Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (25)

Search Parameters:
Keywords = diverting fracturing

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 813 KB  
Article
Can Artificial Intelligence Improve the Appropriate Use and Decrease the Misuse of REBOA?
by Mary Bokenkamp, Yu Ma, Ander Dorken-Gallastegi, Jefferson A. Proaño-Zamudio, Anthony Gebran, George C. Velmahos, Dimitris Bertsimas and Haytham M. A. Kaafarani
Bioengineering 2025, 12(10), 1025; https://doi.org/10.3390/bioengineering12101025 - 25 Sep 2025
Viewed by 289
Abstract
Background: The use of resuscitative endovascular balloon occlusion of the aorta (REBOA) for control of noncompressible torso hemorrhage remains controversial. We aimed to utilize a novel and transparent/interpretable artificial intelligence (AI) method called Optimal Policy Trees (OPTs) to improve the appropriate use and [...] Read more.
Background: The use of resuscitative endovascular balloon occlusion of the aorta (REBOA) for control of noncompressible torso hemorrhage remains controversial. We aimed to utilize a novel and transparent/interpretable artificial intelligence (AI) method called Optimal Policy Trees (OPTs) to improve the appropriate use and decrease the misuse of REBOA in hemodynamically unstable blunt trauma patients. Methods: We trained and then validated OPTs that “prescribe” REBOA in a 50:50 split on all hemorrhagic shock blunt trauma patients in the 2010–2019 ACS-TQIP database based on rates of survival. Hemorrhagic shock was defined as a systolic blood pressure ≤90 on arrival or a transfusion requirement of ≥4 units of blood in the first 4 h of presentation. The expected 24 h mortality rate following OPT prescription was compared to the observed 24 h mortality rate in patients who were or were not treated with REBOA. Results: Out of 4.5 million patients, 100,615 were included, and 803 underwent REBOA. REBOA patients had a higher rate of pelvic fracture, femur fracture, hemothorax, pneumothorax, and thoracic aorta injury (p < 0.001). The 24 h mortality rate for the REBOA vs. non-REBOA group was 47% vs. 21%, respectively (p < 0.001). OPTs resulted in an 18% reduction in 24 h mortality for REBOA and a 0.8% reduction in non-REBOA patients. We specifically divert the misuse of REBOA by recommending against REBOA in cases where it leads to worse outcomes. Conclusions: This proof-of-concept study shows that interpretable AI models can improve mortality in unstable blunt trauma patients by optimizing the use and decreasing the misuse of REBOA. To date, these models have been used to predict outcomes, but their groundbreaking use will be in prescribing interventions and changing outcomes. Full article
(This article belongs to the Section Biosignal Processing)
Show Figures

Figure 1

24 pages, 2965 KB  
Article
Research and Application of Dynamic Monitoring Technology for Fracture Stimulation Optimization in Unconventional Reservoirs of the Sichuan Basin Using the Wide-Field Electromagnetic Method
by Changheng Yu, Wenliang Zhang, Zongquan Liu, Heng Ye and Zhiwen Gu
Processes 2025, 13(9), 3025; https://doi.org/10.3390/pr13093025 - 22 Sep 2025
Viewed by 252
Abstract
This study addresses the key technical challenges in monitoring hydraulic fracturing within unconventional reservoirs through an innovative wide-field electromagnetic (WEM) monitoring technique. The method employs a 5A AC-excited wellbore-fracturing fluid system to establish a conductor antenna effect, coupled with a surface electrode array [...] Read more.
This study addresses the key technical challenges in monitoring hydraulic fracturing within unconventional reservoirs through an innovative wide-field electromagnetic (WEM) monitoring technique. The method employs a 5A AC-excited wellbore-fracturing fluid system to establish a conductor antenna effect, coupled with a surface electrode array (100–250 m offset) to detect millivolt-level time-lapse potential anomalies, enabling real-time dynamic monitoring of 142 fracturing stages. A line current source integral model was developed to achieve quantitative fracture network inversion with less than 12% error, attaining 10 m spatial resolution and dynamic updates every 10 min (80% faster than conventional methods). Optimal engineering parameters were identified, including fluid intensity ranges of 25–30 m3/m for tight sandstone and 30–35 m3/m for shale, with particulate diverters achieving 93.1% diversion efficiency (significantly outperforming chemical diverters at 35%). Application in deep reservoirs maintained signal attenuation rates below 5% per kilometer. Theoretically, a nonlinear relationship model between fluid intensity and stimulated area was established, while practical implementation through real-time adjustments in 142 stages enhanced single-well production by 15–20% and reduced diverter costs, advancing the paradigm shift from empirical to scientific fracturing in unconventional reservoir development. Full article
Show Figures

