Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (5,118)

Search Parameters:
Keywords = distill

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 1298 KiB  
Article
Evaluation of the Quality and Nutritional Value of Modified Corn Wet Distillers’ Grains Plus Solubles (mcWDGS) Preserved in Aerobic and Anaerobic Conditions
by Mateusz Roguski, Marlena Zielińska-Górska, Andrzej Radomski, Janusz Zawadzki, Marlena Gzowska, Anna Rygało-Galewska and Andrzej Łozicki
Sustainability 2025, 17(15), 7097; https://doi.org/10.3390/su17157097 (registering DOI) - 5 Aug 2025
Abstract
To enhance the effectiveness of sustainable preservation of modified corn wet distillers’ grains plus solubles (mcWDGS), various additives were tested under aerobic and anaerobic conditions. In Experiment I, the mcWDGS was stored under aerobic conditions for 5 days at 25 °C. Treatments included [...] Read more.
To enhance the effectiveness of sustainable preservation of modified corn wet distillers’ grains plus solubles (mcWDGS), various additives were tested under aerobic and anaerobic conditions. In Experiment I, the mcWDGS was stored under aerobic conditions for 5 days at 25 °C. Treatments included different organic acids applied at 0.3% or 0.6% of fresh matter (FM). In Experiment II, the mcWDGS was ensiled anaerobically for 8 weeks at 25 °C using organic acids, a commercial acid mixture, or a microbial inoculant at 0.2% FM. In aerobic conditions, the best preservability was achieved with propionic and formic acids at 0.6% FM, as indicated by the lowest temperature, pH, and microbial counts on days 3 and 5 (p ≤ 0.01). Under anaerobic storage, the highest lactic acid concentrations were recorded in the control, citric acid, and commercial acid mixture variants (p ≤ 0.01). Acetic acid levels were highest in the control (p ≤ 0.01). The highest NH3-N content was found in the formic acid variant and the lowest in the inoculant variant (p ≤ 0.01). Aerobic stability after ensiling was greatest in the control and propionic acid groups (p ≤ 0.01). Nutritional analysis showed that the citric acid group had the highest dry matter content (p ≤ 0.01), while the control group contained the most crude protein (p ≤ 0.01) and saturated fatty acids (p ≤ 0.05). The propionic acid and commercial acid mixture variants had the highest unsaturated fatty acids (p ≤ 0.05). Antioxidant capacity was also greatest in the control (p ≤ 0.01). In conclusion, mcWDGS can be effectively preserved aerobically with 0.6% FM of propionic or formic acid, and anaerobically via ensiling, even without additives. These findings support its potential as a stable and nutritious feed ingredient. Full article
Show Figures

Figure 1

21 pages, 904 KiB  
Article
Ensemble-Based Knowledge Distillation for Identification of Childhood Pneumonia
by Grega Vrbančič and Vili Podgorelec
Electronics 2025, 14(15), 3115; https://doi.org/10.3390/electronics14153115 - 5 Aug 2025
Abstract
Childhood pneumonia remains a key cause of global morbidity and mortality, highlighting the need for accurate and efficient diagnostic tools. Ensemble methods have proven to be among the most successful approaches for identifying childhood pneumonia from chest X-ray images. However, deploying large, complex [...] Read more.
Childhood pneumonia remains a key cause of global morbidity and mortality, highlighting the need for accurate and efficient diagnostic tools. Ensemble methods have proven to be among the most successful approaches for identifying childhood pneumonia from chest X-ray images. However, deploying large, complex convolutional neural network models in resource-constrained environments presents challenges due to their high computational demands. Therefore, we propose a novel ensemble-based knowledge distillation method for identifying childhood pneumonia from X-ray images, which utilizes an ensemble of classification models to distill the knowledge to a more efficient student model. Experiments conducted on a chest X-ray dataset show that the distilled student model achieves comparable (statistically not significantly different) predictive performance to that of the Stochastic Gradient with Warm Restarts ensemble method (F1-score on average 0.95 vs. 0.96, respectively), while significantly reducing inference time and decreasing FLOPs by a factor of 6.5. Based on the obtained results, the proposed method highlights the potential of knowledge distillation to enhance the efficiency of complex methods, making them more suitable for utilization in environments with limited computational resources. Full article
(This article belongs to the Special Issue Image Processing Based on Convolution Neural Network: 2nd Edition)
Show Figures

