Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (331)

Search Parameters:
Keywords = divergence angle

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 6865 KiB  
Article
The Impact of Riblet Walls on the Structure of Liquid–Solid Two-Phase Turbulent Flow: Streak Structures and Burst Events
by Yuchen Zhao, Jiao Sun, Nan Jiang, Jingyu Niu, Jinghang Yang, Haoyang Li, Xiaolong Wang and Pengda Yuan
Appl. Sci. 2025, 15(14), 7977; https://doi.org/10.3390/app15147977 - 17 Jul 2025
Abstract
This study employs Particle Image Velocimetry (PIV) technology to investigate the statistical properties and flow structures of the turbulent boundary layer over smooth walls and riblet walls with yaw angles of 0, ±30° in both clear water and liquid–solid two-phase flow fields. The [...] Read more.
This study employs Particle Image Velocimetry (PIV) technology to investigate the statistical properties and flow structures of the turbulent boundary layer over smooth walls and riblet walls with yaw angles of 0, ±30° in both clear water and liquid–solid two-phase flow fields. The results indicate that, compared to the smooth wall, streamwise riblet walls and 30° divergent riblet walls can reduce the boundary layer thickness, wall friction force, comprehensive turbulence intensity, and Reynolds stress, with the divergent riblet wall being more effective. In contrast, convergent riblet walls have the opposite effect. The addition of particles leads to an increase in boundary layer thickness and a reduction in wall friction resistance, primarily by reducing turbulence fluctuations and Reynolds stress in the logarithmic region of the turbulent boundary layer. Moreover, the two types of drag-reduction riblet walls can decrease the energy content ratio of near-wall streak structures and suppress their motion in the spanwise direction. Their impact on burst events is mainly characterized by a reduction in the number of ejection events and their contribution to Reynolds shear stress. In comparison, convergent riblet walls have the complete opposite effect and also enhance the intensity of burst events. The addition of particles can fragment streak structures and suppress the intensity and number of burst events, acting similarly on drag-reduction riblet walls and further strengthening their drag reduction characteristics. Full article
Show Figures