Figure 1

24 pages, 14126 KB  
Article
Stress-Barrier-Responsive Diverting Fracturing: Thermo-Uniform Fracture Control for CO2-Stimulated CBM Recovery
by Huaibin Zhen, Ersi Gao, Shuguang Li, Tengze Ge, Kai Wei, Yulong Liu and Ao Wang
Processes 2025, 13(9), 2855; https://doi.org/10.3390/pr13092855 - 5 Sep 2025
Viewed by 404
Abstract
Chinese coalbed methane (CBM) reservoirs exhibit characteristically low recovery rates due to adsorbed gas dominance and “three-low” properties (low permeability, low pressure, and low saturation). CO2 thermal drive (CTD) technology addresses this challenge by leveraging dual mechanisms—thermal desorption and displacement to enhance [...] Read more.
Chinese coalbed methane (CBM) reservoirs exhibit characteristically low recovery rates due to adsorbed gas dominance and “three-low” properties (low permeability, low pressure, and low saturation). CO2 thermal drive (CTD) technology addresses this challenge by leveraging dual mechanisms—thermal desorption and displacement to enhance production; however, its effectiveness necessitates uniform fracture networks for temperature field homogeneity—a requirement unmet by conventional long-fracture fracturing. To bridge this gap, a coupled seepage–heat–stress–fracture model was developed, and the temperature field evolution during CTD in coal under non-uniform fracture networks was determined. Integrating multi-cluster fracture propagation with stress barrier and intra-stage stress differential characteristics, a stress-barrier-responsive diverting fracturing technology meeting CTD requirements was established. Results demonstrate that high in situ stress and significant stress differentials induce asymmetric fracture propagation, generating detrimental CO2 channeling pathways and localized temperature cold islands that drastically reduce CTD efficiency. Further examination of multi-cluster fracture dynamics identifies stress shadow effects and intra-stage stress differentials as primary controlling factors. To overcome these constraints, an innovative fracture network uniformity control technique is proposed, leveraging synergistic interactions between diverting parameters and stress barriers through precise particle size gradation (16–18 mm targeting toe obstruction versus 19–21 mm sealing heel), optimized pumping displacements modulation (6 m3/min enhancing heel efficiency contrasted with 10 m3/min improving toe coverage), and calibrated diverting concentrations (34.6–46.2% ensuring uniform cluster intake). This methodology incorporates dynamic intra-stage adjustments where large-particle/low-rate combinations suppress toe flow in heel-dominant high-stress zones, small-particle/high-rate approaches control heel migration in toe-dominant high-stress zones, and elevated concentrations (57.7–69.2%) activate mid-cluster fractures in central high-stress zones—collectively establishing a tailored framework that facilitates precise flow regulation, enhances thermal conformance, and achieves dual thermal conduction and adsorption displacement objectives for CTD applications. Full article
(This article belongs to the Special Issue Coalbed Methane Development Process)
Show Figures

Figure 1

21 pages, 4313 KB  
Article
Optimization and Practice of Deep Carbonate Gas Reservoir Acidizing Technology in the Sinian System Formation of Sichuan Basin
by Song Li, Jian Yang, Weihua Chen, Zhouyang Wang, Hongming Fang, Yang Wang and Xiong Zhang
Processes 2025, 13(8), 2591; https://doi.org/10.3390/pr13082591 - 16 Aug 2025
Cited by 1 | Viewed by 431
Abstract
The gas reservoir of the Sinian Dengying Formation (Member 4) in Sichuan Basin exhibits extensive development of inter-clast dissolution pores and vugs within its carbonate reservoirs, characterized by low porosity (average 3.21%) and low permeability (average 2.19 mD). With the progressive development of [...] Read more.
The gas reservoir of the Sinian Dengying Formation (Member 4) in Sichuan Basin exhibits extensive development of inter-clast dissolution pores and vugs within its carbonate reservoirs, characterized by low porosity (average 3.21%) and low permeability (average 2.19 mD). With the progressive development of the Moxi (MX)structure, the existing stimulation techniques require further optimization based on the specific geological characteristics of these reservoirs. Through large-scale true tri-axial physical simulation experiments, this study systematically evaluated the performance of three principal acid systems in reservoir stimulation: (1) Self-generating acid systems, which enhance etching through the thermal decomposition of ester precursors to provide sustained reactive capabilities. (2) Gelled acid systems, characterized by high viscosity and effectiveness in reducing breakdown pressure (18~35% lower than conventional systems), are ideal for generating complex fracture networks. (3) Diverting acid systems, designed to improve fracture branching density by managing fluid flow heterogeneity. This study emphasizes hybrid acid combinations, particularly self-generating acid prepad coupled with gelled acid systems, to leverage their synergistic advantages. Field trials implementing these optimized systems revealed that conventional guar-based fracturing fluids demonstrated 40% higher breakdown pressures compared to acid systems, rendering hydraulic fracturing unsuitable for MX reservoirs. Comparative analysis confirmed gelled acid’s superiority over diverting acid in tensile strength reduction and fracture network complexity. Field implementations using reservoir-quality-adaptive strategies—gelled acid fracturing for main reservoir sections and integrated self-generating acid prepad + gelled acid systems for marginal zones—demonstrated the technical superiority of the hybrid system under MX reservoir conditions. This optimized protocol enhanced fracture length by 28% and stimulated reservoir volume by 36%, achieving a 36% single-well production increase. The technical framework provides an engineered solution for productivity enhancement in deep carbonate gas reservoirs within the G-M structural domain, with particular efficacy for reservoirs featuring dual low-porosity and low-permeability characteristics. Full article
Show Figures

