Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline

Search Results (207)

Search Parameters:
Keywords = dissolved chemical species

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 2126 KiB  
Article
Stable Carbon and Nitrogen Isotope Signatures in Three Pondweed Species—A Case Study of Rivers and Lakes in Northern Poland
by Zofia Wrosz, Krzysztof Banaś, Marek Merdalski and Eugeniusz Pronin
Plants 2025, 14(15), 2261; https://doi.org/10.3390/plants14152261 - 22 Jul 2025
Viewed by 215
Abstract
Aquatic plants, as sedentary lifestyle organisms that accumulate chemical substances from their surroundings, can serve as valuable indicators of long-term anthropogenic pressure. In Poland, water monitoring is limited both spatially and temporally, which hampers a comprehensive assessment of water quality. Since the implementation [...] Read more.
Aquatic plants, as sedentary lifestyle organisms that accumulate chemical substances from their surroundings, can serve as valuable indicators of long-term anthropogenic pressure. In Poland, water monitoring is limited both spatially and temporally, which hampers a comprehensive assessment of water quality. Since the implementation of the Water Framework Directive (WFD), biotic elements, including macrophytes, have played an increasingly important role in water monitoring. Moreover, running waters, due to their dynamic nature, are susceptible to episodic pollution inputs that may be difficult to detect during isolated, point-in-time sampling campaigns. The analysis of stable carbon (δ13C) and nitrogen (δ15N) isotope signatures in macrophytes enables the identification of elemental sources, including potential pollutants. Research conducted between 2008 and 2011 encompassed 38 sites along 15 rivers and 108 sites across 21 lakes in northern Poland. This study focused on the isotope signatures of three pondweed species: Stuckenia pectinata, Potamogeton perfoliatus, and Potamogeton crispus. The results revealed statistically significant differences in the δ13C and δ15N values of plant organic matter between river and lake environments. Higher δ15N values were observed in rivers, whereas higher δ13C values were recorded in lakes. Spearman correlation analysis showed a negative relationship between δ13C and δ15N, as well as correlations between δ15N and the concentrations of Ca2+ and HCO3. A positive correlation was also found between δ13C and dissolved oxygen levels. These findings confirm the utility of δ13C and, in particular, δ15N as indicators of anthropogenic eutrophication, including potentially domestic sewage input and its impact on aquatic ecosystems. Full article
Show Figures

Figure 1

15 pages, 2643 KiB  
Article
Hot Mineral Water as a Medium for Molecular Hydrogen Reactions in the Primordial Hydrosphere for the Origin of Life
by Ignat Ignatov, Teodora P. Popova, Paunka Vassileva, Yordan G. Marinov and Mario T. Iliev
Hydrogen 2025, 6(3), 48; https://doi.org/10.3390/hydrogen6030048 - 15 Jul 2025
Viewed by 1442
Abstract
Studies have been conducted on the potential development of Hydrogenobacter thermophilus and Pseudomonas aeruginosa in an anaerobic environment, both in the presence and absence of molecular hydrogen (H2). H. thermophilus developed better at 70 °C and pH 7.0 in the presence [...] Read more.
Studies have been conducted on the potential development of Hydrogenobacter thermophilus and Pseudomonas aeruginosa in an anaerobic environment, both in the presence and absence of molecular hydrogen (H2). H. thermophilus developed better at 70 °C and pH 7.0 in the presence of molecular hydrogen. It also multiplied in its absence, but to a lesser extent. Dissolved hydrogen in an amount of 1 ppm is biologically active for this thermophilic chemolithotrophic species. The tested strains of P. aeruginosa also showed growth under anaerobic conditions in the presence of H2 concentrations of 1 ppm and 2 ppm, which was ensured by adding Mg. The results indicate that not only the oldest microorganisms on our planet, archaebacteria, but also current species such as H. thermophilus and P. aeruginosa are capable of development under conditions characteristic of the ancient hydrosphere. DFT analyses showed that hydrogen water forms stable water clusters, whose hydrogen bond network retains and stabilizes reducing agents such as molecular hydrogen and magnesium (Mg0). This creates a microenvironment in which key redox processes associated with autotrophic growth and chemical evolution can occur. This is a realistic model of the Earth’s primordial hydrosphere’s conditions. Full article
Show Figures