Figure 1

17 pages, 1768 KiB  
Article
Quality Status and Skin-Related Functional Properties of Traditional Korean Fermented Vinegars
by Hwan Hee Yu, So-Won Jang, Eungyeong Kim, Jong-Chan Kim and Mi Jang
Foods 2025, 14(15), 2728; https://doi.org/10.3390/foods14152728 - 4 Aug 2025
Abstract
The correlation between fermented vinegar’s physicochemical properties and functional characteristics, particularly skin-related functionalities, remains unclear. We analyzed the quality of widely consumed Korean fermented vinegars, including grain and persimmon vinegars, and their correlation with skin-related functionalities to establish quality control criteria linked to [...] Read more.
The correlation between fermented vinegar’s physicochemical properties and functional characteristics, particularly skin-related functionalities, remains unclear. We analyzed the quality of widely consumed Korean fermented vinegars, including grain and persimmon vinegars, and their correlation with skin-related functionalities to establish quality control criteria linked to functional properties. Fifteen traditional Korean grain vinegars and fourteen persimmon vinegars were collected; distilled white vinegar was used as the control group. Grain vinegars showed 3.57–100.00% collagenase and 62.38–77.03% tyrosinase inhibition; persimmon vinegars showed 0.00–94.50% and 30.75–71.54%, respectively. To determine which quality characteristics are high in fermented vinegar with high skin-related functionality, a correlation analysis was conducted. In grain vinegar, total nitrogen and free amino acids were strongly associated with skin-related functionalities. In persimmon vinegar, organic acids, particularly lactic acid, were correlated with skin-related effects; thus, both demonstrated the importance of quality assessment. Insights into relationships between the composition and functional properties of fermented vinegar were gained. Specific quality markers for managing skin-related functionality of Korean fermented vinegar established a scientific basis for standardizing quality control, developing high-value functional vinegar products, and ensuring consistent product quality. Full article
Show Figures

Figure 1

22 pages, 5293 KiB  
Article
Membrane Distillation for Water Desalination: Assessing the Influence of Operating Conditions on the Performance of Serial and Parallel Connection Configurations
by Lebea N. Nthunya and Bhekie B. Mamba
Membranes 2025, 15(8), 235; https://doi.org/10.3390/membranes15080235 - 4 Aug 2025
Abstract
Though the pursuit of sustainable desalination processes with high water recovery has intensified the research interest in membrane distillation (MD), the influence of module connection configuration on performance stability remains poorly explored. The current study provided a comprehensive multiparameter assessment of hollow fibre [...] Read more.
Though the pursuit of sustainable desalination processes with high water recovery has intensified the research interest in membrane distillation (MD), the influence of module connection configuration on performance stability remains poorly explored. The current study provided a comprehensive multiparameter assessment of hollow fibre membrane modules connected in parallel and series in direct contact membrane distillation (DCMD) for the first time. The configurations were evaluated under varying process parameters such as temperature (50–70 °C), flow rates (22.1–32.3 mL·s−1), magnesium concentration as scalant (1.0–4.0 g·L−1), and flow direction (co-current and counter-current), assessing their influence on temperature gradients (∆T), flux and pH stability, salt rejection, and crystallisation. Interestingly, the parallel module configuration maintained high operational stability with uniform flux and temperature differences (∆T) even at high recovery factors (>75%). On one hand, the serial configuration experienced fluctuating ∆T caused by thermal and concentration polarisation, causing an early crystallisation (abrupt drop in feed conductivity). Intensified polarisation effects with accelerated crystallisation increased the membrane risk of wetting, particularly at high recovery factors. Despite these changes, the salt rejection remained relatively high (99.9%) for both configurations across all tested conditions. The findings revealed that acidification trends caused by MgSO4 were configuration-dependent, where the parallel setup-controlled rate of pH collapse. This study presented a novel framework connecting membrane module architecture to mass and heat transfer phenomena, providing a transformative DCMD module configuration design in water desalination. These findings not only provide the critical knowledge gaps in DCMD module configurations but also inform optimisation of MD water desalination to achieve high recovery and stable operation conditions under realistic brine composition. Full article
(This article belongs to the Special Issue Membrane Distillation: Module Design and Application Performance)
Show Figures