Figure 1

30 pages, 4907 KiB  
Article
Integrated Assessment Methodology for Jack-Up Stability: Centrifuge Test of Entire Four-Legged Model for WTIVs
by Mingsheng Xiahou, Zhiyuan Wei, Yilin Wang, Deqing Yang, Jian Chi and Shuxiang Liu
Appl. Sci. 2025, 15(14), 7971; https://doi.org/10.3390/app15147971 - 17 Jul 2025
Abstract
Although wind turbine installation vessels (WTIVs) are increasingly operating in deepwater complex geological areas with larger scales, systematic research on and experimental validation of platform jack-up stability remain insufficient. This study aimed to establish a comprehensive evaluation framework encompassing penetration depth, anti-overturning/sliding stability, [...] Read more.
Although wind turbine installation vessels (WTIVs) are increasingly operating in deepwater complex geological areas with larger scales, systematic research on and experimental validation of platform jack-up stability remain insufficient. This study aimed to establish a comprehensive evaluation framework encompassing penetration depth, anti-overturning/sliding stability, and punch-through risk, thereby filling the gap in holistic platform stability analysis. An entire four-legged centrifuge test at 150× g was integrated with coupled Eulerian–Lagrangian (CEL) numerical simulations and theoretical methods to systematically investigate spudcan penetration mechanisms and global sliding/overturning evolution in clay/sand. The key findings reveal that soil properties critically influence penetration resistance and platform stability: Sand exhibited a six-times-higher ultimate bearing capacity than clay, yet its failure zone was 42% smaller. The sliding resistance in sand was 2–5 times greater than in clay, while the overturning behavior diverged significantly. Although the horizontal loads in clay were only 50% of those in sand, the tilt angles at equivalent sliding distances reached 8–10 times higher. Field validation at Guangdong Lemen Wind Farm confirmed the method’s reliability: penetration prediction errors of <5% and soil backflow/plugging effects were identified as critical control factors for punch-through risk assessment. Notably, the overturning safety factors for crane operation at 90° outreach and storm survival were equivalent, indicating operational load combinations dominate overturning risks. These results provide a theoretical and decision-making basis for the safe operation of large WTIVs, particularly applicable to engineering practices in complex stratified seabed areas. Full article
(This article belongs to the Section Marine Science and Engineering)
11 pages, 7216 KiB  
Article
Low-Finesse Fabry–Perot Cavity Design Based on a Reflective Sphere
by Ju Wang, Ye Gao, Jinlong Yu, Hao Luo, Xuemin Su, Xu Han, Yang Gao, Ben Cai and Chuang Ma
Photonics 2025, 12(7), 723; https://doi.org/10.3390/photonics12070723 - 17 Jul 2025
Abstract
Low-finesse Fabry–Perot (F–P) cavities, widely applied in the field of micro-displacement measurement, offer significant advantages in reducing the influence of higher-order reflections and improving the accuracy of measurement systems. Generally, an F–P cavity finesse of 0.5 is required to achieve high-precision micro-displacement measurements. [...] Read more.
Low-finesse Fabry–Perot (F–P) cavities, widely applied in the field of micro-displacement measurement, offer significant advantages in reducing the influence of higher-order reflections and improving the accuracy of measurement systems. Generally, an F–P cavity finesse of 0.5 is required to achieve high-precision micro-displacement measurements. However, in optical design, low-finesse cavities impose strict requirements on reflectivity, and maintaining fine stability during cavity movement is challenging. Achieving ideal orthogonal interference with a finesse of 0.5 thus presents considerable difficulties. This study proposes a novel low-finesse F–P cavity design that employs a high-reflectivity spherical reflector and the end face of a fiber collimator as the reflective surfaces of the cavity. By utilizing beam divergence characteristics and geometric parameters, a structure with a finesse of approximately 0.5 is quantitatively designed, enabling a simplified implementation without the need for angular alignment. Compared with conventional approaches, this method eliminates the need for precise angular alignment of the reflective surfaces, significantly simplifying implementation. The experimental results show that, under fixed receiving field angles and beam radii of the fiber collimators, ideal orthogonal interference can be achieved by selecting the radius of the reflective sphere. Under varying working distances, the average finesse values of the interference spectra measured by Collimators 1 and 2 are 0.496 and 0.502, respectively, both close to the theoretical design value of 0.5, thereby meeting the design requirements. Full article
(This article belongs to the Section Optical Communication and Network)
Show Figures

Figure 1

27 pages, 11290 KiB  
Article
Experimental Study on Compressive Capacity Behavior of Helical Anchors in Aeolian Sand and Optimization of Design Methods
by Qingsheng Chen, Wei Liu, Linhe Li, Yijin Wu, Yi Zhang, Songzhao Qu, Yue Zhang, Fei Liu and Yonghua Guo
Buildings 2025, 15(14), 2480; https://doi.org/10.3390/buildings15142480 - 15 Jul 2025
Viewed by 125
Abstract
The compressive capacity of helical anchors constitutes a pivotal performance parameter in geotechnical design. To precisely predict the compressive bearing behavior of helical anchors in aeolian sand, this study integrates in situ testing with finite element numerical analysis to systematically elucidate the non-linear [...] Read more.
The compressive capacity of helical anchors constitutes a pivotal performance parameter in geotechnical design. To precisely predict the compressive bearing behavior of helical anchors in aeolian sand, this study integrates in situ testing with finite element numerical analysis to systematically elucidate the non-linear evolution of its load-bearing mechanisms. The XGBoost algorithm enabled the rigorous quantification of the governing geometric features of compressive capacity, culminating in a computational framework for the bearing capacity factor (Nq) and lateral earth pressure coefficient (Ku). The research findings demonstrate the following: (1) Compressive capacity exhibits significant enhancement with increasing helix diameter yet displays limited sensitivity to helix number. (2) Load–displacement curves progress through three distinct phases—initial quasi-linear, intermediate non-linear, and terminal quasi-linear stages—under escalating pressure. (3) At embedment depths of H < 5D, tensile capacity diminishes by approximately 80% relative to compressive capacity, manifesting as characteristic shallow anchor failure patterns. (4) When H ≥ 5D, stress redistribution transitions from bowl-shaped to elliptical contours, with ≤10% divergence between uplift/compressive capacities, establishing 5D as the critical threshold defining shallow versus deep anchor behavior. (5) The helix spacing ratio (S/D) governs the failure mode transition, where cylindrical shear (CS) dominates at S/D ≤ 4, while individual bearing (IB) prevails at S/D > 4. (6) XGBoost feature importance analysis confirms internal friction angle, helix diameter, and embedment depth as the three parameters exerting the most pronounced influence on capacity. (7) The proposed computational models for Nq and Ku demonstrate exceptional concordance with numerical simulations (mean deviation = 1.03, variance = 0.012). These outcomes provide both theoretical foundations and practical methodologies for helical anchor engineering in aeolian sand environments. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

