Constructing Novel 2D Composite Nanomaterials by Coupling Graphene or Silicene with TM3N2 MXene (TM = Nb, Ta, Mo, and W) to Achieve Highly Efficient HER Catalysts
Abstract
:1. Introduction
2. Results and Discussion
2.1. Structures, Stability, and Electronic Properties of 2D TM3N2 (TM = Nb, Ta, Mo, and W) MXene Systems
2.2. Structures and HER Catalytic Performance of New 2D Composite MXenes/G or MXenes/NG Systems by Coupling the TM3N2 (TM = Nb, Ta, Mo or W) Monolayers with Pure Graphene or N-Doped Graphene
2.2.1. Structures and HER Catalytic Activity of 2D Composite TM3N2/G Systems
2.2.2. Further Enhancing the Catalytic Activities for HER on 2D Composite TM3N2/G Structures by Doping N Atoms into Graphene
2.3. Structures and HER Catalytic Performance of New 2D Composite MXenes/Si and MXenes/PSi Systems Formed by Coupling the TM3N2 (TM = Nb, Ta, Mo or W) Monolayer with the Pristine or P-Doped Silicone
2.3.1. Structures and HER Catalytic Activity of 2D Composite TM3N2/Si Systems
2.3.2. Structures and HER Catalytic Activity of 2D Composite TM3N2/PSi Systems
2.4. HER Catalytic Mechanisms
3. Computational Methods
4. Conclusions
- (1)
- Covering 2D graphene can effectively improve the HER catalytic activity of the four TM3N2 MXene systems. The resulting composite TM3N2/G structures can uniformly exhibit high stability, metallic conductivity, and considerably high HER catalytic activity (much higher than the standalone TM3N2 systems). The relevant carbon atoms in the subunit graphene can serve as active sites for HER.
- (2)
- The TM3N2 systems coated with the N-doped graphene can also demonstrate high stability, metallic conductivity, and significantly high HER catalytic activity. Particularly, doping N atoms into the subunit graphene can result in higher HER catalytic activity in the composite TM3N2/G systems (TM = Nb, Ta and Mo), with the HER activity of relevant carbon atoms adjacent to the nitrogen dopant being effectively boosted.
- (3)
- The coating of 2D buckled silicene can significantly enhance the HER catalytic activity of the four TM3N2 MXene systems. The resulting composite TM3N2/Si structures can display high stability, metallic conductivity, and remarkable HER catalytic performance. The relevant silicon atoms in the subunit silicene can act as active sites for HER. Notably, all three TM3N2/Si (TM = Nb, Ta and Mo) systems outperform their TM3N2/G counterparts in HER catalytic activity, indicating the superior effectiveness of silicene coupling.
- (4)
- The composite TM3N2/PSi, formed by coating the P-doped silicene, can exhibit high stability, metallic conductivity, and high HER catalytic activity. Especially, the incorporation of P atoms into silicene can endow Nb3N2/PSi and Ta3N2/PSi systems with enhanced HER activity in comparison to those covered with undoped silicene, enhancing the HER activity of silicon atoms adjacent to the phosphorus dopant.