Figure 1

16 pages, 3226 KiB  
Article
Sustainable Agronomical Practices Affect Essential Oil Composition of Tanacetum balsamita L.
by Martina Grattacaso, Alessandra Bonetti, Sara Di Lonardo and Luigi Paolo D’Acqui
Plants 2025, 14(15), 2406; https://doi.org/10.3390/plants14152406 - 3 Aug 2025
Viewed by 27
Abstract
This study evaluated the influence of compost and bioinoculants (mycorrhizal fungi and plant growth-promoting bacteria) on the yield and composition of essential oil extracted from Tanacetum balsamita L. over two growing seasons. The plants were cultivated under four treatments: compost, bioinoculants, a combination [...] Read more.
This study evaluated the influence of compost and bioinoculants (mycorrhizal fungi and plant growth-promoting bacteria) on the yield and composition of essential oil extracted from Tanacetum balsamita L. over two growing seasons. The plants were cultivated under four treatments: compost, bioinoculants, a combination (bioinoculants + compost), and a control. At each harvest, essential oil was extracted from fresh leaves via stem-flow distillation and analyzed using gas chromatography coupled with single quadrupole mass spectrometry. Twenty to twenty-four compounds were identified. Based on the dominant terpene derivative, the results indicated that Tanacetum balsamita L. cultivated in Italy belongs to “camphor” chemotype, a pharmacologically active compound known for its antimicrobial, anti-inflammatory, and analgesic properties. Moreover, three compounds, α-, β-phellandrene and myrtenol, were identified as typical of Tanacetum balsamita L. cultivated in Italy. Treatment effects were significant for some compounds (camphor, borneol, terpinen-4-ol, α-terpineol, dehydro sabinene ketone, and 3-thujanol), and the interaction between treatment and year was significant for a few compounds (borneol, terpinen-4-ol, dehydro sabinene ketone, 1,8-cineol, and 3-thujanol). These results emphasize the need to account for seasonal variation and underline the necessity of a deeper understanding of how experimental factors interact with them, especially in long-term essential oil studies. Full article
(This article belongs to the Special Issue Chemical Analysis, Bioactivity, and Application of Essential Oils)
Show Figures