Figure 1

18 pages, 3541 KB  
Article
Construction and Application of a Quantitative Perforation Erosion Model Based on Field Experiments
by Bo Wang, Huan Li, Enyu Zhang, Jinglong Ma, Zichen Shang and Xiongfei Liu
Materials 2025, 18(11), 2507; https://doi.org/10.3390/ma18112507 - 26 May 2025
Viewed by 519
Abstract
Perforation erosion is one of the critical factors influencing the effectiveness of hydraulic fracturing and the productivity of oil and gas wells. This study developed a mathematical model for perforation erosion based on the field experimental data and theoretical analysis. This model comprehensively [...] Read more.
Perforation erosion is one of the critical factors influencing the effectiveness of hydraulic fracturing and the productivity of oil and gas wells. This study developed a mathematical model for perforation erosion based on the field experimental data and theoretical analysis. This model comprehensively considers the effects of the rate of change in perforation diameter and the flow coefficient. Through field experiments, the values of the perforation diameter correlation coefficient (α) and the flow coefficient correlation coefficient (β) were determined. The wear behavior of perforations under high-pressure sand-carrying fluid conditions was thoroughly investigated, and the primary factors influencing perforation erosion were systematically analyzed. The results indicate that perforation erosion under high-pressure sand-carrying fluid conditions undergoes two distinct stages: the roundness erosion stage, characterized by a sharp pressure drop (greater than 30%) and the diameter erosion stage, marked by a gradual pressure decline (less than 5%), ultimately forming a trumpet-shaped perforation channel. The study further revealed that larger proppants cause significantly severe erosion than smaller proppants, resulting in 18.19% greater perforation diameter enlargement. In comparison tests, ceramic proppants produced 16.87% more diameter expansion than quartz sand under identical erosion conditions. Innovatively, this study proposes a “limited entry and temporary plugging” synergistic composite process. The timing of temporary plugging and the selection criteria for diverter size were clarified and optimized by determining the critical perforation friction for limited-entry failure based on inter-cluster stress differences. Field applications demonstrate that the optimized approach reduces erosion rates by 35–50%, improves fracture uniformity to over 80%, and increases single-well productivity by 18–25%. This research provides a quantitative basis and practical guidance for optimizing fracturing operation parameters, offering significant insights for enhancing the efficiency and productivity of hydraulic fracturing in oil and gas wells. Full article
Show Figures