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Okorie, D.I.; Lin, B. Emissions in agricultural-based developing economies: A case of Nigeria. J. Cleaner Prod. 2022, 337, 130570. [Google Scholar] [CrossRef]
- Forster, P.M.; Smith, C.; Walsh, T.; Lamb, W.F.; Lamboll, R.; Hall, B.; Hauser, M.; Ribes, A.; Rosen, D.; Gillett, N.P.; et al. Indicators of Global Climate Change 2023: Annual update of key indicators of the state of the climate system and human influence. Earth Syst. Sci. Data. 2024, 16, 2625–2658. [Google Scholar] [CrossRef]
- Welsby, D.; Price, J.; Pye, S.; Ekins, P. Unextractable fossil fuels in a 1.5 °C world. Nature 2021, 597, 230–234. [Google Scholar] [CrossRef]
- Rostami, F.; Patrizio, P.; Jimenez, L.; Pozo, C.; Mac Dowell, N. Assessing the realism of clean energy projections. Energy Environ. Sci. 2024, 17, 5241–5259. [Google Scholar] [CrossRef]
- Zhang, H.; Fu, Y.; Nguyen, H.T.; Fox, B.; Lee, J.H.; Lau, A.K.-T.; Zheng, H.; Lin, H.; Ma, T.; Jia, B. Material challenges in green hydrogen ecosystem. Coord. Chem. Rev. 2023, 494, 215272. [Google Scholar] [CrossRef]
- Naseem, K.; Qin, F.; Khalid, F.; Suo, G.; Zahra, T.; Chen, Z.; Javed, Z. Essential parts of hydrogen economy: Hydrogen production, storage, transportation and application. Renew. Sustain. Energy Rev. 2025, 210, 115196. [Google Scholar] [CrossRef]
- Boettcher, S.W. Introduction to Green Hydrogen. Chem. Rev. 2024, 124, 13095–13098. [Google Scholar] [CrossRef]
- Zhou, B.; Gao, R.; Zou, J.-J.; Yang, H. Surface Design Strategy of Catalysts for Water Electrolysis. Small 2022, 18, 2202336. [Google Scholar] [CrossRef] [PubMed]
- Yu, F.; Yu, L.; Mishra, I.K.; Yu, Y.; Ren, Z.F.; Zhou, H.Q. Recent developments in earth-abundant and non-noble electrocatalysts for water electrolysis. Mater. Today Phys. 2018, 7, 121–138. [Google Scholar] [CrossRef]
- Zhu, J.; Hu, L.; Zhao, P.; Lee, L.Y.S.; Wong, K.-Y. Recent Advances in Electrocatalytic Hydrogen Evolution Using Nanoparticles. Chem. Rev. 2020, 120, 851–918. [Google Scholar] [CrossRef]
- Li, C.; Li, T.; Yu, G.; Chen, W. Theoretical Investigation of HER and OER Electrocatalysts Based on the 2D R-graphyne Completely Composed of Anti-Aromatic Carbon Rings. Molecules 2023, 28, 3888. [Google Scholar] [CrossRef]
- Li, C.; Yu, G.; Shen, X.; Li, Y.; Chen, W. Theoretical Study on the High HER/OER Electrocatalytic Activities of 2D GeSi, SnSi, and SnGe Monolayers and Further Improvement by Imposing Biaxial Strain or Doping Heteroatoms. Molecules 2022, 27, 5092. [Google Scholar] [CrossRef]
- Zhou, Q.; Wang, M.; Li, Y.; Liu, Y.; Chen, Y.; Wu, Q.; Wang, S. Fabrication of Highly Textured 2D SnSe Layers with Tunable Electronic Properties for Hydrogen Evolution. Molecules 2021, 26, 3319. [Google Scholar] [CrossRef] [PubMed]
- Xiao, J.; Wang, B.; Shu, Q. MXene Anchored with Platinum Cobalt Alloy as an Efficient and Stable Electrocatalyst for Hydrogen Evolution. Molecules 2024, 29, 5793. [Google Scholar] [CrossRef]