Figure 1

27 pages, 2221 KiB  
Article
Effects of ε-Poly-L-Lysine/Chitosan Composite Coating on the Storage Quality, Reactive Oxygen Species Metabolism, and Membrane Lipid Metabolism of Tremella fuciformis
by Junzheng Sun, Yingying Wei, Longxiang Li, Mengjie Yang, Yusha Liu, Qiting Li, Shaoxiong Zhou, Chunmei Lai, Junchen Chen and Pufu Lai
Int. J. Mol. Sci. 2025, 26(15), 7497; https://doi.org/10.3390/ijms26157497 (registering DOI) - 3 Aug 2025
Viewed by 53
Abstract
This study aimed to investigate the efficacy of a composite coating composed of 150 mg/L ε-Poly-L-lysine (ε-PL) and 5 g/L chitosan (CTS) in extending the shelf life and maintaining the postharvest quality of fresh Tremella fuciformis. Freshly harvested T. fuciformis were treated [...] Read more.
This study aimed to investigate the efficacy of a composite coating composed of 150 mg/L ε-Poly-L-lysine (ε-PL) and 5 g/L chitosan (CTS) in extending the shelf life and maintaining the postharvest quality of fresh Tremella fuciformis. Freshly harvested T. fuciformis were treated by surface spraying, with distilled water serving as the control. The effects of the coating on storage quality, physicochemical properties, reactive oxygen species (ROS) metabolism, and membrane lipid metabolism were evaluated during storage at (25 ± 1) °C. The results showed that the ε-PL/CTS composite coating significantly retarded quality deterioration, as evidenced by reduced weight loss, maintained whiteness and color, and higher retention of soluble sugars, soluble solids, and soluble proteins. The coating also effectively limited water migration and loss. Mechanistically, the coated T. fuciformis exhibited enhanced antioxidant capacity, characterized by increased superoxide anion (O2) resistance capacity, higher activities of antioxidant enzymes (SOD, CAT, APX), and elevated levels of non-enzymatic antioxidants (AsA, GSH). This led to a significant reduction in malondialdehyde (MDA) accumulation, alongside improved DPPH radical scavenging activity and reducing power. Furthermore, the ε-PL/CTS coating preserved cell membrane integrity by inhibiting the activities of lipid-degrading enzymes (lipase, LOX, PLD), maintaining higher levels of key phospholipids (phosphatidylinositol and phosphatidylcholine), delaying phosphatidic acid accumulation, and consequently reducing cell membrane permeability. In conclusion, the ε-PL/CTS composite coating effectively extends the shelf life and maintains the quality of postharvest T. fuciformis by modulating ROS metabolism and preserving membrane lipid homeostasis. This study provides a theoretical basis and a practical approach for the quality control of fresh T. fuciformis. Full article
(This article belongs to the Section Biochemistry)
Show Figures

Figure 1

24 pages, 913 KiB  
Article
Fermentation Efficiency and Profile of Volatile Compounds in Rye Grain Mashes from Crops Fertilised with Agrifood Waste Ashes
by Łukasz Ściubak, Andrzej Baryga, Maria Balcerek, Katarzyna Pielech-Przybylska, Urszula Dziekońska-Kubczak and Stanisław Brzeziński
Molecules 2025, 30(15), 3251; https://doi.org/10.3390/molecules30153251 - 2 Aug 2025
Viewed by 162
Abstract
The utilisation of agrifood waste ashes has the potential to enhance the nutrient content of cereal crops, thereby optimising both yield and grain quality. This study investigated rye grain composition, the fermentation efficiency, and volatile compounds in mashes made from crops fertilised with [...] Read more.
The utilisation of agrifood waste ashes has the potential to enhance the nutrient content of cereal crops, thereby optimising both yield and grain quality. This study investigated rye grain composition, the fermentation efficiency, and volatile compounds in mashes made from crops fertilised with agrifood waste ashes derived from the combustion of corn cob, wood chips, and biomass with defecation lime. The ashes were applied at 2, 4, and 8 t/ha, separately and as mixtures of corn cob (25%) with wood chips (75%) and corn cob (50%) with biomass and defecation lime (50%). Rye mashes were prepared using the pressureless starch liberation method. The starch content in the majority of the rye grains was comparable to the control sample (57.12 g/100 g). The range of ethanol concentrations observed in the fermented mashes was from 55.55 to 68.12 g/L, which corresponded to fermentation yields of 67.25–76.59% of theoretical. The lowest fermentation yield was exhibited by the mash derived from rye cultivated on soil fertilised with a 50:50 mixture of ashes from corn cob and biomass with defecation lime at 8 t/ha. This mash contained more than double the acetaldehyde concentration and total aldehyde content compared to the other samples. These findings demonstrate the potential of using waste biomass ash as a source of macro- and microelements for rye cultivation, enabling the production of agricultural distillates. To ensure high fermentation efficiency and low aldehyde levels, ash dosage and composition need to be established based on experimental optimisation. Full article
(This article belongs to the Section Food Chemistry)
Show Figures

