Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (262)

Search Parameters:
Keywords = doped carbon coating

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
26 pages, 10667 KiB  
Article
Influence of Nitrogen and Hydrogen Addition on Composition, Morphology, Adhesion, and Wear Resistance of Amorphous Carbon Coatings Produced by RFCVD Method on Surface-Hardened Ultra-Fine Grained Bainitic 30HGSNA Steel
by Karol Wunsch, Tomasz Borowski, Emilia Skołek, Agata Roguska, Rafał Chodun, Michał Urbańczyk, Krzysztof Kulikowski, Maciej Spychalski, Andrzej Wieczorek and Jerzy Robert Sobiecki
Coatings 2025, 15(8), 877; https://doi.org/10.3390/coatings15080877 - 26 Jul 2025
Viewed by 328
Abstract
Ultra-fine-grained bainitic (UFGB) steels offer excellent mechanical properties, which can be further improved by applying diamond-like carbon (DLC) coatings. However, poor adhesion between the coating and substrate remains a key limitation. Since the steel’s microstructure degrades at high temperatures, enhancing adhesion without heating [...] Read more.
Ultra-fine-grained bainitic (UFGB) steels offer excellent mechanical properties, which can be further improved by applying diamond-like carbon (DLC) coatings. However, poor adhesion between the coating and substrate remains a key limitation. Since the steel’s microstructure degrades at high temperatures, enhancing adhesion without heating the substrate is essential. This study investigates surface hardening combined with simultaneous nitrogen and hydrogen doping during the Radio Frequency Chemical Vapor Deposition (RFCVD) process to improve coating performance. Varying gas compositions were tested to assess their effects on coating properties. Nitrogen incorporation decreased hardness from 12 GPa to 9 GPa but improved adhesion, while hydrogen limited damage after coating failure. Optimizing the gas mixture led to enhanced adhesion and wear resistance. Raman and X-ray photoelectron spectroscopy (XPS) analyses confirmed that the optimized coatings had the highest sp3 bond content and elevated nitrogen levels. While both hardness and adhesion contributed to wear resistance, no direct link to coating thickness was found. Overall, co-doping with nitrogen and hydrogen is an effective approach to improve adhesion and wear resistance without requiring high processing temperatures or complex equipment. Full article
(This article belongs to the Special Issue Recent Advances in Surface Functionalisation, 2nd Edition)
Show Figures

Figure 1

23 pages, 2793 KiB  
Article
Doping Carbon Coating on Glass Fiber to Enhance Its Reinforcing Potential in a Polymer Matrix
by Siok Wei Tay, Inez Lau and Liang Hong
J. Compos. Sci. 2025, 9(7), 348; https://doi.org/10.3390/jcs9070348 - 6 Jul 2025
Viewed by 449
Abstract
This research investigates a novel hybrid E-glass fiber coated with a thin amorphous carbon (coke) layer, referred to as GF@C, designed to enhance the affinity of fiber with a polymer matrix. Acrylonitrile butadiene styrene (ABS), an engineering thermoplastic, was selected as the matrix [...] Read more.
This research investigates a novel hybrid E-glass fiber coated with a thin amorphous carbon (coke) layer, referred to as GF@C, designed to enhance the affinity of fiber with a polymer matrix. Acrylonitrile butadiene styrene (ABS), an engineering thermoplastic, was selected as the matrix to form the composite. The carbon coating was produced by pyrolyzing a lubricant oil (Lo) layer applied to the glass fiber strands. To promote the formation of graphite crystallites during carbonization, a small amount (x wt.% of Lo) of coronene (Cor) was added to Lo as a dopant. The resulting doped fibers, denoted GF@CLo-Cor(x%), were embedded in ABS at 70 wt.%, leading to significant improvements in mechanical properties. At the optimal doping level (x = 5), the composite achieved a Young’s modulus of 1.02 GPa and a tensile strength of 6.96 MPa, substantially higher than the 0.4 GPa and 3.81 MPa observed for the composite with the pristine GF. This enhancement is attributed to a distribution of graphite crystallites and their graphitization extent in the carbon coating, which improves interfacial bonding and increases chain entanglement. Additionally, GF@CLo-Cor(x%)–ABS composites (x = 0 and 5) exhibit significantly higher dielectric constant–temperature profiles than GF–ABS, attributed to the formation of diverse chain adsorption states on the C-coating. Full article
(This article belongs to the Special Issue Polymer Composites and Fibers, 3rd Edition)
Show Figures