- Man, P.; Jiang, S.; Leung, K.H.; Lai, K.H.; Guang, Z.; Chen, H.; Huang, L.; Chen, T.; Gao, S.; Peng, Y.-K.; et al. Salt-Induced High-Density Vacancy-Rich 2D MoS2 for Efficient Hydrogen Evolution. Adv. Mater. 2024, 36, 2304808. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Qi, J.; Zhai, L.; Ma, C.; Ke, C.; Zhai, W.; Wu, Z.; Bao, K.; Yao, Y.; Li, S.; et al. Preparation of 2D Molybdenum Phosphide via Surface-Confined Atomic Substitution. Adv. Mater. 2022, 34, 2203220. [Google Scholar] [CrossRef] [PubMed]
- Shang, X.; Lv, Y.; Cui, T.; Li, D. Closed Reconstructed Edges of Bilayer H-MoS2. Adv. Funct. Mater. 2025, 2424589. [Google Scholar] [CrossRef]
- Wang, Z.; Chen, X.; Ding, Y.; Zhu, X.; Sun, Z.; Zhou, H.; Li, X.; Yang, W.; Liu, J.; He, R.; et al. Synthesis of Two-Dimensional High-Entropy Transition Metal Dichalcogenide Single Crystals. J. Am. Chem. Soc. 2025, 147, 1392–1398. [Google Scholar] [CrossRef]
- Das, G.; Singha Roy, S.; Abou Ibrahim, F.; Merhi, A.; Dirawi, H.N.; Benyettou, F.; Kumar Das, A.; Prakasam, T.; Varghese, S.; Kumar Sharma, S.; et al. Electrocatalytic Water Splitting in Isoindigo-Based Covalent Organic Frameworks. Angew. Chem. Int. Edit. 2025, 64, e202419836. [Google Scholar] [CrossRef]
- Lou, H.; Yu, G.; Tang, M.; Chen, W.; Yang, G. Janus MoPC Monolayer with Superior Electrocatalytic Performance for the Hydrogen Evolution Reaction. ACS Appl. Mater. Interfaces 2022, 14, 7836–7844. [Google Scholar] [CrossRef]
- Li, T.; Yu, G.; Yang, E.; Chen, W. Hypercoordinated Si/Ge driving excellent HER catalytic performance in new TM2X (X = Si and Ge) monolayers: A high-throughput investigation by screening transition metal elements. Inorg. Chem. Front. 2024, 11, 7067–7080. [Google Scholar] [CrossRef]
- Gou, W.; Lv, M.; Yu, G.; Chen, W. Realizing stable transition metal(111) metallene by introducing a non-metallic framework to construct 2D Janus TMB2X (X = O and S) nanostructures and investigating their hydrogen evolution catalytic performance. Inorg. Chem. Front. 2025, 12, 1629–1643. [Google Scholar] [CrossRef]
- Wu, X.; Xiao, S.; Long, Y.; Ma, T.; Shao, W.; Cao, S.; Xiang, X.; Ma, L.; Qiu, L.; Cheng, C.; et al. Emerging 2D Materials for Electrocatalytic Applications: Synthesis, Multifaceted Nanostructures, and Catalytic Center Design. Small 2022, 18, 2105831. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Yang, K.; Jiang, B.; Li, J.; Zeng, M.; Fu, L. Emerging two-dimensional nanomaterials for electrochemical hydrogen evolution. J. Mater. Chem. A 2017, 5, 8187–8208. [Google Scholar] [CrossRef]
- Xiao, Y.; Xiong, C.; Chen, M.-M.; Wang, S.; Fu, L.; Zhang, X. Structure modulation of two-dimensional transition metal chalcogenides: Recent advances in methodology, mechanism and applications. Chem. Soc. Rev. 2023, 52, 1215–1272. [Google Scholar] [CrossRef]
- Zhang, A.; Liang, Y.; Zhang, H.; Geng, Z.; Zeng, J. Doping regulation in transition metal compounds for electrocatalysis. Chem. Soc. Rev. 2021, 50, 9817–9844. [Google Scholar] [CrossRef]
- Tian, D.; Denny, S.R.; Li, K.; Wang, H.; Kattel, S.; Chen, J.G. Density functional theory studies of transition metal carbides and nitrides as electrocatalysts. Chem. Soc. Rev. 2021, 50, 12338–12376. [Google Scholar] [CrossRef]