32 pages, 8856 KiB  
Article
Effect of Angle Between Center-Mounted Blades and Disc on Particle Trajectory Correction in Side-Throwing Centrifugal Spreaders
by Yongtao Xie, Hongxin Liu, Jiajie Shang, Lifeng Guo and Guoxiang Zheng
Agriculture 2025, 15(13), 1392; https://doi.org/10.3390/agriculture15131392 - 28 Jun 2025
Viewed by 177
Abstract
This study investigated the effect of the angle between the blade and the inclined disc on particle trajectory correction during ejection from an organic fertilizer side-throwing device. Using the inclined disc device as the test subject, a blade-based coordinate system was established to [...] Read more.
This study investigated the effect of the angle between the blade and the inclined disc on particle trajectory correction during ejection from an organic fertilizer side-throwing device. Using the inclined disc device as the test subject, a blade-based coordinate system was established to model the complex relative particle motion under combined disc and blade inclination. Particle dynamics and blade forces were analyzed quadrantally, enabling the development of a mechanical model and the derivation of displacement equations. Numerical simulation, virtual simulation, and experimental testing yielded the following results: Under the current device parameters, the relative velocity between particles and the blade reaches its maximum when the angle between the blade and the inclined disc is 80°. Within the angle range from 65° to 85°, as the angle increases, the scattering angle of single-sided discs monotonically decreases, while that of dual-sided discs monotonously increases. At an angle of 65°, the trajectories of the dual-sided disc flows tend to converge. At 80°, the flow is at the critical point between convergence and divergence. The effective throwing distance first increases and then decreases, reaching a maximum at an angle of 80°. This study clarifies the relationship between the angle correction of blade–disc inclination and particle velocity and trajectory on the blade, providing a reliable mathematical model and simulation method for similar studies in the field of inclined disc centrifugal material ejection. Full article
Show Figures