Figure 1

14 pages, 6399 KiB  
Article
Core–Shell CoS2/FeS2 Heterojunction Encapsulated in N-Doped Carbon Nanocubes Derived from Coordination Polymers for Electrocatalytic Alkaline Water/Seawater Splitting
by Xiaoyin Zhang, Yan Liu, Zihan Zeng, Yan Zou, Wanzhen Wang, Jing Zhang, Jing Wang, Xiangfeng Kong and Xiangmin Meng
Polymers 2025, 17(12), 1701; https://doi.org/10.3390/polym17121701 - 19 Jun 2025
Viewed by 460
Abstract
Utilizing renewable energy for green hydrogen production via electrolyzed seawater is a promising technology for the future. However, undesired chlorine evolution and the corrosive nature of seawater are crucial challenges for direct seawater splitting technology. In this work, heterojunctions of CoS2/FeS [...] Read more.
Utilizing renewable energy for green hydrogen production via electrolyzed seawater is a promising technology for the future. However, undesired chlorine evolution and the corrosive nature of seawater are crucial challenges for direct seawater splitting technology. In this work, heterojunctions of CoS2/FeS2 encapsulated in N-doped carbon nanocubes (denoted as CoS2/FeS2@NC) were designed by proposing the synchronous pyrolysis and vulcanization of polydopamine-coated coordination polymers. Such a synthetic strategy was demonstrated to be effective in increasing the favorable exposure of active sites, moderately regulating electronic structure, and remarkably facilitating charge transfer due to the controllable generation of unique core–shell structures with suitable carbon shells, leading to the excellent bifunctional electrocatalytic performance and enhanced stability of electrocatalysts. As a result, CoS2/FeS2@NC can be revealed as a superior water splitting catalyst, possessing a small voltage of 1.75 V and requiring 100.0 mA cm−2 in 1 M KOH alkaline solution and 1.80 V for alkaline seawater media, with satisfactory long-term stability. This work presents fresh strategies for designing core–shell heterostructures and developing green technology for hydrogen production. Full article
Show Figures

Graphical abstract

32 pages, 23138 KiB  
Review
Improving Wear Resistance of DLC-Coated Metal Components During Service: A Review
by Luji Wu, Zhongchao Bai, Qingle Hao and Jiayin Qin
Lubricants 2025, 13(6), 257; https://doi.org/10.3390/lubricants13060257 - 11 Jun 2025
Cited by 1 | Viewed by 1020
Abstract
Diamond-like carbon (DLC) coatings have emerged as a focal point in advanced carbon materials research due to exceptional tribological properties, including ultralow friction coefficient, exceptional wear resistance, ultrahigh hardness, and chemical inertness. Deposition of DLC coatings on metal components represents an innovative solution [...] Read more.
Diamond-like carbon (DLC) coatings have emerged as a focal point in advanced carbon materials research due to exceptional tribological properties, including ultralow friction coefficient, exceptional wear resistance, ultrahigh hardness, and chemical inertness. Deposition of DLC coatings on metal components represents an innovative solution to enhance wear resistance in engineering applications. However, suboptimal adhesion strength between coatings and substrates, coupled with inherent material limitations, critically compromises the tribological performance. This review systematically examines recent advances in improving the wear resistance of DLC-coated metal components. First, the fundamental wear mechanisms governing both metallic substrates and DLC coatings under service conditions are elucidated. Next, three pivotal technologies, substrate material treatment/strengthening, coating structure design, and elemental doping, all demonstrating significant efficacy in wear resistance enhancement, are critically analyzed. Furthermore, a comparative assessment of these techniques reveals the synergistic potential in hybrid approaches. Finally, a concise summary of the outlook is presented. Full article
Show Figures