- Nair, V.G.; Birowska, M.; Bury, D.; Jakubczak, M.; Rosenkranz, A.; Jastrzębska, A.M. 2D MBenes: A Novel Member in the Flatland. Adv. Mater. 2022, 34, 2108840. [Google Scholar] [CrossRef] [PubMed]
- Chen, G.; Wang, T.; Zhang, J.; Liu, P.; Sun, H.; Zhuang, X.; Chen, M.; Feng, X. Accelerated Hydrogen Evolution Kinetics on NiFe-Layered Double Hydroxide Electrocatalysts by Tailoring Water Dissociation Active Sites. Adv. Mater. 2018, 30, 1706279. [Google Scholar] [CrossRef]
- Yi, H.; Liu, S.; Lai, C.; Zeng, G.; Li, M.; Liu, X.; Li, B.; Huo, X.; Qin, L.; Li, L.; et al. Recent Advance of Transition-Metal-Based Layered Double Hydroxide Nanosheets: Synthesis, Properties, Modification, and Electrocatalytic Applications. Adv. Energy Mater. 2021, 11, 2002863. [Google Scholar] [CrossRef]
- Chakraborty, G.; Park, I.-H.; Medishetty, R.; Vittal, J.J. Two-Dimensional Metal-Organic Framework Materials: Synthesis, Structures, Properties and Applications. Chem. Rev. 2021, 121, 3751–3891. [Google Scholar] [CrossRef] [PubMed]
- Xiao, L.; Wang, Z.; Guan, J. 2D MOFs and their derivatives for electrocatalytic applications: Recent advances and new challenges. Coord. Chem. Rev. 2022, 472, 214777. [Google Scholar] [CrossRef]
- Huang, H.; Yan, M.; Yang, C.; He, H.; Jiang, Q.; Yang, L.; Lu, Z.; Sun, Z.; Xu, X.; Bando, Y.; et al. Graphene Nanoarchitectonics: Recent Advances in Graphene-Based Electrocatalysts for Hydrogen Evolution Reaction. Adv. Mater. 2019, 31, 1903415. [Google Scholar] [CrossRef]
- Ali, A.; Shen, P.K. Recent Progress in Graphene-Based Nanostructured Electrocatalysts for Overall Water Splitting. Electrochem. Energ. Rev. 2020, 3, 370–394. [Google Scholar] [CrossRef]
- Kang, Z.; Khan, M.A.; Gong, Y.; Javed, R.; Xu, Y.; Ye, D.; Zhao, H.; Zhang, J. Recent progress of MXenes and MXene-based nanomaterials for the electrocatalytic hydrogen evolution reaction. J. Mater. Chem. A 2021, 9, 6089–6108. [Google Scholar] [CrossRef]
- Lakmal, A.; Thombre, P.B.; Shuck, C.E. Solid-Solution MXenes: Synthesis, Properties, and Applications. Acc. Chem. Res. 2024, 57, 3007–3019. [Google Scholar] [CrossRef]
- Zhao, Y.; Zhang, J.; Guo, X.; Cao, X.; Wang, S.; Liu, H.; Wang, G. Engineering strategies and active site identification of MXene-based catalysts for electrochemical conversion reactions. Chem. Soc. Rev. 2023, 52, 3215–3264. [Google Scholar] [CrossRef]
- Li, K.; Li, J.; Zhu, Q.; Xu, B. Three-Dimensional MXenes for Supercapacitors: A Review. Small Methods 2022, 6, 2101537. [Google Scholar] [CrossRef] [PubMed]
- Seh, Z.W.; Fredrickson, K.D.; Anasori, B.; Kibsgaard, J.; Strickler, A.L.; Lukatskaya, M.R.; Gogotsi, Y.; Jaramillo, T.F.; Vojvodic, A. Two-Dimensional Molybdenum Carbide (MXene) as an Efficient Electrocatalyst for Hydrogen Evolution. ACS Energy Lett. 2016, 1, 589–594. [Google Scholar] [CrossRef]
- Zou, X.; Liu, H.; Xu, H.; Wu, X.; Han, X.; Kang, J.; Reddy, K.M. A simple approach to synthesis Cr2CTx MXene for efficient hydrogen evolution reaction. Mater. Today Energy 2021, 20, 100668. [Google Scholar] [CrossRef]