Figure 1

16 pages, 4815 KiB  
Article
Minimum Audible Angle in 3rd-Order Ambisonics in Horizontal Plane for Different Ambisonic Decoders
by Katarzyna Sochaczewska, Karolina Prawda, Paweł Małecki, Magdalena Piotrowska and Jerzy Wiciak
Appl. Sci. 2025, 15(12), 6815; https://doi.org/10.3390/app15126815 - 17 Jun 2025
Viewed by 270
Abstract
As immersive audio is gaining popularity, the perceptual aspects of spatial sound reproduction become relevant. The authors investigate a measure related to spatial resolution, the Minimum Audible Angle (MAA), which is understudied in the context of Ambisonics. This study examines MAA thresholds in [...] Read more.
As immersive audio is gaining popularity, the perceptual aspects of spatial sound reproduction become relevant. The authors investigate a measure related to spatial resolution, the Minimum Audible Angle (MAA), which is understudied in the context of Ambisonics. This study examines MAA thresholds in the horizontal plane in three ambisonic decoders—the Sample Ambisonic Decoder (SAD), Energy-Preserving Ambisonic Decoder (EPAD), and All-Round Ambisonic Decoder (AllRAD). The results demonstrate that the decoder type influences spatial resolution, with the EPAD exhibiting superior performance in MAA thresholds (1.24 at 0 azimuth) compared to the SAD and AllRAD. These differences reflect the discrepancies in the decoders’ energy vector distribution and angular error. The MAA values remain consistent between decoders up to 30 azimuth but diverge significantly beyond this range, especially in the 60135 region corresponding to the cone of confusion. The findings of this study provide valuable insights for spatial audio applications based on ambisonic technology. Full article
(This article belongs to the Special Issue Musical Acoustics and Sound Perception)
Show Figures

Figure 1

13 pages, 1791 KiB  
Article
Research on the SSUKF Integrated Navigation Algorithm Based on Adaptive Factors
by Zhongliang Deng, Yanlin Zhang and Yanbiao Gao
Appl. Sci. 2025, 15(12), 6778; https://doi.org/10.3390/app15126778 - 16 Jun 2025
Viewed by 345
Abstract
In complex environments, the application of traditional Kalman Filtering in GNSS/INS integrated navigation systems often encounters challenges such as filter divergence and accuracy degradation. This paper introduces the technique of Simplified Spherical Unscented Kalman Filtering (SSUKF) and, based on this, proposes an Adaptive [...] Read more.
In complex environments, the application of traditional Kalman Filtering in GNSS/INS integrated navigation systems often encounters challenges such as filter divergence and accuracy degradation. This paper introduces the technique of Simplified Spherical Unscented Kalman Filtering (SSUKF) and, based on this, proposes an Adaptive Simplified Spherical Unscented Kalman Filtering (ASSUKF) integrated navigation method. This approach, built upon SSUKF, incorporates an adaptive filter that effectively utilizes residuals and innovation sequences to mitigate the divergence phenomenon during the filtering process. Furthermore, the system is capable of online estimation and dynamic adjustment of the statistical characteristics of measurement noise, leading to more accurate state estimation and significantly enhancing the adaptive capability of SSUKF. ASSUKF improves position accuracy in the latitude direction by 18.10% and in the longitude direction by 20.6%. For attitude error, ASSUKF performs exceptionally well. Specifically, the pitch angle error improves by 27.6% compared to UKF and by 27.1% compared to SSUKF. The roll angle error improves by 29.9% compared to UKF and by 20.1% compared to SSUKF. The heading angle error improves by 24.3% compared to SSUKF, validating the method’s substantial advantages in improving system accuracy and robustness, demonstrating its effectiveness and potential in complex environments. Full article
Show Figures