Figure 1

22 pages, 24500 KiB  
Article
Ambient to Elevated Temperature: Ecotribology of Water-Based Lubricants Incorporating hBN/TiO2 Nanoadditives
by Afshana Morshed, Fei Lin, Hui Wu, Zhao Xing, Sihai Jiao and Zhengyi Jiang
Lubricants 2025, 13(8), 344; https://doi.org/10.3390/lubricants13080344 - 1 Aug 2025
Viewed by 194
Abstract
Ecotribology focuses on both saving energy resources and reducing environmental pollution. Considering environmental concerns, water-based nanolubricants have gained significant attention over conventional oil-based ones. Non-ecotoxic and highly environmentally friendly nanoadditives were chosen for nanolubricant synthesis, especially considering their use at elevated temperatures. In [...] Read more.
Ecotribology focuses on both saving energy resources and reducing environmental pollution. Considering environmental concerns, water-based nanolubricants have gained significant attention over conventional oil-based ones. Non-ecotoxic and highly environmentally friendly nanoadditives were chosen for nanolubricant synthesis, especially considering their use at elevated temperatures. In this study, hexagonal boron nitride nanosheets (hBNNSs) and titanium dioxide nanoparticles (TiO2 NPs) were used to prepare water-based lubricants with glycerol and surfactant sodium dodecyl benzene sulfonate (SDBS) in water under ultrasonication. An Rtec ball-on-disk tribometer was used to investigate the tribological performance of the synthesised water-based lubricants containing different nano-hBN/TiO2 concentrations, with dry and water conditions used as benchmarks. The results indicated that the water-based nanolubricant containing 0.5 wt% hBN and 0.5 wt% TiO2 exhibited the best tribological performance at both ambient (25 °C) and elevated (500 °C) temperatures. This optimal concentration leads to a reduction in the coefficient of friction (COF) by 72.9% and 37.5%, wear of disk by 62.5% and 49%, and wear of ball by 74% and 69% at ambient and elevated temperatures, respectively, compared to that of distilled water. Lubrication mechanisms were attributed to the rolling, mending, tribofilm, solid layer formation, and synergistic effects of hBNNSs and TiO2 NPs. Full article
(This article belongs to the Special Issue Tribology in Manufacturing Engineering)
Show Figures

Figure 1

21 pages, 5409 KiB  
Article
Sustainable Rubber Solutions: A Study on Bio-Based Oil and Resin Blends
by Frances van Elburg, Fabian Grunert, Claudia Aurisicchio, Micol di Consiglio, Auke Talma, Pilar Bernal-Ortega and Anke Blume
Polymers 2025, 17(15), 2111; https://doi.org/10.3390/polym17152111 - 31 Jul 2025
Viewed by 281
Abstract
One of the most important challenges the tire industry faces is becoming carbon-neutral and using 100% sustainable materials by 2050. Utilizing materials from renewable sources and recycled substances is a key aspect of achieving this goal. Petroleum-based oils, such as Treated Distillate Aromatic [...] Read more.
One of the most important challenges the tire industry faces is becoming carbon-neutral and using 100% sustainable materials by 2050. Utilizing materials from renewable sources and recycled substances is a key aspect of achieving this goal. Petroleum-based oils, such as Treated Distillate Aromatic Extract (TDAE), are frequently used in rubber compounds, and a promising strategy to enhance sustainability is to use bio-based plasticizer alternatives. However, research has shown that the replacement of TDAE oil with bio-based oils or resins can significantly alter the glass transition temperature (Tg) of the final compound, influencing the tire properties. In this study, the theory was proposed that using a plasticizer blend, comprising oil and resin, in a rubber compound would result in similar Tg values as the reference compound containing TDAE. To test this, the cycloaliphatic di-ester oil Hexamoll DINCH, which can be made out of bio-based feedstock by the BioMass Balance approach, was selected and blended with the cycloaliphatic hydrocarbon resin Escorez 5300. Various oil-to-resin ratios were investigated, and a linear increase in the Tg of the vulcanizate was obtained when increasing the resin content and decreasing the oil content. Additionally, a 50/50 blend, consisting of 18.75 phr Hexamoll DINCH and 18.75 phr Escorez 5300, resulted in the same Tg of −19 °C as a compound containing 37.5 phr TDAE. Furthermore, this blend resulted in similar curing characteristics and cured Payne effect as the reference with TDAE. Moreover, a similar rolling resistance indicator (tan δ at 60 °C = 0.115), a slight deterioration in wear resistance (ARI = 83%), but an improvement in the stress–strain behavior (M300 = 9.18 ± 0.20 MPa and Ts = 16.3 ± 0.6 MPa) and wet grip indicator (tan δ at 0 °C = 0.427) were observed. The results in this work show the potential of finding a balance between optimal performance and sustainability by using plasticizer blends. Full article
(This article belongs to the Special Issue Exploration and Innovation in Sustainable Rubber Performance)
Show Figures