Figure 1

11 pages, 4558 KB  
Article
Multi-Parameter Experimental Investigation on the Characteristics of Acidizing Effectiveness in High-Temperature Carbonate Formation
by Zhiheng Zhao, Youcheng Zheng, Qiang Liu, Yan Zhang, Yong Tang and Yuan Xu
Processes 2024, 12(10), 2112; https://doi.org/10.3390/pr12102112 - 28 Sep 2024
Cited by 1 | Viewed by 964
Abstract
Carbonate formation is the key reservoir in Sichuan Basin for natural gas development. Compared with the early stage of development, the burial depth of targeted formation becomes deeper, and the formation temperature gets higher. So, the characteristics of acidizing effectiveness in high-temperature carbonate [...] Read more.
Carbonate formation is the key reservoir in Sichuan Basin for natural gas development. Compared with the early stage of development, the burial depth of targeted formation becomes deeper, and the formation temperature gets higher. So, the characteristics of acidizing effectiveness in high-temperature carbonate formations make this evaluation slightly difficult. Currently, it is common that a single parameter is considered to study acidizing effectiveness by simulation and experiment methods. In this paper, for a more accurate investigation of acidizing effectiveness, multiple parameters, including permeability change rate, fracture conductivity, and surface roughness, were introduced by a series of experiments. It is revealed that the permeability change rate is more than 57% when using gelled acid. As the amount of diverting agent increases in diverting acid, the viscosity of the acid grows to its peak with the reaction, making it easier to block the high permeability core temporarily and divert to acidify the low permeability core, where the permeability change rate of the low permeability core goes from 51.6% to 64.2%, which shows well acidizing effectiveness. In addition, the short-term and long-term conductivity of the samples from the three different formations are more than 200 mD∙m under high closure stress. The conductivity of Maokou Formation is the largest due to its high content of carbonate minerals and high dissolution rate. And the results of long-term conductivity are consistent with those of surface roughness, making the evaluation results more reliable for acidizing effectiveness. It is worth noting that temperature is a factor that cannot be ignored in the evaluation of acidizing effectiveness because it has a great influence on the performance of the acid system, such as viscosity and the reaction-reduced rate, leading to an acidizing effectiveness affect. So, the temperature resistance of an acid system is important as well. Full article
(This article belongs to the Section Chemical Processes and Systems)
Show Figures

Figure 1

19 pages, 10845 KB  
Article
Numerical Simulation of the Transport and Sealing Law of Temporary Plugging Particles in Complex Fractures of Carbonate-Type Thermal Storage
by Anle Tian, Guoqiang Fu, Jinyu Tang and Dezhao Wang
Energies 2024, 17(13), 3283; https://doi.org/10.3390/en17133283 - 4 Jul 2024
Cited by 4 | Viewed by 1251
Abstract
Geothermal energy plays a crucial role in the large-scale deep decarbonisation process and the transition of energy structure in our country. Due to the complex reservoir environment of geothermal energy, characterised by low porosity and permeability, conventional fracturing methods struggle to create a [...] Read more.
Geothermal energy plays a crucial role in the large-scale deep decarbonisation process and the transition of energy structure in our country. Due to the complex reservoir environment of geothermal energy, characterised by low porosity and permeability, conventional fracturing methods struggle to create a complex network of fractures. Temporary plugging and diverting fracturing technology (TPDF) is a key technology to improve the efficiency of geothermal reservoir extraction. However, there is still a lack of knowledge about the migration and sealing law of temporary plugging agents in complex fractures. Therefore, in this study, two multiphase flow models of temporary plugging particle transport at the fracture slit and inside the complex fracture were established by using a Computational Fluid Dynamics (CFD)-Discrete Element Method (DEM) algorithm. The influence of fracturing fluid concentration, temperature, the concentration of temporary plugging particles, and particle size combinations on migration blocking in fractures was investigated. The simulation results indicate the following: High-viscosity fracturing fluid may cause plugging particles to adhere to each other to form clusters of plugging particles, reducing dispersion during transport and slowing down the velocity of the plugging particles. A particle concentration that is too high does not have a better temporary plugging effect. The use of different combinations of particle sizes is significantly better than using a single particle size, which is a key factor for the success of fracture plugging. The research findings are of great theoretical and practical significance for scaled-up, vibration-controlled fracturing technology in geothermal reservoirs. Full article
(This article belongs to the Special Issue Development and Utilization in Geothermal Energy)
Show Figures

Figure 1

15 pages, 5824 KB  
Article
Utilizing X-ray Computed Tomography for Lithium Slag: A Guide to Analyzing Microstructure and Its Potential Influence on Liberation
by Thu Trang Võ, Thomas Leißner and Urs A. Peuker
Minerals 2024, 14(1), 42; https://doi.org/10.3390/min14010042 - 29 Dec 2023
Cited by 4 | Viewed by 2067
Abstract
Slag containing lithium aluminate is analyzed for its microstructure. This refers to the mineralogical composition, shape and size of the target and matrix phase, orientation of the target phase, and porosity. To investigate the microstructure of the target phase, a representative sample is [...] Read more.
Slag containing lithium aluminate is analyzed for its microstructure. This refers to the mineralogical composition, shape and size of the target and matrix phase, orientation of the target phase, and porosity. To investigate the microstructure of the target phase, a representative sample is taken from the block and measured using the XCT. With the help of the two- and three-dimensional analysis, an insight into the complex structure can be gained. The target phase, in this case, lithium aluminate, has a dendritic structure with different orientations and thus also influences the microstructure of the matrix phase. This is composed of a mix of several minerals and amorphous components. Fine pores with a radius of 10–100 µm are found throughout the sample volume. The fracture behavior of the slag is estimated on the basis of the influencing factors that can initiate fracture in brittle materials or divert the path of the fracture. Since the mineralogical and thus also mechanical properties of the slag can be influenced by its production process, suggestions are given as to how slags should be structured in order to ensure a non-random fracture, which is required for the efficient liberation of the target phase in mechanical processing. Full article
Show Figures