Figure 1

19 pages, 6633 KiB  
Article
The Design and Testing of a Cross-Scale Compliant Rotary Actuator with Minimum Actuation Redundancy and Sub-Microradian Resolution
by Yingjie Jia, Jinyuan Cao, Zhishen Liao, Wei Wu, Hui Tang, Yanling Tian and Yuzhang Wei
Actuators 2025, 14(6), 284; https://doi.org/10.3390/act14060284 - 10 Jun 2025
Viewed by 764
Abstract
Solving the common paradoxical problem between sub-micro-arc level resolution and a wide range of rotation angles in rotary actuators, this paper designs a single-drive compliant rotary mechanism (CRM) and develops a cross-scale compliant rotary actuator (CCRA). Specially, the proposed CRM employs a single-input–four-output [...] Read more.
Solving the common paradoxical problem between sub-micro-arc level resolution and a wide range of rotation angles in rotary actuators, this paper designs a single-drive compliant rotary mechanism (CRM) and develops a cross-scale compliant rotary actuator (CCRA). Specially, the proposed CRM employs a single-input–four-output divergent parallel configuration to transform a unidirectional input force into a rotational moment around the rotational center, effectively avoiding asynchronous motion and rotational center shift caused by the multiple actuation. Moreover, the CCRA is developed based on the CRM and a direct-drive rotary (DDR) motor, and adaptive switching between the macro- and micro-combination can simultaneously achieve large rotary range and sub-µrad resolution. After a series of modeling, mechanism optimization, and simulation, a prototype experimental system was built to further test the performance of proposed CCRA. The open-loop and closed-loop characterization experiments showed that the CRM can achieve a rotational resolution of 0.05 μrad and a driving force of 0.78 N·m. In addition, the cross-scale switching experimental results show that the CCRA is able to achieve a static positioning accuracy of 3.5 μrad within a ±5 rotational range. Full article
(This article belongs to the Section Miniaturized and Micro Actuators)
Show Figures

Figure 1

15 pages, 4842 KiB  
Article
Dynamic Spatial Small-Target Simulation System with Long-Exit Pupil Distance
by Yi Lu, Xiping Xu, Ning Zhang, Yaowen Lv and Hua Geng
Photonics 2025, 12(6), 578; https://doi.org/10.3390/photonics12060578 - 6 Jun 2025
Viewed by 303
Abstract
System architecture was developed to solve the issues of short pupil distance and mismatch between the simulated wavelength range and the sensor in the simulator of small targets in space. The system consists of Liquid Crystal on Silicon (LCOS), a Polarizing Beam Splitter [...] Read more.
System architecture was developed to solve the issues of short pupil distance and mismatch between the simulated wavelength range and the sensor in the simulator of small targets in space. The system consists of Liquid Crystal on Silicon (LCOS), a Polarizing Beam Splitter (PBS), a dual free-form surface-illumination system, and a long-exit-pupil-distance projection system. The innovatively designed long exit pupil distance projection system can achieve an exit pupil distance of 1250 mm, covering the visible and near-infrared bands from 400 to 950 nm. The dual free-form surface-illumination system reaches a divergence angle of ±4.3° and an illumination non-uniformity of 4.7%. Experimental validation shows that the system’s star position error is better than −3.94″, and the angular distance error between stars does not exceed −7.69″. The radiation simulation accuracy for stars ranging from magnitude 3 to 6 is between −0.049 and 0.085 magnitudes, demonstrating high-precision simulation capabilities for both geometric and radiation characteristics. The research results set a critical theoretical foundation for the development of high-fidelity space target simulators, and the proposed dual free-form surface-design method and wide-spectrum aberration compensation technology provide a new paradigm for precision optical system design. Full article
Show Figures

Figure 1

30 pages, 3163 KiB  
Review
Dynamic Process of Dry Snow Slab Avalanche Formation: Theory, Experiment and Numerical Simulation
by Peng Yue, Binbin Pei, Jie Zhang and Ning Huang
Geosciences 2025, 15(6), 201; https://doi.org/10.3390/geosciences15060201 - 29 May 2025
Viewed by 370
Abstract
Snow avalanches occur in snow-covered highland mountains and represent one of the most significant natural hazards pertaining to the field of geoscience. Although some insight into the formation of avalanches has been provided, a comprehensive overview or critical review of the latest research [...] Read more.
Snow avalanches occur in snow-covered highland mountains and represent one of the most significant natural hazards pertaining to the field of geoscience. Although some insight into the formation of avalanches has been provided, a comprehensive overview or critical review of the latest research is currently lacking. This paper reviews recent advances on the formation process of dry slab avalanches and provides a guiding framework for further research. The formation of avalanches is the consequence of a series of fracture processes in the snowpack, which is usually induced by the failure of a weak layer underlying a snow slab layer. The parameters at each stage of avalanches’ formation are reviewed from theoretical, experimental and simulation perspectives. In terms of the onset of crack propagation, the understanding of the mechanical process has gone through a transition from shear theory, to the anticrack model and supershear. The critical length shows divergent trends with snowpack parameters and slope angles, and there is a lack of consensus in different models. The specific fracture energy is also an essential component in determining fracture propagation. Within cracks’ dynamic propagation, the crack propagation speed includes both the sub-Rayleigh regime and supershear. The crack speed exceeds the shear wave speed in the supershear mode. When the crack propagation reaches a specific distance, the slab undergoes a tensile fracture and the cracking’s arrest. The numerical simulation allows a complete reproduction of the initial failure, the crack’s dynamic propagation and slab fracture. In the future, a unified model is necessary through refining the formative mechanism and integrating it with the avalanche flow. This work offers a comprehensive understanding of the mechanics of the formation and release of avalanches, useful for both modelers and experimentalists. Full article
Show Figures