Figure 1

16 pages, 2174 KiB  
Article
TwinFedPot: Honeypot Intelligence Distillation into Digital Twin for Persistent Smart Traffic Security
by Yesin Sahraoui, Abdessalam Mohammed Hadjkouider, Chaker Abdelaziz Kerrache and Carlos T. Calafate
Sensors 2025, 25(15), 4725; https://doi.org/10.3390/s25154725 - 31 Jul 2025
Viewed by 234
Abstract
The integration of digital twins (DTs) with intelligent traffic systems (ITSs) holds strong potential for improving real-time management in smart cities. However, securing digital twins remains a significant challenge due to the dynamic and adversarial nature of cyber–physical environments. In this work, we [...] Read more.
The integration of digital twins (DTs) with intelligent traffic systems (ITSs) holds strong potential for improving real-time management in smart cities. However, securing digital twins remains a significant challenge due to the dynamic and adversarial nature of cyber–physical environments. In this work, we propose TwinFedPot, an innovative digital twin-based security architecture that combines honeypot-driven data collection with Zero-Shot Learning (ZSL) for robust and adaptive cyber threat detection without requiring prior sampling. The framework leverages Inverse Federated Distillation (IFD) to train the DT server, where edge-deployed honeypots generate semantic predictions of anomalous behavior and upload soft logits instead of raw data. Unlike conventional federated approaches, TwinFedPot reverses the typical knowledge flow by distilling collective intelligence from the honeypots into a central teacher model hosted on the DT. This inversion allows the system to learn generalized attack patterns using only limited data, while preserving privacy and enhancing robustness. Experimental results demonstrate significant improvements in accuracy and F1-score, establishing TwinFedPot as a scalable and effective defense solution for smart traffic infrastructures. Full article
Show Figures

Figure 1

19 pages, 2360 KiB  
Article
Lepisanthes alata Attenuates Carrageenan-Induced Inflammation and Pain in Rats: A Phytochemical-Based Approach
by Elvy Suhana Mohd Ramli, Nadia Mohamed Tarmizi, Nur Aqilah Kamaruddin and Mohd Amir Kamaruzzaman
Pharmaceuticals 2025, 18(8), 1142; https://doi.org/10.3390/ph18081142 - 31 Jul 2025
Viewed by 261
Abstract
Background: Inflammation abrogates cellular organization and tissue homoeostasis, resulting in redness, swelling, heat, pain, and loss of function. A model of carrageenan-induced paw edema (CIE) is commonly utilized to test anti-inflammatory substances. Based on the ability of Lepisanthes alata (LA), a tropical [...] Read more.
Background: Inflammation abrogates cellular organization and tissue homoeostasis, resulting in redness, swelling, heat, pain, and loss of function. A model of carrageenan-induced paw edema (CIE) is commonly utilized to test anti-inflammatory substances. Based on the ability of Lepisanthes alata (LA), a tropical plant that is rich in phytochemicals like polyphenols, this study assessed the optimal dose and the health benefits of LA in rats that had been induced with carrageenan to develop paw swelling. Methods: Twenty-four male Wistar rats were divided into four groups to which carrageenan was administered, after which, distilled water at oral dose (C + DW), sodium diclofenac 25 mg/kg (C + DS), LA extract in 250 mg/kg (C + LA250), and 500 mg/kg (C + LA500) was given, respectively. Paw edema was assessed in 24 h. Pain was assessed using the Rat Grimace Scale (RGS), cytokines, antioxidant activity, and tissue changes. Results: LA at 250 and 500 mg/kg significantly decreased paw edema and inflammatory markers in the results of both studies. Remarkably, LA 250 mg/kg significantly decreased RGS scores as well as IL-1β, TNF-α, and histological inflammation but had a positive effect on T-SOD levels. Conclusions: LA extract, especially at 250 mg/kg, shows potent anti-inflammatory, analgesic, and antioxidant properties in CIE rats. Full article
Show Figures