Graphical abstract

12 pages, 2220 KiB  
Article
The Effects of Tree Species on Soil Organic Carbon Mineralization in Reservoir Water-Level Drawdown Zones
by Jiayi Zhang, Fang Wang, Jia Yang, Yanting Zhang, Li Qiu, Ziting Chen, Xi Wang, Tianya Zhang, Songzhe Li, Jiacheng Tong, Shunbao Lu and Yanjie Zhang
Forests 2025, 16(7), 1145; https://doi.org/10.3390/f16071145 - 11 Jul 2025
Viewed by 302
Abstract
Soil organic carbon (SOC) mineralization is the conversion of SOC to inorganic forms of carbon (C) by microbial decomposition and conversion. It plays an important role in global C cycling. Currently, most of the studies investigating the effects of different tree species on [...] Read more.
Soil organic carbon (SOC) mineralization is the conversion of SOC to inorganic forms of carbon (C) by microbial decomposition and conversion. It plays an important role in global C cycling. Currently, most of the studies investigating the effects of different tree species on SOC mineralization focus on forest ecosystems, and few have focused on reservoir water-level drawdown zones. In this study, we used an indoor incubation method to investigate SOC mineralization in the plantation soils of Glyptostrobus pensilis, Taxodium Zhongshanshan, Taxodium distichum and CK (unplanted plantation) in the reservoir water-level drawdown zones. We aimed to explore the effects of different tree species on the process of SOC mineralization in the reservoir water-level drawdown zones by considering both the biological and chemical processes of the soil. The results showed that the rates of SOC mineralization in the G. pensilis and T. Zhongshanshan plantations were 47% and 37%, respectively, higher than those in CK (p < 0.05), whereas the rate of SOC mineralization in T. distichum soils did not differ from that in CK. The structural equation model’s results showed microbial biomass carbon (MBC) is a key driver of SOC mineralization, while SOC and dissolved organic carbon (DOC) concentrations are also important factors that affect SOC mineralization and follow MBC. Compared to soil biochemical properties, the bacterial community composition has relatively little effect on SOC mineralization. Planted forests can, to a degree, change the biochemical properties of the soil in the reservoir water-level drawdown zones, effectively improving soil pH, and significantly increasing the amount of potential soil C mineralization, the content of SOC and the diversity of the soil bacteria (p < 0.05). Full article
Show Figures

Figure 1

23 pages, 11464 KiB  
Article
Characterization of Water Quality and the Relationship Between WQI and Benthic Macroinvertebrate Communities as Ecological Indicators in the Ghris Watershed, Southeast Morocco
by Ali El Mansour, Saida Ait Boughrous, Ismail Mansouri, Abdellali Abdaoui, Wafae Squalli, Asmae Nouayti, Mohamed Abdellaoui, El Mahdi Beyouda, Christophe Piscart and Ali Ait Boughrous
Water 2025, 17(14), 2055; https://doi.org/10.3390/w17142055 - 9 Jul 2025
Viewed by 454
Abstract
The Ghris watershed in southern Morocco is a significant ecological and agricultural area. However, due to the current impacts of climate change, farming activities, and pollution, data on its quality and biological importance need to be updated. Therefore, this study aimed to evaluate [...] Read more.
The Ghris watershed in southern Morocco is a significant ecological and agricultural area. However, due to the current impacts of climate change, farming activities, and pollution, data on its quality and biological importance need to be updated. Therefore, this study aimed to evaluate the physico-chemical and biological quality of surface water in the Ghris River. The Water Quality Index (WQI) and the Iberian Biological Monitoring Working Group (IBMWP) index were used to assess water quality along four sampling sites in 2024. The collected data were analyzed with descriptive and multivariate statistics. In total, 424 benthic macroinvertebrates belonging to seven orders were identified in the surface waters of the Ghris basin. These microfauna were significantly variable among the studied sites (p < 0.05). Station S4 is significantly rich in species, including seven orders and nine families of macroinvertebrates, followed by Station S2, with seven orders and eight families. Stations S3 and S1 showed less species diversity, with three orders and one family, respectively. The Insecta comprised 95.9% of the abundance, while the Crustacea constituted just 4.1%. The physico-chemical parameters significantly surpassed (p < 0.05) the specified norms of surface water in Morocco. This indicates a decline in the water quality of the studied sites. The findings of the principal component analysis (PCA) demonstrate that the top two axes explain 87% of the cumulative variation in the data. Stations 2 and 3 are closely associated with high concentrations of pollutants, notably Cl, SO42−, NO3, and K+ ions. Dissolved oxygen (DO) showed a slight correlation with S2 and S3, while S4 was characterized by high COD and PO4 concentrations, low levels of mineral components (except Cl), and average temperature conditions. Bioindication scores for macroinvertebrate groups ranging from 1 to 10 enabled the assessment of pollution’s influence on aquatic biodiversity. The IBMWP biotic index indicated discrepancies in water quality across the sites. This study gives the first insight and updated data on the biological and chemical quality of surface water in the Ghris River and the entire aquatic ecosystem in southeast Morocco. These data are proposed as a reference for North African and Southern European rivers. However, more investigations are needed to evaluate the impacts of farming, mining, and urbanization on the surface and ground waters in the study zone. Similarly, it is vital to carry out additional research in arid and semi-arid zones since there is a paucity of understanding regarding taxonomic and functional diversity, as well as the physico-chemical factors impacting water quality. Full article
(This article belongs to the Section Biodiversity and Functionality of Aquatic Ecosystems)
Show Figures

