristics of Macro Polypropylene (PP) Fibre in PVA/Macro PP Blended Fibre-Reinforced Styrene Butadiene Latex-Modified Cement-Based Composites. Prog. Rubber Plast. Recycl. Technol. 2014, 30, 1–17. [Google Scholar] [CrossRef]
- Abdelaleem, A.; Moawad, M.; Emam, E.H. Long term behavior of rubberized concrete under static and dynamic loads. Case Stud. Constr. Mater. 2024, 20, e03087. [Google Scholar] [CrossRef]
- Xie, Z.; Huang, P.; Zhang, J.; Xie, J.; Guo, Y.; Cen, Y. Experimental study on the fracture behavior of steel fiber and crumb rubber reinforced recycled aggregate concrete. J. Shenzhen Univ. Sci. Eng. 2014, 31, 521. [Google Scholar] [CrossRef]
- Han, Q.; Yang, Y.; Zhang, J.; Yu, J.; Hou, D.; Dong, B.; Ma, H. Insights into the interfacial strengthening mechanism of waste rubber/cement paste using polyvinyl alcohol: Experimental and molecular dynamics study. Cem. Concr. Compos. 2020, 114, 103791. [Google Scholar] [CrossRef]
- Wang, J.; Guo, Z.; Zhang, P.; Yuan, Q.; Guan, Q. Fracture properties of rubberized concrete under different temperature and humidity conditions based on digital image correlation technique. J. Clean. Prod. 2020, 276, 124106. [Google Scholar] [CrossRef]
- Liu, M.; Lu, J.; Ming, P.; Yin, Y. Study of fracture properties and post-peak softening process of rubber concrete based on acoustic emission. Constr. Build. Mater. 2021, 313, 125487. [Google Scholar] [CrossRef]
- Jin, L.; Yu, W.; Du, X.; Yang, W. Mesoscopic numerical simulation of dynamic size effect on the splitting-tensile strength of concrete. Eng. Fract. Mech. 2019, 209, 317–332. [Google Scholar] [CrossRef]
- Duan, K.; Hu, X.Z. Scaling of specimen boundary effect on quasi-brittle fracture. In Proceedings of the International Conference, SIF2004, Brisbane, Australia, 26–29 September 2004; pp. 47–68. [Google Scholar]
- Guan, J.; Li, C.; Wang, J.; Qing, L.; Song, Z.; Liu, Z. Determination of fracture parameter and prediction of structural fracture using various concrete specimen types. Theor. Appl. Fract. Mech. 2019, 100, 114–127. [Google Scholar] [CrossRef]
- Guan, J.; Yao, X.; Bai, W.; Chen, J.; Fu, J. Determination of fracture toughness and tensile strength of concrete using small specimens. Eng. Mech. 2019, 36, 70–79. [Google Scholar] [CrossRef]
- Guan, J.; Xie, C.; Hu, X.; Bai, W. Determination of fracture toughness and yield strength of hot rolled carbon steel based on boundary effect theory. Eng. Mech. 2019, 36, 231–239. [Google Scholar] [CrossRef]
- Guan, J.; Hu, X.; Li, Q. In-depth analysis of notched 3-p-b concrete fracture. Eng. Fract. Mech. 2016, 165, 57–71. [Google Scholar] [CrossRef]
- Wang, Y.; Hu, X.; Liang, L.; Zhu, W. Determination of tensile strength and fracture toughness of concrete using notched 3-p-b specimens. Eng. Fract. Mech. 2016, 160, 67–77. [Google Scholar] [CrossRef]
- Wang, Y.; Hu, X. Determination of Tensile Strength and Fracture Toughness of Granite Using Notched Three-Point-Bend Samples. Rock Mech. Rock Eng. 2017, 50, 17–28. [Google Scholar] [CrossRef]
- ASTM E399-24; Standard Test Method for Linear-Elastic Plane-Strain Fracture Toughness of Metallic Materials. ASTM International: West Conshohocken, PA, USA, 2024.
- Taha, M.M.R.; El-Dieb, A.S.; El-Wahab, M.A.A.; Abdel-Hameed, M.E. Mechanical, Fracture, and Microstructural Investigations of Rubber Concrete. J. Mater. Civ. Eng. 2008, 20, 640–649. [Google Scholar] [CrossRef]
- Yin, Y.; Hu, S. Double-k fracture parameters of concrete in threepoint bending beams with small span-depth ratios. Eng. Mech. 2020, 37, 138–170. [Google Scholar] [CrossRef]
- Guinea, G.V.; Pastor, J.Y.; Planas, J.; Elices, M. Stress Intensity factor, compliance and CMOD for a General Three-Point-Bend Beam. Int. J. Fract. 1998, 89, 103–116. [Google Scholar] [CrossRef]
- Fan, X.; Hu, S.; Lu, J. Experimental research on double-K fracture toughness of non-standard three point bending concrete beam. J. Build. Struct. 2012, 33, 152–157. [Google Scholar] [CrossRef]
- Xu, Y.; Yang, L.; Lu, Y. Experimental Study on Fracture Behavior of High-strength Concrete Beams with ModeICracks. Sci. Technol. Eng. 2020, 20, 7. [Google Scholar] [CrossRef]
- DL/T 5332-2005; Norm for Fracture Test of Hydraulic Concrete. National Development and Reform Commission, Electric Power Press of China: Beijing, China, 2005.