Figure 1

14 pages, 3880 KB  
Article
Quantitative Investigation of Fracture Apertures during Temporary Plugging and Diverting Fracturing
by Yubin Wang, Baojiang Sun, Tianju Wang, Zhiwei Hao and Bo Wang
Sustainability 2023, 15(20), 14664; https://doi.org/10.3390/su152014664 - 10 Oct 2023
Cited by 3 | Viewed by 1583
Abstract
Oil and gas resources are closely related to daily life and are an important support for the economy of a city or even a country. Hydraulic fracturing is an indispensable technique to economically develop oil and gas resources through creating complex fractures. Temporary [...] Read more.
Oil and gas resources are closely related to daily life and are an important support for the economy of a city or even a country. Hydraulic fracturing is an indispensable technique to economically develop oil and gas resources through creating complex fractures. Temporary plugging and diverting fracturing (TPDF) can generate diversion fractures perpendicular to the initial fractures and enhance the stimulated area. The aperture of the diversion fractures determines its conductivity and the oil/gas production. However, it is difficult to evaluate the aperture of the diversion fracture due to the complex physical process of hydraulic fracturing. This work established a fluid–solid fully coupled simulation model to investigate the fracture aperture influenced by various factors during TPDF. The model can simulate the propagation of the initial fracture and the diversion fracture. Various factors include the tight plug’s permeability, the tight plug’s length, Young’s modulus, rock tensile strength, in situ stress contrast, the leak-off coefficient of the fracture surface, and fluid injection rate. The results show that the aperture of the previous fracture can be enlarged, and the aperture of the diversion fracture can be decreased by the tight plug. The aperture at the diversion fracture mouth is much smaller than that along the diversion fracture. Reservoirs with low Young’s modulus values and high rock tensile strength can generate the diversion fracture with a wider aperture. Moreover, increasing the fluid injection rate can effectively increase the fracture mouth aperture. In this way, the risk of screenout can be lowered. This work is beneficial for the design of the TPDF and ensures safe construction. Full article
(This article belongs to the Special Issue Numerical Analysis of Rock Mechanics and Crack Propagation)
Show Figures

Figure 1

11 pages, 2172 KB  
Article
Temporary Plugging Agent Evaluation Technology and Its Applications in Shale Reservoirs in the Sichuan Basin
by Liang Wang, Jian Yang, Junliang Peng, Huifen Han, Yang Wang and Zefei Lv
Processes 2023, 11(9), 2799; https://doi.org/10.3390/pr11092799 - 20 Sep 2023
Cited by 9 | Viewed by 1662
Abstract
Shale oil reservoirs in the Daanzhai section of central Sichuan are mainly developed in the Daer subsection, with a rich resource base and great exploration and development potential. However, the shale oil reservoir is characterized by shale and limestone interactions, poor physical properties, [...] Read more.
Shale oil reservoirs in the Daanzhai section of central Sichuan are mainly developed in the Daer subsection, with a rich resource base and great exploration and development potential. However, the shale oil reservoir is characterized by shale and limestone interactions, poor physical properties, undeveloped fractures, and large differences in the fracture pressure of interactive reservoirs. Therefore, it is necessary to use temporary plugging and diverting fracturing technology to improve the complexity of fractures in reservoir reconstruction. To this end, an experimental device was innovatively established that takes into account the morphology of fractures and the permeability of reservoirs, and it can evaluate the temporary blocks and turns within third-level fractures in a reservoir. It can simulate third-level turning fractures under conditions involving 3–15 mm crack openings and different roughness values. Using this device and method, the combination and particle-size optimization experiments involving the temporary plugging agents used in the field were carried out, and the field tests were carried out in Well Long’an 1 and Well Ren’an 1 in the Sichuan Basin. The test results show that the pressure response after temporary plugging is obvious, which can significantly improve microseismic event points and increase the reservoir’s reconstruction volume. Compared with Well Nanchong 2H, the length in kilometers of the SRV after tackling key problems increases from 3918 × 104 m3 to 4578 × 104 m3, an increase of 17%. The average crack length increased from 265 m to 321 m, an increase of 21%, achieving a significant breakthrough in the “oil production gap”. Full article
Show Figures