Figure 1

25 pages, 5480 KiB  
Article
Functional Trait Responses of Brasenia schreberi to Water and Soil Conditions Reveal Its Endangered Status
by Jingyu Yao, Zhenya Liu, Junbao Yu, Yun Zhang, Rui Xu, Jiahua Li, Yang Xu and Mei Sun
Plants 2025, 14(13), 2072; https://doi.org/10.3390/plants14132072 - 7 Jul 2025
Viewed by 378
Abstract
[Background] Brasenia schreberi is a perennial floating leaf aquatic plant with high ecological protection value and potential for economic development, and thus, its endangered mechanisms are of great concern. The rapid endangerment of this species in modern times may be primarily attributed to [...] Read more.
[Background] Brasenia schreberi is a perennial floating leaf aquatic plant with high ecological protection value and potential for economic development, and thus, its endangered mechanisms are of great concern. The rapid endangerment of this species in modern times may be primarily attributed to the deterioration of water and soil environmental conditions, as its growth relies on high-quality water and soil. [Objective] Exploring the responses of B. schreberi to water and soil conditions from the perspective of functional traits is of great significance for understanding its endangered mechanisms and implementing effective conservation strategies. [Methods] This study was conducted in the Tengchong Beihai Wetland, which has the largest natural habitat of B. schreberi in China. By measuring the key functional traits of B. schreberi and detecting the water and soil parameters at the collecting sites, the responses of these functional traits to the water and soil conditions have been investigated. [Results] (1) The growth status of B. schreberi affects the expression of its functional traits. Compared with sporadic distribution, B. schreberi in continuous patches have significantly higher stomatal conductance, intercellular CO2 concentration, transpiration rate, and vein density, while these plants have significantly smaller leaf area and perimeter. (2) Good water quality directly promotes photosynthetic, morphological, and structural traits. However, high soil carbon, nitrogen, and phosphorus contents can inhibit the photosynthetic rate. The net photosynthetic rate is significantly positively correlated with dissolved oxygen content, pH value, ammonia nitrogen, and nitrate nitrogen contents in the water, as well as the magnesium, zinc, and silicon contents in the soil. In contrast, the net photosynthetic rate is significantly negatively correlated with the total phosphorus content in water and the total carbon, total nitrogen, and total phosphorus content in the soil. (3) Leaf area and perimeter show positive correlations with various water parameters, including the depth, temperature, pH value, dissolved oxygen content, ammonium nitrogen, and nitrate nitrogen content, yet they are negatively correlated with total phosphorus content, chemical oxygen demand, biological oxygen demand, and permanganate index of water. [Conclusions] This study supports the idea that B. schreberi thrives in oligotrophic water environments, while the notion that fertile soil is required for its growth still needs to be investigated more thoroughly. Full article
(This article belongs to the Special Issue Aquatic Plants and Wetland)
Show Figures