Figure 1

12 pages, 784 KiB  
Article
The Efficacy of the RME II System Compared with the Sander Bite-Jumping Appliance: A Retrospective Study
by Mauro Lorusso, Michele Tepedino, Donatella Ferrara, Angela Pia Cazzolla, Fariba Esperouz, Rosa Esposito, Lucio Lo Russo and Domenico Ciavarella
J. Clin. Med. 2025, 14(11), 3700; https://doi.org/10.3390/jcm14113700 - 25 May 2025
Viewed by 378
Abstract
Objective: This paper aimed to assess the effectiveness of the Rapid Maxillary Expander (RME) II System, compared to the Sander bite-jumping appliance (SBJ) and an untreated control group, in the treatment of Class II skeletal malocclusion in children. Methods: Thirty Class II patients [...] Read more.
Objective: This paper aimed to assess the effectiveness of the Rapid Maxillary Expander (RME) II System, compared to the Sander bite-jumping appliance (SBJ) and an untreated control group, in the treatment of Class II skeletal malocclusion in children. Methods: Thirty Class II patients treated with the RME II System (Group R) were compared to 30 patients treated with the SBJ (Group S) and 30 untreated Class II children (Group C). Cephalograms were analysed at the beginning of the study (T0) and at the end of the treatment (T1). Eight cephalometric parameters were evaluated: the divergence angle (SN-MP), ANB, lower face height (LFH), CO-GN, 1 + SN, IMPA, overjet, and overbite. The Shapiro–Wilk normality test was conducted to assess the distribution of the data. A t-test was then used for pairwise comparisons of the cephalometric measurements between T0 and T1. Differences among the groups were analysed using one-way ANOVA with Tukey’s post hoc correction. Results: ANOVA revealed a statistically significant difference for all analysed variables except 1 + SN. The post hoc Tukey’s test identified the following differences: SN-MP was 2.51° greater in Group S than in Group R, LFH was 5.46 mm greater in Group C than in Group R and 3.11 mm greater in Group S than in Group R, IMPA was 4.01° greater in Group S than in Group R, and overbite was 1.96 mm lower in Group S than in Group R. Conclusions: The RME II System provides better control of mandibular plane inclination and lower incisor proclination during the correction of Class II skeletal malocclusion. Both devices are effective in correcting Class II skeletal malocclusion. Full article
(This article belongs to the Special Issue Orthodontics: Current Advances and Future Options)
Show Figures