Figure 1

20 pages, 1850 KiB  
Article
Constructing Novel 2D Composite Nanomaterials by Coupling Graphene or Silicene with TM3N2 MXene (TM = Nb, Ta, Mo, and W) to Achieve Highly Efficient HER Catalysts
by Xiuyi Zhang, Guangtao Yu, Wei Zhang, E Yang and Wei Chen
Molecules 2025, 30(11), 2401; https://doi.org/10.3390/molecules30112401 - 30 May 2025
Cited by 1 | Viewed by 483
Abstract
MXenes have emerged as promising candidates for energy storage and catalyst design. Through detailed density functional theory (DFT) calculations, we designed a series of new 2D composite MXene-based nanomaterials by covering excellent TM3N2 MXenes (TM = Nb, Ta, Mo, and [...] Read more.
MXenes have emerged as promising candidates for energy storage and catalyst design. Through detailed density functional theory (DFT) calculations, we designed a series of new 2D composite MXene-based nanomaterials by covering excellent TM3N2 MXenes (TM = Nb, Ta, Mo, and W) with graphene or buckled silicene. Our findings demonstrate that this coating can lead to high catalytic activity for hydrogen evolution reactions (HER) in these composite MXene-based systems, with silicene exhibiting superior performance compared to graphene. The relevant carbon and silicon atoms in the coated materials serve as active sites for HER due to complex electron transfer processes. Additionally, doping N or P atoms into graphene/silicene, which have similar atomic radii, but larger electronegativity than C/Si atoms, can further enhance the HER activity of adjacent carbon or silicon atoms, thus endowing the composite systems with higher HER catalytic performance. Coupled with their high stability and metallic conductivity, all these composite systems show great potential as electrocatalysts for HER. These remarkable findings offer new strategies and valuable insights for designing non-precious and highly efficient MXene-based HER electrocatalysts. Full article
(This article belongs to the Special Issue Synthesis and Crystal Structure Studies of Metal Complexes)
Show Figures

Graphical abstract

9 pages, 1716 KiB  
Article
Internal Stress of Titanium-Based Nitride with Penetration Depth and Surface Roughness by sin2ψ Method Using HR-XRD
by Sungju Yoo, Eunpyo Hong, Youngkue Choi and Heesoo Lee
Nanomaterials 2025, 15(11), 813; https://doi.org/10.3390/nano15110813 - 28 May 2025
Viewed by 348
Abstract
The test method for internal stress of titanium-based nitride was optimized via penetration depth and surface roughness. Through the test method, the variations in the mechanical properties due to the ratio of the carbon gradient layer were investigated in terms of internal stress. [...] Read more.
The test method for internal stress of titanium-based nitride was optimized via penetration depth and surface roughness. Through the test method, the variations in the mechanical properties due to the ratio of the carbon gradient layer were investigated in terms of internal stress. TiN coatings were deposited on SUS 304 using RF/DC magnetron sputtering, and the penetration depth was adjusted by varying the X-ray power of HR-XRD for test specimens with the same coating thickness of 1 μm. The gradient of diagram for internal stress remained constant regardless of the penetration depth, and this was attributed to the analysis of internal stress focusing on the preferred growth orientation of the coating and excluding the influence of the substrate. In addition, we tested different surface roughness values (0.01 Sa, 0.02 Sa, and 0.03 Sa) to observe the effect on internal stress measurement. The results showed negligible difference in internal stress, confirming that this measurement method is valid for coatings with a surface roughness of 0.03 Sa or less. The test method was applied to analyze the carbon-doped TiZrN coating. TiZrN coatings were deposited on SUS 304, and coating thicknesses of 0.5 μm, 1 μm, and 2 μm were used to control the ratio of the carbon gradient layer. After applying the carbon paste for carbon doping, the TiZrN coating was irradiated with a pulsed laser. The compressive internal stress increased from −1263 MPa to −1687 MPa at a coating thickness of 0.5 μm, where the ratio of the carbon gradient layer was the highest. It was confirmed that the increase in internal stress with the ratio of the carbon gradient layer improved the mechanical properties of the carbon-doped TiZrN coating by laser carburization. Full article
(This article belongs to the Section 2D and Carbon Nanomaterials)
Show Figures