Figure 1

17 pages, 2584 KiB  
Article
Environmental Heterogeneity of Conservation Units in the Amazon Ensures High Contribution to Phytoplankton Beta Diversity in Streams
by Idelina Gomes da Silva, Ellen Guimarães Amaral Trindade, Leandra Palheta and Bárbara Dunck
Phycology 2025, 5(3), 30; https://doi.org/10.3390/phycology5030030 - 1 Jul 2025
Viewed by 293
Abstract
Conservation units (CUs) play a fundamental role in maintaining and conserving biodiversity, and are important in preserving streams, reducing impacts from human activities and increasing water availability beyond the boundaries of the reserves. However, knowledge about the phytoplankton biodiversity of ecosystems in CUs [...] Read more.
Conservation units (CUs) play a fundamental role in maintaining and conserving biodiversity, and are important in preserving streams, reducing impacts from human activities and increasing water availability beyond the boundaries of the reserves. However, knowledge about the phytoplankton biodiversity of ecosystems in CUs is scarce. This study evaluated how environmental integrity alters microphytoplankton communities in extractive CUs and their surroundings in the southwestern Brazilian Amazon. Our results demonstrated that the streams exhibited distinct physicochemical and hydrological characteristics, representing spatially heterogeneous environments. Differences in habitat integrity values altered species composition in streams within and outside conservation units. Local beta diversity (LCBD) was negatively influenced by habitat integrity, indicating that sites with greater habitat integrity did not always present a greater number of unique species. The species Trachelomonas hispida, Gyrosigma scalproides and Spirogyra sp. were the ones that contributed the most to beta diversity. However, the phytoplankton species that contributed most to beta diversity were not always associated with streams with greater integrity, indicating that even environments that are less intact play a relevant role in maintaining species richness and beta diversity of microphytoplankton. Factors such as habitat integrity, pH, temperature and dissolved oxygen were the main influencers of microphytoplankton in the streams. Thus, the streams of both CUs and their surroundings, despite their physical–chemical and hydrological differences, effectively contribute to the high richness and beta diversity of regional microphytoplankton. Full article
Show Figures

Figure 1

14 pages, 1097 KiB  
Article
Modeling the Impact of Viscosity on Fricke Gel Dosimeter Radiolysis: A Radiation Chemical Simulation Approach
by Sumaiya Akhter Ria, Jintana Meesungnoen and Jean-Paul Jay-Gerin
Gels 2025, 11(7), 489; https://doi.org/10.3390/gels11070489 - 24 Jun 2025
Viewed by 408
Abstract
The Fricke gel dosimeter, a hydrogel-based chemical dosimeter containing dissolved ferrous sulfate, measures 3D radiation dose distributions by oxidizing Fe2+ to Fe3+ upon irradiation. This study investigates the variation in Fricke yield, G(Fe3+), from a radiation–chemical perspective in [...] Read more.
The Fricke gel dosimeter, a hydrogel-based chemical dosimeter containing dissolved ferrous sulfate, measures 3D radiation dose distributions by oxidizing Fe2+ to Fe3+ upon irradiation. This study investigates the variation in Fricke yield, G(Fe3+), from a radiation–chemical perspective in both standard and gel-like Fricke systems of varying viscosities, under low- and high-linear energy transfer (LET) conditions. We employed our Monte Carlo track chemistry code IONLYS-IRT, using protons of 300 MeV (LET~0.3 keV/µm) and 1 MeV (LET~25 keV/µm) as radiation sources. To assess the impact of viscosity on G(Fe3+), we systematically varied the diffusion coefficients of all radiolytic species in the Fricke gel, including Fe2+ and Fe3+ ions. Increasing gel viscosity reduces Fe3+ diffusion and stabilizes spatial dose distributions but also lowers G(Fe3+), compromising measurement accuracy and sensitivity—especially under high-LET irradiation. Our results show that an optimal Fricke gel dosimeter must balance these competing factors. Simulations with lower sulfuric acid concentrations (e.g., 0.05 M vs. 0.4 M) further revealed that G(Fe3+) values at ~100 s are nearly identical for both low- and high-LET conditions. This study underscores the utility of Monte Carlo simulations in modeling viscosity effects on Fricke gel radiolysis, guiding dosimeter optimization to maximize sensitivity and accuracy while preserving spatial dose distribution integrity. Full article
(This article belongs to the Special Issue Application of Gel Dosimetry)
Show Figures