Figure 1

16 pages, 7266 KB  
Article
Evaluation of Self-Degradation and Plugging Performance of Temperature-Controlled Degradable Polymer Temporary Plugging Agent
by Hualei Xu, Liangjun Zhang, Jie Wang and Houshun Jiang
Polymers 2023, 15(18), 3732; https://doi.org/10.3390/polym15183732 - 11 Sep 2023
Cited by 9 | Viewed by 1979
Abstract
Temporary plugging diversion fracturing (TPDF) technology has been widely used in various oil fields for repeated reconstruction of high-water-cut old oil wells and horizontal well reservoir reconstruction. Previous studies have carried out in-depth study on the pressure-bearing law and placement morphology of different [...] Read more.
Temporary plugging diversion fracturing (TPDF) technology has been widely used in various oil fields for repeated reconstruction of high-water-cut old oil wells and horizontal well reservoir reconstruction. Previous studies have carried out in-depth study on the pressure-bearing law and placement morphology of different types of temporary plugging agents (TPAs) in fractures, but there are relatively few studies on TPA accumulation body permeability. To solve this problem, an experimental device for evaluating the TPA performance with adjustable fracture pores is proposed in this paper. Based on the test of fracturing fluid breaking time and residue content, the low damage of fracturing fluid to the reservoir is determined. The TPA degradation performance test determines whether the TPA causes damage to the hydraulic fracture after the temporary plugging fracturing. Finally, by testing the TPA pressure-bearing capacity and the temporary plugging aggregation body permeability, the plugging performance and the aggregation body permeability are determined. The results show the following: (1) Guar gum fracturing fluid shows good gel-breaking performance under the action of breaking agent, and the recommended concentration of breaking agent is 300 ppm. At 90~120 °C, the degradation rate of the three types of TPAs can reach more than 65%, and it can be effectively carried into the wellbore during the fracturing fluid flowback stage to achieve the effect of removing the TPA in the fracture. (2) The results of the pressure-bearing performance of the TPA show that the two kinds of TPAs can quickly achieve the plugging effect after plugging start: the effect of ZD-2 (poly lactic-co-glycolic acid (PLGA)) particle-and-powder combined TPA on forming an effective temporary plugging accumulation body in fractures is better than that of ZD-1 (PLGA) pure powder. There are large pores between the particles, and the fracturing fluid can still flow through the pores, so the ZD-3 (a mixture of lactide and PLGA) granular temporary plugging agent cannot form an effective plugging. (3) The law of length of the temporary plugging accumulation body shows that the ZD-2 combined TPA has stronger plugging ability for medium-aperture simulated fracture pores, while the ZD-1 powder TPA has stronger plugging ability for small aperture simulated fracture pores, and the ZD-3 granular TPA should be avoided alone as far as possible. This study further enriches and improves the understanding of the mechanism of temporary plugging diverting fracturing fluid. Full article
(This article belongs to the Special Issue Preparation and Applications of Biodegradable Polymer Materials)
Show Figures

Figure 1

17 pages, 6566 KB  
Article
Investigation of Mechanical Properties Evolution and Crack Initiation Mechanisms of Deep Carbonate Rocks Affected by Acid Erosion
by Weihua Chen, Jian Yang, Li Li, Hancheng Wang, Lei Huang, Yucheng Jia, Qiuyun Hu, Xingwen Jiang and Jizhou Tang
Sustainability 2023, 15(15), 11807; https://doi.org/10.3390/su151511807 - 1 Aug 2023
Cited by 6 | Viewed by 1822
Abstract
Deep tight-gas carbonate reservoirs have huge reserves, with the advantages of having clean and low-carbon characteristics in addition to being a sustainable and stable supply which leads to very high-quality green energy, despite its difficult extraction. The reservoirs are usually modified using acid [...] Read more.
Deep tight-gas carbonate reservoirs have huge reserves, with the advantages of having clean and low-carbon characteristics in addition to being a sustainable and stable supply which leads to very high-quality green energy, despite its difficult extraction. The reservoirs are usually modified using acid fracturing before exploitation, but due to acid erosion, the continuous alteration of the mechanical properties of the reservoir rocks complicates the process of predicting the crack initiation pressure. This paper aims to address the difficulties in predicting the crack initiation pressure by conducting a series of acid-etching experiments on carbonate rock samples subjected to splitting and uniaxial compression tests. By examining the variations in the elastic modulus, Poisson’s ratio, tensile strength under distinct acid systems, and acid-etching durations and temperatures, a quantified mathematical model was developed. This model was integrated into a fracture-initiation pressure prediction framework, resulting in a practical and user-friendly tool for the acid fracture-initiation pressure prediction model, which was further demonstrated through field engineering validation. The findings reveal that the elastic modulus, Poisson’s ratio, and tensile strength of carbonate rocks exhibit an inverse relationship with acid-etching time and temperature. Extended acid fracturing durations and high reservoir temperatures are conducive to acid-fracturing transformations. The fracture-initiation pressure-prediction-model analysis disclosed that, compared to the gelled acid, the diverting acid demonstrates a more pronounced reduction in the reservoir fracture pressure under high-temperature and short-duration conditions. An acid system preference diagram was constructed to provide a theoretical foundation for practical engineering applications, delivering valuable insights for optimizing acid fracturing treatments in carbonate reservoirs to provide a boost for the green energy extraction of tight gas. Full article
Show Figures