Graphical abstract

15 pages, 1853 KiB  
Article
Degradation of Micropollutants in Wastewater Using Photocatalytic TiO2@Ag-NPs Coatings Under Visible Irradiation
by Cristian Yoel Quintero-Castañeda, Claire Tendero, Thibaut Triquet, Arturo I. Villegas-Andrade, María Margarita Sierra-Carrillo and Caroline Andriantsiferana
Water 2025, 17(11), 1632; https://doi.org/10.3390/w17111632 - 27 May 2025
Viewed by 602
Abstract
The contamination of aquatic ecosystems by the micropollutants in wastewater discharges is currently a critical issue. Therefore, the development of novel treatment processes and materials is essential to ensure the availability of safe water. The present study aims to develop a photocatalytic material [...] Read more.
The contamination of aquatic ecosystems by the micropollutants in wastewater discharges is currently a critical issue. Therefore, the development of novel treatment processes and materials is essential to ensure the availability of safe water. The present study aims to develop a photocatalytic material composed of silver nanoparticles (Ag-NPs)-doped TiO2 supported on a Pyrex® plate (TiO2@Ag-NPs) exhibiting catalytic activity under visible irradiation (λ > 400 nm). The effects of Ag-NPs doping on the TiO2 matrix, the resistance of the coating at the catalyst/substrate interface, and the photocatalytic degradation efficiency of the photocatalyst for a micropollutant (diuron) of the pesticide family were studied. The photocatalyst was characterised using X-ray diffraction, scanning electron microscopy, ultraviolet–visible spectrophotometry, and scratch tests. The solution concentrations were monitored using high-performance liquid chromatography and total organic carbon analyses. A 32% diuron removal was achieved using photocatalytic TiO2@Ag-NPs under visible irradiation, whereas undoped TiO2 showed no activity. Furthermore, the effects of the nanoparticle growth mode on the photocatalytic activity of TiO2@Ag-NPs were explored. The presence of a TiO2 sublayer ensured the adhesion of the coating and promoted the dispersion of nanoparticles within the matrix. It ensured chemical continuity (TiO2@Ag-NPs/Pyrex®), reduced the bandgap, and decreased electron–hole pair recombination. Full article
(This article belongs to the Special Issue Recent Advances in Photocatalysis in Water and Wastewater Treatment)
Show Figures

Figure 1

10 pages, 2135 KiB  
Article
Wear Transition of Silicon-Doped Tetrahedral Amorphous Carbon (ta-C:Si) Under Water Lubrication
by Jae-Il Kim, Ji-Woong Jang, Myung Hyun Kim, Se-Hun Kwon and Young-Jun Jang
Coatings 2025, 15(6), 640; https://doi.org/10.3390/coatings15060640 - 26 May 2025
Viewed by 483
Abstract
Silicon-doped tetrahedral amorphous carbon (ta-C:Si) coatings are promising materials for achieving ultralow friction in water-lubricated environments, attributed to the formation of Si(OH)x-based tribofilms. However, the deposition process via filtered cathodic vacuum arc (FCVA) often introduces large particles into the film, increasing [...] Read more.
Silicon-doped tetrahedral amorphous carbon (ta-C:Si) coatings are promising materials for achieving ultralow friction in water-lubricated environments, attributed to the formation of Si(OH)x-based tribofilms. However, the deposition process via filtered cathodic vacuum arc (FCVA) often introduces large particles into the film, increasing surface roughness and causing accelerated wear during the initial sliding phase, despite the high hardness of the coating. In this study, ball-on-disk tribological tests were performed to investigate the wear behavior of ta-C:Si coatings under water lubrication. Friction coefficients, wear volume, and surface roughness were analyzed over various sliding durations. The Archard wear equation and the plasticity index were used to analyze wear and contact behavior. The friction coefficient decreased from 0.14 to 0.04 within the initial 100 m section, and the surface roughness of ta-C:Si decreased sharply from 0.35 μm to 0.01 μm based on the Rpk parameter during 10 h. Following this period, the plasticity index decreased from an initial value of 1.1 to below 0.6, transitioning to a fully elastic contact stage, marking the onset of steady-state wear after 10 h. These results indicate that the reduction in surface roughness plays a crucial role in stabilizing wear behavior and provide insights into optimizing the long-term performance of ta-C:Si coatings in aqueous environments. Full article
(This article belongs to the Special Issue Advanced Tribological Coatings: Fabrication and Application)
Show Figures