Graphical abstract

22 pages, 3131 KiB  
Article
CAREC: Continual Wireless Action Recognition with Expansion–Compression Coordination
by Tingting Zhang, Qunhang Fu, Han Ding, Ge Wang and Fei Wang
Sensors 2025, 25(15), 4706; https://doi.org/10.3390/s25154706 - 30 Jul 2025
Viewed by 330
Abstract
In real-world applications, user demands for new functionalities and activities constantly evolve, requiring action recognition systems to incrementally incorporate new action classes without retraining from scratch. This class-incremental learning (CIL) paradigm is essential for enabling adaptive and scalable systems that can grow over [...] Read more.
In real-world applications, user demands for new functionalities and activities constantly evolve, requiring action recognition systems to incrementally incorporate new action classes without retraining from scratch. This class-incremental learning (CIL) paradigm is essential for enabling adaptive and scalable systems that can grow over time. However, Wi-Fi-based indoor action recognition under incremental learning faces two major challenges: catastrophic forgetting of previously learned knowledge and uncontrolled model expansion as new classes are added. To address these issues, we propose CAREC, a class-incremental framework that balances dynamic model expansion with efficient compression. CAREC adopts a multi-branch architecture to incorporate new classes without compromising previously learned features and leverages balanced knowledge distillation to compress the model by 80% while preserving performance. A data replay strategy retains representative samples of old classes, and a super-feature extractor enhances inter-class discrimination. Evaluated on the large-scale XRF55 dataset, CAREC reduces performance degradation by 51.82% over four incremental stages and achieves 67.84% accuracy with only 21.08 M parameters, 20% parameters compared to conventional approaches. Full article
(This article belongs to the Special Issue Sensor Networks and Communication with AI)
Show Figures

Figure 1

28 pages, 6349 KiB  
Article
Valorization of Waste from Lavender Distillation Through Optimized Encapsulation Processes
by Nikoletta Solomakou, Dimitrios Fotiou, Efthymia Tsachouridou and Athanasia M. Goula
Foods 2025, 14(15), 2684; https://doi.org/10.3390/foods14152684 - 30 Jul 2025
Viewed by 134
Abstract
This study evaluated and compared two encapsulation techniques—co-crystallization and ionic gelation—for stabilizing bioactive components derived from lavender distillation residues. Utilizing aqueous ethanol extraction (solid residues) and concentration (liquid residues), phenolic-rich extracts were incorporated into encapsulation matrices and processed under controlled conditions. Comprehensive characterization [...] Read more.
This study evaluated and compared two encapsulation techniques—co-crystallization and ionic gelation—for stabilizing bioactive components derived from lavender distillation residues. Utilizing aqueous ethanol extraction (solid residues) and concentration (liquid residues), phenolic-rich extracts were incorporated into encapsulation matrices and processed under controlled conditions. Comprehensive characterization included encapsulation efficiency (Ef), antioxidant activity (AA), moisture content, hygroscopicity, dissolution time, bulk density, and color parameters (L*, a*, b*). Co-crystallization outperformed ionic gelation across most criteria, achieving significantly higher Ef (>150%) and superior functional properties such as lower moisture content (<0.5%), negative hygroscopicity (−6%), and faster dissolution (<60 s). These features suggested enhanced physicochemical stability and suitability for applications requiring long shelf life and rapid solubility. In contrast, extruded beads exhibited high moisture levels (94.0–95.4%) but allowed better control over morphological features. The work introduced a mild-processing approach applied innovatively to the valorization of lavender distillation waste through structurally stable phenolic delivery systems. By systematically benchmarking two distinct encapsulation strategies under equivalent formulation conditions, this study advanced current understanding in bioactive microencapsulation and offers new tools for developing functional ingredients from aromatic plant by-products. Full article
Show Figures