- Li, S.; Tuo, P.; Xie, J.; Zhang, X.; Xu, J.; Bao, J.; Pan, B.; Xie, Y. Ultrathin MXene nanosheets with rich fluorine termination groups realizing efficient electrocatalytic hydrogen evolution. Nano Energy 2018, 47, 512–518. [Google Scholar] [CrossRef]
- Han, N.; Liu, P.; Jiang, J.; Ai, L.; Shao, Z.; Liu, S. Recent advances in nanostructured metal nitrides for water splitting. J. Mater. Chem. A 2018, 6, 19912–19933. [Google Scholar] [CrossRef]
- Theerthagiri, J.; Lee, S.J.; Murthy, A.P.; Madhavan, J.; Choi, M.Y. Fundamental aspects and recent advances in transition metal nitrides as electrocatalysts for hydrogen evolution reaction: A review. Curr. Opin. Solid State Mater. Sci. 2020, 24, 100805. [Google Scholar] [CrossRef]
- Berkdemir, C.; Gunaratne, K.D.D.; Cheng, S.-B.; Castleman, A.W., Jr. Photoelectron imaging spectroscopy of niobium mononitride anion NbN−. J. Chem. Phys. 2016, 145, 034301. [Google Scholar] [CrossRef]
- Peppernick, S.J.; Gunaratne, K.D.D.; Castleman, A.W. Superatom spectroscopy and the electronic state correlation between elements and isoelectronic molecular counterparts. Proc. Natl. Acad. Sci. USA 2010, 107, 975–980. [Google Scholar] [CrossRef] [PubMed]
- Ma, J.B.; Xu, L.L.; Liu, Q.Y.; He, S.G. Activation of Methane and Ethane as Mediated by the Triatomic Anion HNbN−: Electronic Structure Similarity with a Pt Atom. Angew. Chem. 2016, 128, 5031–5035. [Google Scholar] [CrossRef]
- Gjerding, M.N.; Taghizadeh, A.; Rasmussen, A.; Ali, S.; Bertoldo, F.; Deilmann, T.; Knøsgaard, N.R.; Kruse, M.; Larsen, A.H.; Manti, S.; et al. Recent progress of the Computational 2D Materials Database (C2DB). 2D Mater. 2021, 8, 044002. [Google Scholar] [CrossRef]
- Tiwari, S.K.; Sahoo, S.; Wang, N.; Huczko, A. Graphene research and their outputs: Status and prospect. J. Sci. Adv. Mater. Devices. 2020, 5, 10–29. [Google Scholar] [CrossRef]
- Lin, T.; Wen, X.; Ren, X.; Quintano, V.; Andreeva, D.V.; Novoselov, K.S.; Joshi, R. Recent Advances in Graphene-Based Membranes with Nanochannels and Nanopores. Small Struct. 2025, 6, 2400320. [Google Scholar] [CrossRef]
- Yang, L.-M.; Bačić, V.; Popov, I.A.; Boldyrev, A.I.; Heine, T.; Frauenheim, T.; Ganz, E. Two-Dimensional Cu2Si Monolayer with Planar Hexacoordinate Copper and Silicon Bonding. J. Am. Chem. Soc. 2015, 137, 2757–2762. [Google Scholar] [CrossRef]
- Guan, J.; Zhu, Z.; Tománek, D. Phase Coexistence and Metal-Insulator Transition in Few-Layer Phosphorene: A Computational Study. Phys. Rev. Lett. 2014, 113, 046804. [Google Scholar] [CrossRef] [PubMed]
- Babariya, B.; Raval, D.; Gupta, S.K.; Gajjar, P.N. Modulation of band gap and optical response of layered MoX2 (X = S, Se, Te) for electronic and optoelectronic applications. Mater. Today Commun. 2021, 28, 102614. [Google Scholar] [CrossRef]
- Zhang, N.; Hong, Y.; Yazdanparast, S.; Asle Zaeem, M. Superior structural, elastic and electronic properties of 2D titanium nitride MXenes over carbide MXenes: A comprehensive first principles study. 2D Mater. 2018, 5, 045004. [Google Scholar] [CrossRef]