Figure 1

14 pages, 1716 KiB  
Article
Beyond Empirical Trends: Density Functional Theory-Based Nuclear Magnetic Resonance Analysis of Mono-Hydroxyflavone Derivatives
by Feng Wang and Vladislav Vasilyev
Appl. Sci. 2025, 15(11), 5928; https://doi.org/10.3390/app15115928 - 24 May 2025
Viewed by 401
Abstract
Flavone derivatives have emerged as promising antiviral agents, with baicalein demonstrating the potent inhibition of the SARS-CoV-2 main protease (Mpro). In this study, the unique electronic and structural properties of 3-hydroxyflavone (3-HF) were investigated using the density functional theory (B3PW91/cc-pVTZ), providing insights into [...] Read more.
Flavone derivatives have emerged as promising antiviral agents, with baicalein demonstrating the potent inhibition of the SARS-CoV-2 main protease (Mpro). In this study, the unique electronic and structural properties of 3-hydroxyflavone (3-HF) were investigated using the density functional theory (B3PW91/cc-pVTZ), providing insights into its potential as a bioactive scaffold. Among mono-hydroxyflavone (n-HF) isomers, 3-HF exhibits an extensive intramolecular hydrogen-bonding network linking the phenyl B-ring to the A- and γ-pyrone C-rings, enabled by the distinctive C3-OH substitution. Despite a slight non-planarity (dihedral angle: 15.4°), this hydrogen-bonding network enhances rigidity and influences the electronic environment. A 13C-NMR chemical shift analysis revealed pronounced quantum mechanical effects of the C3-OH group, diverging from the trends observed in other flavones. A natural bond orbital (NBO) analysis highlighted an unusual charge distribution, with predominantly positive charges on the γ-pyrone C-ring carbons, in contrast to the typical negative charges in flavones. These effects impact C1s orbital energies, suggesting that the electronic structure plays a more significant role in 13C-NMR shifts than simple ring assignments. Given the established antiviral activity of hydroxylated flavones, the distinct electronic properties of 3-HF may enhance its interaction with SARS-CoV-2 Mpro, making it a potential candidate for further investigation. This study underscores the importance of quantum mechanical methods in elucidating the structure–activity relationships of flavones and highlights 3-HF as a promising scaffold for future antiviral drug development. Full article
(This article belongs to the Section Chemical and Molecular Sciences)
Show Figures

Graphical abstract

21 pages, 4203 KiB  
Article
Multiscale Characterization of Rice Starch Gelation and Retrogradation Modified by Soybean Residue (Okara) and Extracted Dietary Fiber Using Rheology, Synchrotron Wide-Angle X-Ray Scattering (WAXS), and Fourier Transform Infrared (FTIR) Spectroscopy
by Aunchalee Aussanasuwannakul and Suparat Singkammo
Foods 2025, 14(11), 1862; https://doi.org/10.3390/foods14111862 - 23 May 2025
Viewed by 589
Abstract
Okara, the soybean residue from soy milk and tofu production, offers significant potential as a sustainable, fiber-rich ingredient for starch-based and gluten-free food systems. This study investigates the comparative effects of whole okara and its extracted dietary fiber (DF) on the retrogradation, rheological [...] Read more.
Okara, the soybean residue from soy milk and tofu production, offers significant potential as a sustainable, fiber-rich ingredient for starch-based and gluten-free food systems. This study investigates the comparative effects of whole okara and its extracted dietary fiber (DF) on the retrogradation, rheological properties, and nanostructural organization of rice starch (RS) gels. Rice starch suspensions were blended with 5–20% (dry basis) of either whole okara or DF, thermally gelatinized, and analyzed using dynamic rheology, synchrotron-based Wide-Angle X-ray Scattering (WAXS), and Fourier Transform Infrared (FTIR) spectroscopy. DF markedly reduced the gelation temperature and enhanced storage modulus (G′), indicating earlier and stronger gel network formation. WAXS analysis showed that DF more effectively disrupted long-range molecular ordering, as evidenced by suppressed crystallinity development and disrupted molecular ordering within the A-type lattice. FTIR spectra revealed intensified O–H stretching and new ester carbonyl bands, with progressively higher short-range molecular order (R1047/1022) in DF-modified gels. While whole okara provided moderate retrogradation resistance and contributed to network cohesiveness via its matrix of fiber, protein, and lipid, DF exhibited superior retrogradation inhibition and gel stiffness due to its purity and stronger fiber–starch interactions. These results highlight the functional divergence of okara-derived ingredients and support their targeted use in formulating stable, fiber-enriched, starch-based foods. Full article
Show Figures