- Zhao, Y.; Xu, S.; Wu, Z. A Dual-G Criterion for Crack Propahation in Concerte Structures. China Civ. Eng. J. 2004, 37, 13–18. [Google Scholar] [CrossRef]
- Guan, J.; Liu, Z.; Yao, X.; Li, L.; He, S.; Zhang, M. Determination of The Cracking Strength, Tensile Strength and Double k Fracture Parameters of Concrete. Eng. Mech. 2020, 37, 14. [Google Scholar] [CrossRef]
Types of Tests | Amount of Change (mm) | Notch-to-Depth Ratio | Height-to-Span Ratio | Span (mm) | Depth (mm) | Width (mm) | |
---|---|---|---|---|---|---|---|
Notch-to-Depth Ratio | Notch Height | 0 | 0 | 4 | 400 | 100 | 100 |
5 | 0.05 | 4 | 400 | 100 | 100 | ||
10 | 0.1 | 4 | 400 | 100 | 100 | ||
15 | 0.15 | 4 | 400 | 100 | 100 | ||
20 | 0.2 | 4 | 400 | 100 | 100 | ||
25 | 0.25 | 4 | 400 | 100 | 100 | ||
30 | 0.3 | 4 | 400 | 100 | 100 | ||
40 | 0.4 | 4 | 400 | 100 | 100 | ||
50 | 0.5 | 4 | 400 | 100 | 100 | ||
Height-to-Span Ratio | Span | 250 | 0.2 | 2.5 | 250 | 100 | 100 |
300 | 0.2 | 3 | 300 | 100 | 100 | ||
350 | 0.2 | 3.5 | 350 | 100 | 100 | ||
400 | 0.2 | 4 | 400 | 100 | 100 |
Material | Rubber Content% | Water–Cement Ratio | Proportion of Test Block (kg/m3) | ||||
---|---|---|---|---|---|---|---|
Rubber | Water | Cement | Sand | Stone | |||
PC | 0 | 0.42 | 0 | 182 | 430 | 721 | 1061 |
RC-30% | 30 | 0.42 | 90 | 182 | 430 | 505 | 1061 |
λ | ft/MPa | KIC/MPa·m1/2 | a*∞/m |
---|---|---|---|
0.9 | 4.424 | 1.127 | 0.0162 |
1 | 4.295 | 1.073 | 0.0156 |
1.1 | 4.174 | 1.024 | 0.0150 |
1.2 | 4.059 | 0.979 | 0.0146 |
1.3 | 4.344 | 0.939 | 0.0117 |
1.4 | 3.846 | 0.902 | 0.0137 |
1.5 | 3.748 | 0.867 | 0.0134 |
1.6 | 3.656 | 0.836 | 0.0131 |
1.7 | 3.567 | 0.806 | 0.0128 |
1.8 | 3.484 | 0.779 | 0.0125 |
1.9 | 3.402 | 0.754 | 0.0123 |
2 | 3.326 | 0.730 | 0.0120 |
2.1 | 3.251 | 0.707 | 0.0118 |
2.2 | 3.181 | 0.687 | 0.0116 |
2.3 | 3.114 | 0.667 | 0.0115 |
2.4 | 3.050 | 0.648 | 0.0113 |
Specimen Number | from Equation (30)/MPa·m1/2 | from Equation (20)/MPa·m1/2 | from Equation (38)/MPa·m1/2 | Relative Error |
---|---|---|---|---|
2.5-1 | 1.2397 | 1.4609 | 1.4698 | 0.61% |
2.5-4 | 1.2828 | 1.5265 | 1.5210 | −0.36% |
2.5-5 | 1.2646 | 1.4967 | 1.4994 | 0.18% |
3-1 | 1.2356 | 1.3255 | 1.3060 | −1.48% |
3-2 | 0.9889 | 1.0533 | 1.0452 | −0.77% |
3-3 | 1.2151 | 1.3004 | 1.2843 | −1.24% |
3.5-1 | 0.9404 | 0.9015 | 0.9247 | 2.57% |
3.5-2 | 0.9515 | 0.9160 | 0.9356 | 2.14% |
3.5-3 | 1.1333 | 1.0916 | 1.1144 | 2.09% |
4-1 | 1.2756 | 1.2157 | 1.1882 | −2.26% |
4-2 | 1.5076 | 1.3224 | 1.4044 | 6.20% |
4-3 | 1.3105 | 1.2361 | 1.2207 | −1.25% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gao, S.; Wang, Z.; Sun, J.; Wang, J.; Hu, Y.; Xu, H. Fracture Behavior Assessment of Rubberized Concrete Using Non-Standard Specimens: Experimental Investigation and Model Optimization. Technologies 2025, 13, 307. https://doi.org/10.3390/technologies13070307
Gao S, Wang Z, Sun J, Wang J, Hu Y, Xu H. Fracture Behavior Assessment of Rubberized Concrete Using Non-Standard Specimens: Experimental Investigation and Model Optimization. Technologies. 2025; 13(7):307. https://doi.org/10.3390/technologies13070307
Chicago/Turabian StyleGao, Shuang, Zhenyu Wang, Jiayi Sun, Juan Wang, Yu Hu, and Hongyin Xu. 2025. "Fracture Behavior Assessment of Rubberized Concrete Using Non-Standard Specimens: Experimental Investigation and Model Optimization" Technologies 13, no. 7: 307. https://doi.org/10.3390/technologies13070307
APA StyleGao, S., Wang, Z., Sun, J., Wang, J., Hu, Y., & Xu, H. (2025). Fracture Behavior Assessment of Rubberized Concrete Using Non-Standard Specimens: Experimental Investigation and Model Optimization. Technologies, 13(7), 307. https://doi.org/10.3390/technologies13070307