Figure 1

11 pages, 1830 KiB  
Article
Lactoferrin Solution as a New Natural Photosensitizer in Photodynamic Therapy Against Oral Candida spp. Multidrug-Resistant Isolates: A Preliminary In Vitro Study
by Cinzia Casu, Andrea Butera, Alice Piga, Andrea Scribante, Sara Fais and Germano Orrù
Microorganisms 2025, 13(6), 1255; https://doi.org/10.3390/microorganisms13061255 - 29 May 2025
Viewed by 596
Abstract
Serious oral infections are frequently caused by Candida species, which have lately demonstrated resistance to antifungal medications. As a result, new therapeutic strategies, like photodynamic therapy (PDT), are desperately needed. Lactoferrin (LF), a salivary enzyme, is a natural protein that binds iron and [...] Read more.
Serious oral infections are frequently caused by Candida species, which have lately demonstrated resistance to antifungal medications. As a result, new therapeutic strategies, like photodynamic therapy (PDT), are desperately needed. Lactoferrin (LF), a salivary enzyme, is a natural protein that binds iron and has antifungal properties. Given its chemical structure and light absorption at 310–350 nm, LF appears to be a good photosensitizer in a PDT process for treating oral candidiasis. The purpose of this work was to assess the effectiveness of lactoferrin (LF) as a photosensitizer (PS) in photodynamic treatment (PDT) against oral multidrug-resistant (MDR) isolates of Candida spp. using an in vitro investigation. For this in vitro investigation, oral MDR isolates of Candida albicans, Candida kruseii, and Candida glabrata were employed. Using a Kirby–Bauer test (Eucast protocol), a solution of 20 mg of bovine lactoferrin dissolved in 1 mL of Sabouraud’s broth was tested in four different experimental combinations: (i) the solution as it is; (ii) the solution activated with 3% H2O2; (iii) the solution activated by light at 310–350 nm; and (iv) the solution activated with both 3% H2O2 and light at 310–350 nm. A control group and one with only H2O2 were also tested. After that, the Petri plates were incubated for 48 h at 37 °C. With inhibitory halos ranging from 30 to 40 mm for all Candida spp. MDR analyzed, group (iv) displayed the greatest results. H2O2 + lactoferrin-based solutions are thought to be potential PS in PDT for MDR Candida spp. eradication. Full article
(This article belongs to the Special Issue Oral Microbes and Human Health, Second Edition)
Show Figures

Figure 1

18 pages, 2934 KiB  
Article
Phytoplankton and Zooplankton Assemblages Driven by Environmental Factors Along Trophic Gradients in Thai Lentic Ecosystems
by Peangtawan Phonmat, Ratcha Chaichana, Chuti Rakasachat, Pawee Klongvessa, Wirong Chanthorn and Sitthisak Moukomla
Diversity 2025, 17(6), 372; https://doi.org/10.3390/d17060372 - 22 May 2025
Viewed by 632
Abstract
This study investigates phytoplankton and zooplankton assemblages and their relationships with environmental factors along trophic gradients in 50 lentic ecosystems across Thailand. Field sampling was conducted at 264 points in April and May 2024. Physical, chemical, and biological parameters were measured both in [...] Read more.
This study investigates phytoplankton and zooplankton assemblages and their relationships with environmental factors along trophic gradients in 50 lentic ecosystems across Thailand. Field sampling was conducted at 264 points in April and May 2024. Physical, chemical, and biological parameters were measured both in the field and the laboratory. Plankton samples were identified and quantified to assess species richness, abundance, and community composition. The results revealed that lentic water bodies could be classified into four trophic states: 1 oligotrophic, 6 mesotrophic, 17 eutrophic, and 26 hypereutrophic systems. This study found that phytoplankton density peaked in hypereutrophic waters, while species richness was highest in oligotrophic conditions. Nutrient-rich environments favored Cyanophyta dominance, whereas Dinophyta were more abundant in nutrient-poor systems. Zooplankton assemblages, particularly Rotifers and Copepoda, showed higher abundance in eutrophic and hypereutrophic ecosystems, while diversity was greater in mesotrophic and oligotrophic waters. Statistical analyses indicated that environmental factors, especially nutrient concentrations, played a significant role in shaping plankton assemblages along the trophic gradients. Cyanophyta showed strong positive correlations with total dissolved solid (TDS) (r = 0.383, p < 0.01) and electrical conductivity (EC) (r = 0.403, p < 0.01), while Dinophyta showed a strong positive correlation with dissolved oxygen (r = 0.319, p < 0.05). Zooplankton, particularly Rotifers, exhibited significant correlations with total phosphorus (TP) (r = 0.358, p < 0.05) and TDS (r = 0.387, p < 0.01). Multidimensional Scaling (MDS) analysis and Principal Coordinate Analysis (PCoA) confirmed that water quality variables strongly influenced community structure. This study provides important insights into how environmental factors drive phytoplankton and zooplankton assemblages across trophic gradients in Thai lentic ecosystems, contributing to the improved understanding and management of freshwater bodies and eutrophication. Full article
Show Figures