Graphical abstract

9 pages, 2023 KiB  
Article
Comparison of the Isometric Position of the External Elbow Fixator: Self-Centering Versus Traditional Techniques, Postoperative CT Evaluation, and 3D Motion Analysis
by Prospero Bigazzi, Chiara Suardi, Anna Rosa Rizzo, Irene Felici, Marco Biondi, Andrea Poggetti and Sandra Pfanner
J. Clin. Med. 2025, 14(11), 3653; https://doi.org/10.3390/jcm14113653 - 23 May 2025
Viewed by 272
Abstract
Background/Objectives: The external hinged elbow fixator is a surgical choice both in the case of simple dislocations and elbow dislocation fractures. The correct positioning with respect to the elbow’s center of rotation is demanding. Authors developed a self-centering external fixator that does [...] Read more.
Background/Objectives: The external hinged elbow fixator is a surgical choice both in the case of simple dislocations and elbow dislocation fractures. The correct positioning with respect to the elbow’s center of rotation is demanding. Authors developed a self-centering external fixator that does not require a pin in the elbow’s center of rotation. The aim of this study was to analyze the margin of error in its positioning. Methods: We subjected 16 patients to a CT-3D study reconstruction using 3D motion software to analyze the divergence angle and offset between the elbow’s center of rotation and that of the external fixator. The results were compared to those published on traditional implants. Results: All elbows were correctly reduced without re-dislocation. The average distance was 2° in relation to the center of rotation in the antero-posterior view, 3° in the cranio-caudal, and 2° in the medio-lateral. The divergence angle was 3.5° (min 0.4°; max 9.3°) and the offset 6.8 mm (min 0.06; max 17.5). The average range of motion was 10–145 (range 0–155). Discussion: The traditional hinged elbow external fixator creates severe complexity for surgeons in the necessary positioning of the elbow axial rod to correctly align the implant. The self-centering device avoids this step, making the procedure faster and easier. Although the alignment is still not perfect, the results are still comparable with traditional devices. Conclusions: The self-centering external fixator allows for correct alignment with the elbow’s center of rotation. It is less invasive and simpler, with a shorter learning curve, faster operating time, and less radiographic exposure. Full article
(This article belongs to the Section Orthopedics)
Show Figures

Figure 1

14 pages, 9709 KiB  
Article
Research on Large Divergence Angle Laser Ranging System
by Junwen Ji, Suhui Yang and Yimin Feng
Photonics 2025, 12(5), 482; https://doi.org/10.3390/photonics12050482 - 14 May 2025
Viewed by 371
Abstract
This study investigates a laser ranging technology scheme featuring a large divergence angle for both the emitted and received laser beams, focusing on applications where both the measured target and the ranging carrier are high-mobility platforms. A dual-concave beam-reducing lens design is adopted [...] Read more.
This study investigates a laser ranging technology scheme featuring a large divergence angle for both the emitted and received laser beams, focusing on applications where both the measured target and the ranging carrier are high-mobility platforms. A dual-concave beam-reducing lens design is adopted to reshape the original beam divergence angle of 10 mrad from the erbium glass laser into a ranging output beam divergence angle of 26 mrad, while maintaining the Gaussian energy distribution of the original laser beam. A φ500 μm photosensitive surface APD detector is used, and a combination of aspherical and spherical elements is employed in the receiving optical system to achieve a 30 mrad large field-of-view echo reception within the small photosensitive surface. This laser ranging system addresses the challenge of aiming and tracking for laser ranging between relatively high-speed moving objects and reduces the stability precision requirements for the ranging carrier platform. Full article
(This article belongs to the Special Issue Advanced Lasers and Their Applications, 2nd Edition )
Show Figures

Figure 1

Back to TopTop