Figure 1

19 pages, 13454 KB  
Article
Evaluation of Overshunting between Low and Medium Pressure Ventriculoperitoneal Shunts in Dogs with Severe Hydrocephalus Using Frameless Stereotactic Ventricular Shunt Placement
by Kanokwan Keadwut, Pakthorn Lewchalermwong, Nathanat Inpithuk, Piyathip Choochalermporn, Ananya Pongpradit, Nattika Koatsang and Nirut Suwanna
Animals 2023, 13(12), 1890; https://doi.org/10.3390/ani13121890 - 6 Jun 2023
Cited by 2 | Viewed by 7012
Abstract
Hydrocephalus is a neurological disorder characterized by an abnormal accumulation of cerebrospinal fluid (CSF) within the ventricular system of the brain, leading to cerebral ventricular dilation, brain parenchyma compression, and neuronal cell loss. Surgery is an effective method of draining excessive amounts of [...] Read more.
Hydrocephalus is a neurological disorder characterized by an abnormal accumulation of cerebrospinal fluid (CSF) within the ventricular system of the brain, leading to cerebral ventricular dilation, brain parenchyma compression, and neuronal cell loss. Surgery is an effective method of draining excessive amounts of CSF. Ventriculoperitoneal shunt (VPS) allows excess CSF to divert into the abdomen; this device is the most commonly used in the treatment of hydrocephalus both in veterinary and human patients. This study aims to describe the application of two types of VPS, low-pressure valve and medium-pressure valve, using a frameless stereotactic neuronavigational system in eight severe hydrocephalus in dogs and, in particular, analyze the prevalence of postoperative overshunting. Non-communicating hydrocephalus was found in seven dogs, whereas the rest of them had communicating hydrocephalus caused by traumatic brain injury with a skull fracture. The criteria for pressure valve selection depended on the intraoperative intraventricular pressure (IVP) that was determined by the adaptive manometer, according to the human protocol. Low-pressure valve placement was performed in five dogs, and the others received medium-pressure valve placement. The follow-up period was 2 weeks, 4–12 weeks, and 12 weeks to 12 months. Pre- and postoperative information including neurological signs, CT-Scan or MRI, medical treatment, complications, and ventricular volume were compared in all dogs. Seven dogs showed neurological improvement within 2 weeks after surgery. Overshunting was seen in four dogs who received low-pressure valve placement. Three of them had shunt infections within 4 to 6 weeks after surgery. One dog underwent shunt revision from a low-pressure valve to a medium-pressure valve caused by severe overshunting and progressive neurological signs. In addition, cognitive and learning improvements were evaluated based on the owners’ feedback, and neurological signs were examined during the follow-up period in two dogs that received low-pressure valve placement. We conclude that a medium-pressure valve is recommended for overshunting prevention. However, low-pressure valve placement seems to improve cognitive function and learning ability, which is related to an increase in the brain parenchyma observed during long-term monitoring. Moreover, we also report our experience and surgical procedure for frameless stereotactic ventricular shunt placement (FSVSP) in VPS surgery in dogs affected by hydrocephalus. Full article
(This article belongs to the Section Companion Animals)
Show Figures