Figure 1

19 pages, 2863 KiB  
Article
Data Mining to Evaluate the Effect of Eichhornia crassipes and Lemna minor in the Phytoremediation of Wastewater in the Canton of Milagro
by Denny William Moreno Castro, Omar Orlando Franco Arias, Juan Diego Valenzuela Cobos, Daniel Prieto Sánchez and Cícero Pimenteira
Water 2025, 17(10), 1551; https://doi.org/10.3390/w17101551 - 21 May 2025
Viewed by 470
Abstract
The constant increase in industrialization and urbanization has led to the regular discharge of wastewater into the environment in excessive amounts, which has caused significant impacts on both human and wildlife ecosystems. The sustainable management and treatment of wastewater, whether of industrial or [...] Read more.
The constant increase in industrialization and urbanization has led to the regular discharge of wastewater into the environment in excessive amounts, which has caused significant impacts on both human and wildlife ecosystems. The sustainable management and treatment of wastewater, whether of industrial or domestic origin, represents a crucial challenge in this century. In this study, phytoremediation was employed as a wastewater treatment strategy using two species of aquatic macrophytes: water hyacinth (Eichhornia crassipes) and duckweed (Lemna minor). The study was conducted over seven consecutive evaluation periods, with five-day intervals between each. The objective was to apply the multivariate HJ-Biplot methodology to evaluate the effects of phytoremediation of two species of aquatic microphytes on the physicochemical characteristics of wastewater from Milagro canton, Ecuador. Additionally, a microbiological analysis was conducted to determine the effectiveness of the floating macrophytes. The analysis was based on the measurement of various physicochemical parameters, such as pH, electrical conductivity (EC), dissolved oxygen (DO), oxidation–reduction potential (ORP), salinity, total dissolved solids (TDSs), biochemical oxygen demand (BOD), chemical oxygen demand (COD), hardness, and temperature. The results showed that the highest efficiency in pollutant removal was achieved with duckweed (Lemna minor) in five out of nine measured parameters, suggesting that this species was the most effective compared to the control sample and Eichhornia crassipes. The capacity of these macrophytes for wastewater treatment was confirmed by this study. To ensure effective water purification, timely extraction of aquatic macrophytes from water bodies is recommended. If this collection is not properly carried out, the nutrients absorbed and stored in the plant tissues may be released back into the aquatic environment due to plant decomposition. Full article
(This article belongs to the Special Issue Monitoring and Remediation of Contaminants in Soil and Water)
Show Figures