Graphical abstract

21 pages, 8950 KiB  
Article
N/S Co-Doped Carbon-Coated Micro-Expanded Graphite for High-Performance Lithium-Ion Battery Anodes
by Wenjie Wang, Xuan Zhang, Xianchao Wang, Chengwei Gao, Jinling Yin, Qing Wen and Guiling Wang
Materials 2025, 18(11), 2477; https://doi.org/10.3390/ma18112477 - 25 May 2025
Viewed by 535
Abstract
Natural graphite (NG) is abundant and has a high capacity for lithium-ion storage, but its narrow interlayer spacing and poor cyclic stability limit its use in high-performance lithium-ion batteries (LIBs). To address this, a N/S co-doped micro-expanded graphite composite (BFAC@MEG) was prepared by [...] Read more.
Natural graphite (NG) is abundant and has a high capacity for lithium-ion storage, but its narrow interlayer spacing and poor cyclic stability limit its use in high-performance lithium-ion batteries (LIBs). To address this, a N/S co-doped micro-expanded graphite composite (BFAC@MEG) was prepared by coating micro-expanded graphite (MEG) with N/S-containing amorphous carbon derived from biochemical fulvic acid (BFAC). This enhanced the electrochemical kinetics of lithium ions, improving charge transfer rates and reducing diffusion resistance. GITT results showed a higher Li+ diffusion coefficient than MEG and spherical graphite (SG). BFAC@MEG exhibited excellent rate performance, robust storage capacity and remarkable cycling stability. It had a specific capacity of 333 mAh g−1 at 1 C, 205 mAh g−1 at 3 C, and retained 81.57% capacity after 500 cycles. Even at 5 C, BFAC@MEG exhibits a high reversible capacity of 98 mAh g−1 after 200 cycles. After cycling, SEM and XPS analyses revealed a low expansion rate of 15.96% cross-sectional expansion after 300 cycles at 3 C and a stable solid electrolyte interphase (SEI) film rich in LiF and Li2CO3. Full article
(This article belongs to the Special Issue Electrode Materials for Advanced Rechargeable Batteries)
Show Figures

Figure 1

22 pages, 6755 KiB  
Article
Structural, Mechanical, and Tribological Properties of Molybdenum-Doped Diamond-like Carbon Films
by Hassan Zhairabany, Hesam Khaksar, Edgars Vanags, Krisjanis Smits, Anatolijs Sarakovskis and Liutauras Marcinauskas
Crystals 2025, 15(5), 463; https://doi.org/10.3390/cryst15050463 - 15 May 2025
Viewed by 2505
Abstract
Non-hydrogenated diamond-like carbon (DLC) films and molybdenum-doped diamond-like carbon (Mo-DLC) films were deposited by direct current magnetron sputtering. The formation was carried out on Si (100) wafers. The influence of molybdenum concentration and deposition temperature on the surface morphology, chemical composition, type of [...] Read more.
Non-hydrogenated diamond-like carbon (DLC) films and molybdenum-doped diamond-like carbon (Mo-DLC) films were deposited by direct current magnetron sputtering. The formation was carried out on Si (100) wafers. The influence of molybdenum concentration and deposition temperature on the surface morphology, chemical composition, type of chemical bonds, friction force at nanoscale, and nanohardness of the DLC coatings were investigated by atomic force microscopy (AFM), energy dispersive X-ray spectroscopy (EDX), X-ray photoelectron spectroscopy (XPS), Raman spectroscopy, and nanoindenter, respectively. The concentration of molybdenum in the films varies from 1.2 at.% to 10.3 at.%. The increase in molybdenum content promotes the graphitization of DLC films, lowering the sp3 site fraction and increasing the oxygen content, which contributes to the reduction in nanohardness (by 21%) of the DLC films. The decrease in the synthesis temperature from 235 °C to 180 °C enhanced the oxygen amount up to 20.4 at.%. The sp3 site fraction and nanohardness of the Mo-DLC films were enhanced with the reduction in the deposition temperature. The film deposited at a substrate temperature of 235 °C exhibited the lowest friction coefficient (CoF) of 0.03, where its molybdenum concentration was 1.2 at.%. The decline in the synthesis temperature increased the CoF of the Mo-DLC films up to seven times. Full article
(This article belongs to the Special Issue Advances in Diamond Crystals and Devices)
Show Figures