- Zhao, C.; Cai, X.; Liu, L.; Liu, C.; Zeng, Z.; Niu, C.; Xia, C.; Jia, Y. Structural, Topological, and Superconducting Properties of Two-Dimensional Tellurium Allotropes from Ab Initio Predictions. Adv. Theory Simul. 2021, 4, 2000265. [Google Scholar] [CrossRef]
- Yu, Y.; Guo, Z.; Peng, Q.; Zhou, J.; Sun, Z. Novel two-dimensional molybdenum carbides as high capacity anodes for lithium/sodium-ion batteries. J. Mater. Chem. A 2019, 7, 12145–12153. [Google Scholar] [CrossRef]
- Mouhat, F.; Coudert, F.-X. Necessary and sufficient elastic stability conditions in various crystal systems. Phys. Rev. B 2014, 90, 224104. [Google Scholar] [CrossRef]
- Zheng, J.; Wang, S.; Deng, S.; Yao, Z.; Hu, J.; Wang, J. Accelerating the Screening of Modified MAZ Catalysts for Hydrogen Evolution Reaction by Deep Learning-Based Local Geometric Analysis. Energy Environ. Mater. 2024, 7, e12743. [Google Scholar] [CrossRef]
- Xu, M.; Shu, Y.; Wang, X.; Chen, Y.; Xie, J.; Li, Y.; Dong, H. The activity origin of two-dimensional MN4-contained periodical macrocyclic structures towards electro-catalytic hydrogen evolution. J. Colloid Interface Sci. 2025, 686, 1105–1113. [Google Scholar] [CrossRef]
- Huang, L.; Gariepy, Z.; Halpren, E.; Du, L.; Shan, C.H.; Yang, C.; Chen, Z.W.; Singh, C.V. Bayesian Learning Aided Theoretical Optimization of IrPdPtRhRu High Entropy Alloy Catalysts for the Hydrogen Evolution Reaction. Small Methods 2025, 9, 2401224. [Google Scholar] [CrossRef]
- Zhang, X.; Li, K.; Wen, B.; Ma, J.; Diao, D. Machine learning accelerated DFT research on platinum-modified amorphous alloy surface catalysts. Chin. Chem. Lett. 2023, 34, 107833. [Google Scholar] [CrossRef]
- Zhao, J.; Han, X.; Li, J.; Han, Z.; Zhao, X. Atomically Dispersed Catalytic Platinum Anti-Substitutions in Molybdenum Ditelluride. J. Am. Chem. Soc. 2025, 147, 9825–9835. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Tan, X.; Hocking, R.K.; Bo, X.; Ren, H.; Johannessen, B.; Smith, S.C.; Zhao, C. Implanting Ni-O-VOx sites into Cu-doped Ni for low-overpotential alkaline hydrogen evolution. Nat Commun. 2020, 11, 2720. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, H.T.T.; Adofo, L.A.; Yang, S.-H.; Kim, H.-J.; Choi, S.H.; Kirubasankar, B.; Cho, B.W.; Ben-Smith, A.; Kang, J.; Kim, Y.-M.; et al. 1T’ ReMo1−S2–2H MoS2 Lateral Heterojunction for Enhanced Hydrogen Evolution Reaction Performance. Adv. Funct. Mater. 2023, 33, 2209572. [Google Scholar] [CrossRef]
- Park, H.; Lee, E.; Lei, M.; Joo, H.; Coh, S.; Fokwa, B.P.T. Canonic-Like HER Activity of Cr1–MoB2 Solid Solution: Overpowering Pt/C at High Current Density. Adv. Mater. 2020, 32, 2000855. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, H.; Wu, Q.; Gu, L. Non-covalent functionalization of graphene sheets by pyrene-endcapped tetraphenylethene: Enhanced aggregation-induced emission effect and application in explosive detection. Front. Chem. 2022, 10, 970033. [Google Scholar] [CrossRef]
- Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169–11186. [Google Scholar] [CrossRef]
- Kresse, G.; Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 1996, 6, 15–50. [Google Scholar] [CrossRef]