Figure 1

15 pages, 4107 KiB  
Article
Characteristics of Heat-Depleted Thermal Water Re-Injection-Induced Water–Rock Interactions in a Sandstone Reservoir Containing Carbonate and Silicate Minerals (Szentes, Hungary)
by Eszter Sendula, Richárd Albrecht, Catarina Conceição de Castro, Eszter Keresztény-Borbás, Zsuzsanna Szabó-Krausz and János Kovács
Minerals 2025, 15(5), 513; https://doi.org/10.3390/min15050513 - 13 May 2025
Viewed by 520
Abstract
A thorough understanding of the chemistry involved in reinjecting heat-depleted geothermal water into poorly consolidated sandstone is vital for the effective design of treatments targeting subsurface rock formations. The intricate chemical interactions occurring within sandstone systems can result in the dissolution of certain [...] Read more.
A thorough understanding of the chemistry involved in reinjecting heat-depleted geothermal water into poorly consolidated sandstone is vital for the effective design of treatments targeting subsurface rock formations. The intricate chemical interactions occurring within sandstone systems can result in the dissolution of certain minerals and the subsequent precipitation of others, which may significantly contribute to damage within the formation. This process can alter the physical properties of the rock, potentially leading to reduced permeability and other challenges in resource extraction. Thus, it is imperative to monitor not only the concentration of various chemical species present in the geothermal water and sandstone, but also the spatial distribution of these geochemical reactions. By doing so, we can better predict and mitigate their potential adverse effects on rock formations, ensuring the long-term success and efficiency of geothermal energy extraction and other subsurface activities. In this study, we conducted laboratory experiments using both model and natural formation waters, as well as rock samples, to investigate water–rock interactions in a sandstone reservoir in the Szentes area of Hungary. Geochemical models were run with two different thermodynamic databases to simulate laboratory experiments, predict the effects of heat-depleted geothermal water reinjection into the reservoir, and assess predictions of different geochemical databases. Our study shows that calcite dissolves while quartz, kaolinite, and dolomite form. Other mineral reactions, however, remain less certain. The PHREEQC database indicates chlorite dissolution along with the formation of small amounts of feldspars and hematite, whereas the Thermoddem database predicts montmorillonite dissolution and chlorite precipitation. The reservoir porosity and permeability are expected to change over time as a result of mineral reactions. Modeling results, however, indicate negligible porosity changes as the reservoir reaches equilibrium state. The general concept proposed here, which focuses on the geochemical properties of the reinjected water and reservoir, provides a framework for detailed analysis of the geothermal system—a critical step for ensuring sustainable geothermal operations. Full article
(This article belongs to the Special Issue Petrological and Geochemical Characteristics of Reservoirs)
Show Figures

Figure 1

18 pages, 4255 KiB  
Article
Sub-Lethal Effects of Predators in Aquaculture: Assessment of Chronic Exposure to Conspecific Alarm Substance on Feeding and Growth Performances of Nile Tilapia
by Rafaela Torres Pereira, Alexandre Luiz Arvigo, Caio Akira Miyai, Augusto Rysevas Silveira, Percília Cardoso Giaquinto, Helton Carlos Delicio, Leonardo José Gil Barcellos and Rodrigo Egydio Barreto
Fishes 2025, 10(4), 174; https://doi.org/10.3390/fishes10040174 - 12 Apr 2025
Viewed by 577
Abstract
In aquaculture practices, fish are mostly protected from lethal actions of predators. However, sub-lethal effects can be challenging to prevent, as they may be associated with chemical cues signaling predation risk that easily dissolve and spread in water, serving as potential stressors. These [...] Read more.
In aquaculture practices, fish are mostly protected from lethal actions of predators. However, sub-lethal effects can be challenging to prevent, as they may be associated with chemical cues signaling predation risk that easily dissolve and spread in water, serving as potential stressors. These cues originate from predators, stressed or injured prey releasing blood, a conspecific alarm substance (CAS), and/or other bodily fluids. In this study, we simulated a small-scale net cage system and assessed the feeding and growth of Nile tilapia exposed chronically to a CAS. Nile tilapia, an invasive species in many aquatic systems, frequently coexist freely alongside those cultivated in cages. Consequently, caged tilapia may regularly be exposed to a CAS, potentially leading to chronic stress and impacting growth and development. Fish were exposed daily to either a CAS or a control vehicle (distilled water) for 45 days (one fish per cage). Fish in both conditions exhibited similar increases in body mass, weight gain, and length over time and displayed an allometric negative growth profile, indicating that the CAS did not affect the length–weight relationship as well. Specific and relative growth rates, condition factor, body axes, food intake, and feeding conversion efficiency were also unaffected by the CAS over time. This body of evidence suggests that the CAS did not act as a chronic stressor for caged Nile tilapia and a possible explanation is habituation. Full article
(This article belongs to the Special Issue Stress Physiology in Aquatic Animals)
Show Figures