Figure 1

18 pages, 14875 KiB  
Article
Comparison of Lactic Acid Production from Different Agro-Industrial Waste Materials
by Greta Naydenova, Lili Dobreva, Svetla Danova, Petya Popova-Krumova and Dragomir Yankov
Fermentation 2025, 11(8), 437; https://doi.org/10.3390/fermentation11080437 - 30 Jul 2025
Viewed by 301
Abstract
In recent years, great attention has been paid to second-generation (from agricultural and industrial wastes) lactic acid (LA) production. In the present study, the possibility of two Lactiplantibacillus plantarum strains, namely 53 and 2HS, to produce LA from waste materials was investigated. Distiller’s [...] Read more.
In recent years, great attention has been paid to second-generation (from agricultural and industrial wastes) lactic acid (LA) production. In the present study, the possibility of two Lactiplantibacillus plantarum strains, namely 53 and 2HS, to produce LA from waste materials was investigated. Distiller’s dried grains with solubles (DDGS), spent coffee grounds (SCG), wood chips, and cheese whey were used as substrates after pretreatment, and the results were compared with those with lactose as a carbon source. Both strains were capable of assimilating sugars from all waste materials. Nearly 20 g/L LA from 23 g/L reducing sugars (RS) obtained from DDGS, 22 g/L LA from 21 g/L RS from SCG, and 22 g/L LA from 21 g/L whey lactose were produced compared to 22 g/L LA obtained from 22 g/L lactose monohydrate in the fermentation broth. The wood chip hydrolysate (WH) contains only 10 g/L RS, and its fermentation resulted in the production of 5 g/L LA. This amount is twice as low as that produced from 11 g/L lactose monohydrate. A mathematical model was constructed based on the Compertz and Luedeking–Piret equations. Full article
Show Figures

Figure 1

21 pages, 5524 KiB  
Article
Evaluation of N,N,N′,N′-Tetramethylethylenediamine (TMEDA) as an Alternative Fuel for a Hypergolic Bipropellant Rocket Engine
by Joshua M. Hollingshead, Makayla L. L. Ianuzzi, Jeffrey D. Moore and Grant A. Risha
Fuels 2025, 6(3), 58; https://doi.org/10.3390/fuels6030058 - 30 Jul 2025
Viewed by 249
Abstract
Experimental research was conducted to characterize the ignition delay time and combustion performance of non-toxic reactants as a possible replacement for highly toxic fuels, such as hydrazine. The liquid fuel and oxidizer were N,N,N′,N′-tetramethylethylenediamine (TMEDA) and white fuming nitric acid (WFNA), respectively. The [...] Read more.
Experimental research was conducted to characterize the ignition delay time and combustion performance of non-toxic reactants as a possible replacement for highly toxic fuels, such as hydrazine. The liquid fuel and oxidizer were N,N,N′,N′-tetramethylethylenediamine (TMEDA) and white fuming nitric acid (WFNA), respectively. The hypergolic ignition delay of the reactants was determined using 100% TMEDA with either >90% or >99.5% WFNA that was distilled, titrated, and droplet-tested in a laboratory setting while controlling the parameters that affect the quality of the yielded product. It was observed that >90% WFNA had three times longer average ignition delay than >99.5% WFNA with both mixtures producing ignition delay times less than 20 ms. Based upon the demonstrated hypergolic droplet test results, a fluid delivery feed system and hypergolic heavyweight bipropellant rocket engine were designed and fabricated to characterize the combustion efficiency of these non-toxic reactants. The rocket injector and characteristic length differed while operating under similar flow conditions to evaluate combustion efficiency. Results demonstrated similar engine performance between both cases of WFNA with improvements of over 30% in combustion efficiency with increased characteristic length. Tests using 100% TMEDA/>90% WFNA achieved a combustion efficiency of 88%. Full article
(This article belongs to the Special Issue Sustainable Jet Fuels from Bio-Based Resources)
Show Figures

Figure 1

Back to TopTop