Figure 1

14 pages, 4838 KiB  
Article
Antibacterial and Film Characteristics of Copper-Doped Diamond-like Carbon Films via Sputtering Using a Mixed Target of Copper and Graphite
by Kazuya Kanasugi, Takayoshi Nakajima and Kenji Hirakuri
Coatings 2025, 15(5), 559; https://doi.org/10.3390/coatings15050559 - 7 May 2025
Viewed by 507
Abstract
Copper-doped diamond-like carbon films (Cu-DLC) are effective antibacterial materials and are fabricated using different techniques. By controlling the ratio of the graphite and diamond structures as well as the hydrogen bonds, the biocompatibility, chemical stability, wear resistance, and high hardness of Cu-DLC can [...] Read more.
Copper-doped diamond-like carbon films (Cu-DLC) are effective antibacterial materials and are fabricated using different techniques. By controlling the ratio of the graphite and diamond structures as well as the hydrogen bonds, the biocompatibility, chemical stability, wear resistance, and high hardness of Cu-DLC can be regulated. In this study, three types of Cu-DLC films were deposited on SUS304 substrates using Ar-sputtering with mixed targets comprising different C/Cu ratios. The films’ structures, surface, and antibacterial properties were investigated using electron probe microanalysis, Raman and X-ray photoelectron spectroscopy, atomic force microscopy, and ball-on-disk tests. The Cu concentration in the Cu-DLC films increased with an increase in its content in the target; however, no significant differences were observed in the Raman spectra. The surface composition, roughness, and dynamic friction coefficients were similar across all Cu-DLC films, which displayed smoothness and friction properties similar to those of standard DLC films without Cu. The antibacterial activity (R value) was evaluated as per ISO 22196. Although DLC films exhibited no antibacterial activity (R < 2), all the prepared Cu-DLC films displayed good antibacterial activity (R ≥ 2). The proposed deposition process facilitated Cu-DLC coating, thus promoting its use in the healthcare fields. Full article
(This article belongs to the Special Issue Electrochemical Properties and Applications of Thin Films)
Show Figures