Figure 1

16 pages, 6115 KB  
Article
Numerical Simulation Research on the Effect of Artificial Barrier Properties on Fracture Height
by Jian Zou, Ying Zhang, Liping Zhang, Jiyun Jing, Yangyang Fu, Yunjin Wang, Guchang Zhang and Fujian Zhou
Processes 2023, 11(2), 310; https://doi.org/10.3390/pr11020310 - 17 Jan 2023
Cited by 7 | Viewed by 1920
Abstract
Hydraulic fracturing is an important measurement for the stimulation of oil and gas wells and is widely used in the development of low-permeability and ultra-low-permeability reservoirs. However, fractures can pass through barriers with poor properties during fracturing, resulting in fractures that do not [...] Read more.
Hydraulic fracturing is an important measurement for the stimulation of oil and gas wells and is widely used in the development of low-permeability and ultra-low-permeability reservoirs. However, fractures can pass through barriers with poor properties during fracturing, resulting in fractures that do not reach the pre-designed length. In a worse situation, it is possible to communicate with the water layer and cause sudden water flooding, resulting in the failure of the fracturing construction. In order to improve the efficiency of fracturing construction, an effective way to control the height of fractures is by laying diverting agents to form artificial barriers. In this study, we established a three-dimensional numerical calculation model of fracture propagation, considering artificial barriers in the finite element analysis framework; the fracture propagation is governed by a cohesive zone model. The influence of artificial barriers with different Young’s modulus and different permeability on the fracture height was simulated and calculated. Different fracture geometries under different pumping injection rates were also considered. The simulation results show that the smaller the Young’s modulus of the artificial barrier, the smaller the extension in the direction of the fracture height: when its Young’s modulus is 28 GPa, the half fracture height is about 25 m, while when Young’s modulus increases to 36 GPa, the half fracture height increases by about 10m. When the fracture does not penetrate the artificial barrier area, the larger the Young’s modulus, the smaller the fracture width and the larger the fracture height. With the change in the permeability of the artificial barrier, the change in the fracture width direction of the fracturing fracture is only about 0.5 m, but the inhibition on the fracture height direction is more obvious; in the case of maximum permeability and minimum permeability, the fracture height change is 10 m. The influence of pumping injection rates on the width and height of the fracture is obvious: with the increase in the pumping rates, both the height and width of the fractures increase. However, when the pumping rate increases from 0.12 m3/s to 0.14 m3/s, the change in the direction of fracture height is no longer significant, and the increase is only 0.6 m. This study investigates the role of artificial barrier properties and pumping rates in controlling fracture height extension, clarifies the feasibility of artificial barriers to control fracture height technology, and provides guidance for the selection of diverting agents and the determination of the pumping rate in the process of fracturing construction. Full article
Show Figures

Figure 1

17 pages, 40670 KB  
Article
Insight into the Effect of Natural Fracture Density in a Shale Reservoir on Hydraulic Fracture Propagation: Physical Model Testing
by Jihuan Wu, Xuguang Li and Yu Wang
Energies 2023, 16(2), 612; https://doi.org/10.3390/en16020612 - 4 Jan 2023
Cited by 8 | Viewed by 2262
Abstract
Here, laboratory tests were conducted to examine the effects of natural fracture density (NFD) on the propagation of hydraulic fracture (HF), HF and natural fracture (NF) interaction, and the formation of the stimulated reservoir volume (SRV). Laboratory methods were proposed to prepare samples [...] Read more.
Here, laboratory tests were conducted to examine the effects of natural fracture density (NFD) on the propagation of hydraulic fracture (HF), HF and natural fracture (NF) interaction, and the formation of the stimulated reservoir volume (SRV). Laboratory methods were proposed to prepare samples with dense, medium and spare discrete orthogonal fracture networks. After conducting a true triaxial hydraulic fracturing experiment on the synthetic blocks, the experimental results were analyzed by qualitative failure morphology descriptions, and the quantitative analysis used two proposed new indices. On the pump pressure profiles, it reflected the non-linear interactions between HFs and NFs well. For rock blocks with a dense DFN density, pump pressure curves present fluctuation shape and the degree of interaction between HF and NF is strong; however, for model blocks with a sparse DFN density, the pump pressure curves present a sudden drop shape. In addition, different propagation behaviors of NFs—offset, divert, branch, and cross NF—can be observed from the fractured model blocks. By using a proposed index of “P-SRV”, the relationship between NFD and the fracturing effectiveness was further confirmed. Furthermore, the most striking finding is that mixed mode I–II and I–III fracture types can be formed in the naturally fractured model blocks. The experimental results are beneficial for grasping the influential mechanism of NFD on the propagation of HF and for developing more accurate and full 3D-coupled simulation models for unconventional oil and gas development. Full article
(This article belongs to the Special Issue Fracture Mechanics and Energy Geo-Structures)
Show Figures

Figure 1

Back to TopTop