- Perdew, J.P.; Burke, K.; Ernzerhof, M. Generalized Gradient Approximation Made Simple. Phys. Rev. Lett. 1996, 77, 3865–3868. [Google Scholar] [CrossRef]
- Blöchl, P.E. Projector augmented-wave method. Phys. Rev. B 1994, 50, 17953–17979. [Google Scholar] [CrossRef]
- Kresse, G.; Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 1999, 59, 1758–1775. [Google Scholar] [CrossRef]
- Grimme, S. Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J. Comput. Chem. 2006, 27, 1787–1799. [Google Scholar] [CrossRef] [PubMed]
- Togo, A.; Tanaka, I. First principles phonon calculations in materials science. Scr. Mater. 2015, 108, 1–5. [Google Scholar] [CrossRef]
- Lundgren, C.; Kakanakova-Georgieva, A.; Gueorguiev, G.K. A perspective on thermal stability and mechanical properties of 2D Indium Bismide from ab initio molecular dynamics. Nanotechnology 2022, 33, 335706. [Google Scholar] [CrossRef] [PubMed]
- Martyna, G.J.; Klein, M.L.; Tuckerman, M. Nosé–Hoover chains: The canonical ensemble via continuous dynamics. J. Chem. Phys. 1992, 97, 2635–2643. [Google Scholar] [CrossRef]
- Fuentealba, P.; Savin, A. Bonding Analysis of Hydrogenated Lithium Clusters Using the Electron Localization Function. J. Phys. Chem. A 2001, 105, 11531–11533. [Google Scholar] [CrossRef]
- Koumpouras, K.; Larsson, J.A. Distinguishing between chemical bonding and physical binding using electron localization function (ELF). J. Phys. Condens. Matter. 2020, 32, 315502. [Google Scholar] [CrossRef]
- Nørskov, J.K.; Bligaard, T.; Logadottir, A.; Kitchin, J.R.; Chen, J.G.; Pandelov, S.; Stimming, U. Trends in the Exchange Current for Hydrogen Evolution. J. Electrochem. Soc. 2005, 152, J23. [Google Scholar] [CrossRef]
- Nørskov, J.K.; Rossmeisl, J.; Logadottir, A.; Lindqvist, L.; Kitchin, J.R.; Bligaard, T.; Jónsson, H. Origin of the Overpotential for Oxygen Reduction at a Fuel-Cell Cathode. J. Phys. Chem. B 2004, 108, 17886–17892. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, X.; Yu, G.; Zhang, W.; Yang, E.; Chen, W. Constructing Novel 2D Composite Nanomaterials by Coupling Graphene or Silicene with TM3N2 MXene (TM = Nb, Ta, Mo, and W) to Achieve Highly Efficient HER Catalysts. Molecules 2025, 30, 2401. https://doi.org/10.3390/molecules30112401
Zhang X, Yu G, Zhang W, Yang E, Chen W. Constructing Novel 2D Composite Nanomaterials by Coupling Graphene or Silicene with TM3N2 MXene (TM = Nb, Ta, Mo, and W) to Achieve Highly Efficient HER Catalysts. Molecules. 2025; 30(11):2401. https://doi.org/10.3390/molecules30112401
Chicago/Turabian StyleZhang, Xiuyi, Guangtao Yu, Wei Zhang, E Yang, and Wei Chen. 2025. "Constructing Novel 2D Composite Nanomaterials by Coupling Graphene or Silicene with TM3N2 MXene (TM = Nb, Ta, Mo, and W) to Achieve Highly Efficient HER Catalysts" Molecules 30, no. 11: 2401. https://doi.org/10.3390/molecules30112401
APA StyleZhang, X., Yu, G., Zhang, W., Yang, E., & Chen, W. (2025). Constructing Novel 2D Composite Nanomaterials by Coupling Graphene or Silicene with TM3N2 MXene (TM = Nb, Ta, Mo, and W) to Achieve Highly Efficient HER Catalysts. Molecules, 30(11), 2401. https://doi.org/10.3390/molecules30112401