Figure 1

16 pages, 2277 KiB  
Article
Simultaneous Trace Analysis of Lead and Cadmium in Drinking Water, Milk, and Honey Samples Through Modified Screen-Printed Electrode
by Fei Wang, Xiao Peng, Ziqian Xiao, Ying Ge, Bilin Tao, Zhaoyong Shou, Yifei Feng, Jing Yuan and Liang Xiao
Biosensors 2025, 15(5), 267; https://doi.org/10.3390/bios15050267 - 23 Apr 2025
Viewed by 660
Abstract
A composite (N-rGO@ppy) of N-doped reduced graphene oxide (N-rGO) coated with polypyrrole (ppy) particles was successfully synthesized. The incorporation of N-rGO significantly mitigates the aggregation of ppy synthesized in situ, and the doped N atoms improve the conductivity of graphene oxide (GO), thereby [...] Read more.
A composite (N-rGO@ppy) of N-doped reduced graphene oxide (N-rGO) coated with polypyrrole (ppy) particles was successfully synthesized. The incorporation of N-rGO significantly mitigates the aggregation of ppy synthesized in situ, and the doped N atoms improve the conductivity of graphene oxide (GO), thereby enhancing N-rGO@ppy’s redox properties. Firstly, a glassy carbon electrode (GCE) modified with N-rGO@ppy (N-rGO@ppy/GCE) was used in combination with a bismuth film and square-wave anodic stripping voltammetry (SWASV) for the simultaneous trace analysis of Pb2+ and Cd2+. N-rGO@ppy/GCE exhibited distinct stripping peaks for Pb2+ and Cd2+, with a linear range of 1 to 500 μg L−1. The limits of detection (LODs) were found to be 0.080 μg L−1 for Pb2+ and 0.029 μg L−1 for Cd2+, both of which are significantly below the standards set by the World Health Organization (WHO). Subsequently, the same electrochemical sensing strategy was adapted to a more portable screen-printed electrode (SPE) to accommodate the demand for in situ detection. The performance of N-rGO@ppy/SPE for analyzing Pb2+ and Cd2+ in actual samples, such as drinking water, milk, and honey, showed results consistent with those obtained from conventional graphite furnace atomic absorption spectrometry (GFAAS). Full article
Show Figures

Figure 1

25 pages, 10572 KiB  
Article
Electrochemical Formation and Characterization of Functional Ag-Re Coatings
by Oksana Bersirova, Valeriy Kublanovsky, Svetlana Kochetova and Olena Bondar
Materials 2025, 18(9), 1893; https://doi.org/10.3390/ma18091893 - 22 Apr 2025
Viewed by 413
Abstract
Silver-white, matte, smooth, and durable deposits of silver-rhenium, with thicknesses ranging from 2.0 to 13.7 μm and containing 0.15 to 13.5 wt.% Re, were obtained with a current efficiency of 66–98% from a developed dicyanoargentate–perrhenate bath based on a borate–phosphate–carbonate silver-plating electrolyte. This [...] Read more.
Silver-white, matte, smooth, and durable deposits of silver-rhenium, with thicknesses ranging from 2.0 to 13.7 μm and containing 0.15 to 13.5 wt.% Re, were obtained with a current efficiency of 66–98% from a developed dicyanoargentate–perrhenate bath based on a borate–phosphate–carbonate silver-plating electrolyte. This study was focused on the influence of bath composition, the [Ag(I)]:[ReO4] ratio, surfactant additives, applied current density, temperature, and stirring, on the alloys’ composition, structure, morphology, microhardness, adhesion, and porosity. A voltammetric analysis was conducted, considering the influence of ethanolamines on electrode processes. In baths with triethanolamine (TEA), coatings similar to a silver matrix with rhenium doped in mass fractions are likely achievable. Monoethanolamine (MEA) is recommended due to its process-activating properties. All coatings were nanocrystalline (τ = 28.5–35 nm). For deposits containing less than 10 wt.% Re, characteristic silver XRD peaks were observed, while for other deposits, additional peaks attributed probably to Re(VII) and Re(VI) oxides. A linear relationship Hv − τ−1/2, typical for Hall–Petch plots, was obtained, confirming that grain boundaries play a crucial role in mechanical properties of coatings. The conditions for stable electrochemical synthesis of promising functional Ag-Re coatings of predetermined composition (0.7–1.5 wt.% Re) were proposed for practical use in power electronics and energy sectors for manufacturing electrical contacts operating across a wide temperature range. This was realized by deposition from an Ag-rich bath in the area of mixed electrochemical kinetics, at potential values corresponding to the region of half the limiting current: j = 2.5–6 mA cm−2, t = 19–33 °C. Full article
(This article belongs to the Special Issue Electrochemical Material Science and Electrode Processes)
Show Figures

Graphical abstract

14 pages, 17658 KiB  
Article
MOF-Derived Hollow Dodecahedral Carbon Structures with Abundant N Sites and Co Nanoparticle-Modified Cu Foil for Dendrite-Free Lithium Metal Battery
by Fei Wang, Huijie Wei, Xinyuan Ren, Junle Zhang, Aiyun Jiang, Yong Liu and Fengzhang Ren
Coatings 2025, 15(4), 490; https://doi.org/10.3390/coatings15040490 - 20 Apr 2025
Viewed by 468
Abstract
In this work, hollow dodecahedral carbon structures with abundant N-doping sites and metal nanoparticles (NC-Co-CNTs) based on MOF-derivative materials were designed and prepared as host materials for lithium metal to ensure uniform lithium deposition on a Cu current collector. NC-Co-CNTs have good electrical [...] Read more.
In this work, hollow dodecahedral carbon structures with abundant N-doping sites and metal nanoparticles (NC-Co-CNTs) based on MOF-derivative materials were designed and prepared as host materials for lithium metal to ensure uniform lithium deposition on a Cu current collector. NC-Co-CNTs have good electrical conductivity, which ensures fast electron transport and Li+ transfer. The carbon nanotubes catalytically derived by Co can promote the uniform distribution of Li+ along the hollow dodecahedral carbon surface and deposition inside the cavity, and the larger electronegativity of N-doped sites and lithophilic sites such as Co nanoparticles can effectively adsorb lithium, inducing the Li+ to be deposited in the form of spherical lithium in a dendrite-free state, inhibiting the growth of dendritic lithium and improving the electrochemical performance of the lithium metal battery. Based on the above advantages, the electrodes of NC-Co-CNT-based symmetric cells present superior cycling performance for more than 1100 h with low overpotential at 1 mAh cm−2/1 mAh·cm−2. Even cycling at high current density of 5 mA cm−2 and high deposition parameters of 5 mAh cm−2, it still cycles for up to 800 h at a relatively low overpotential. Full article
(This article belongs to the Special Issue Multilayer Coatings for Nanomaterials: From Synthesis to Applications)
Show Figures

Figure 1

21 pages, 1862 KiB  
Article
Co- and Sn-Doped YMnO3 Perovskites for Electrocatalytic Water-Splitting and Photocatalytic Pollutant Degradation
by Paula Sfirloaga, Szabolcs Bognár, Bogdan-Ovidiu Taranu, Paulina Vlazan, Maria Poienar and Daniela Šojić Merkulov
Coatings 2025, 15(4), 475; https://doi.org/10.3390/coatings15040475 - 16 Apr 2025
Cited by 1 | Viewed by 565
Abstract
The current environmental pollution and energy crises are global concerns that must be addressed. Considering this background, three perovskites (YMnO3, Co-doped YMnO3, and Sn-doped YMnO3) were synthesized via a sol–gel method and characterized by XRD, SEM, and [...] Read more.
The current environmental pollution and energy crises are global concerns that must be addressed. Considering this background, three perovskites (YMnO3, Co-doped YMnO3, and Sn-doped YMnO3) were synthesized via a sol–gel method and characterized by XRD, SEM, and EDX. Their water-splitting electrocatalytic activity was evaluated in a strongly alkaline medium. The highest activity was observed during hydrogen evolution reaction (HER) experiments on a glassy carbon electrode coated with a catalyst ink containing the Co-doped material. Initially, the HER overpotential value at −10 mA/cm2 was 0.59 V, and the Tafel slope was 115 mV/dec. Following a chronoamperometric stability test, the overpotential became 0.46 V and the Tafel slope 119 mV/dec. The higher HER activity of the modified electrode is ascribed to a higher number of catalytic sites exposed to the electrolyte solution and the presence of Carbon Black. The photocatalytic activity of the perovskites was investigated as well, using different experimental conditions and simulated solar irradiation. The results show that the photocatalytic activity can be improved by doping, and the highest removal efficiency is achieved in the presence of the Co-doped YMnO3 when ~60% of 17α-ethynylestradiol is degraded. Furthermore, the initial pH has no favorable effect on the degradation efficiency. The reusability of Co-doped YMnO3 was also tested and minimal activity loss was found after three photocatalytic cycles. Full article
Show Figures

Graphical abstract

Back to TopTop