Figure 1

17 pages, 1803 KiB  
Article
Acute Toxicity Assessment of Textile Wastewater Treated with Pinus patula Biochar Using Daphnia pulex
by Carolina Gallego-Ramírez, Yuri García-Zapata, Néstor Aguirre, Edwin Chica and Ainhoa Rubio-Clemente
Water 2025, 17(8), 1143; https://doi.org/10.3390/w17081143 - 11 Apr 2025
Viewed by 697
Abstract
The discharge of textile wastewater (TWW) into the environment releases multiple toxic substances that pose a significant threat to aquatic life. Most studies evaluating wastewater treatment efficiency focus on the removal of parameters, such as chemical oxygen demand (COD), total organic carbon (TOC), [...] Read more.
The discharge of textile wastewater (TWW) into the environment releases multiple toxic substances that pose a significant threat to aquatic life. Most studies evaluating wastewater treatment efficiency focus on the removal of parameters, such as chemical oxygen demand (COD), total organic carbon (TOC), dissolved organic carbon (DOC), biochemical oxygen demand (BOD), and colour. One of the processes that has presented high efficiencies in the treatment of TWW is the use of biochar (BC) as an adsorbing material. BC has shown a high ability to remove complex organic substances from water since it is able to decrease the content of COD, TOC, and DOC. However, the toxicity of treated effluents has not been widely studied. In this regard, it is essential to focus not only on the efficiency of treatments in removing organic matter but also on their ability to reduce WW toxicity. This research evaluates the acute toxicity of real TWW treated with Pinus patula BC by using Daphnia pulex as a sentinel species. For this purpose, D. pulex individuals were exposed to TWW and BC-treated TWW for 48 h, with mortality defined as the absence of movement in the limbs and antennas. It was found that although the treatment with P. patula BC for 120 min eliminated 72.8% of the initial DOC under optimal conditions (pH 3 and 13.5 g/L BC dose), the textile effluent remained toxic, inducing 85.7% and 71.4% mortality rates on D. pulex for 100% (v/v) and 50% (v/v) dilutions. Despite the increase in the survival rate of D. pulex individuals due to the protective effect achieved by the constituents contained in the reconstituted 50% (v/v) samples, these findings emphasize the necessity of conducting toxicity studies before considering the discharge of TWW effluents after having been treated. Full article
Show Figures

Figure 1

12 pages, 468 KiB  
Review
Recent Hydrometallurgical Investigations to Recover Antimony from Wastes
by Francisco Jose Alguacil
Metals 2025, 15(3), 276; https://doi.org/10.3390/met15030276 - 3 Mar 2025
Viewed by 1147
Abstract
Antimony is a chemical element with diverse uses that falls into the range of a critical raw material. Although it appears in nature as stibnite, the mining of this mineralogical species is rare or uncommon, and it is the element that is basically [...] Read more.
Antimony is a chemical element with diverse uses that falls into the range of a critical raw material. Although it appears in nature as stibnite, the mining of this mineralogical species is rare or uncommon, and it is the element that is basically recovered as a secondary material in the processing of various elements (such as gold and copper). Another source for the recovery of this element is the recycling of Sb-bearing wastes such as batteries and alloys. Once dissolved and in order to recover it from the different leachates, adsorption processes are the ones that seem to have, at least for the scientific community, the highest acceptance. This work reviews the most recent advances (in 2024) in the recovery of antimony from different sources using not only adsorption processes but also other technologies of practical interest. Full article
(This article belongs to the Special Issue Hydrometallurgical Processes for the Recovery of Critical Metals)
Show Figures

Figure 1

17 pages, 6174 KiB  
Article
Enhancing H2O2 Generation Using Activated Carbon Electrocatalyst Cathode: Experimental and Computational Insights on Current, Cathode Design, and Reactor Configuration
by Maria del Mar Cerrillo-Gonzalez, Amir Taqieddin, Stephanie Sarrouf, Nima Sakhaee, Juan Manuel Paz-García, Akram N. Alshawabkeh and Muhammad Fahad Ehsan
Catalysts 2025, 15(2), 189; https://doi.org/10.3390/catal15020189 - 18 Feb 2025
Viewed by 835
Abstract
Granular activated carbon (GAC) serves as a cost-efficient electrocatalyst cathode in electrochemical water treatment. This study investigates the impact of current intensity and cathode mesh size on the electrocatalytic generation of reactive oxygen species (ROS), i.e., hydrogen peroxide (H2O2) [...] Read more.
Granular activated carbon (GAC) serves as a cost-efficient electrocatalyst cathode in electrochemical water treatment. This study investigates the impact of current intensity and cathode mesh size on the electrocatalytic generation of reactive oxygen species (ROS), i.e., hydrogen peroxide (H2O2) and hydroxyl radicals (•OH), for removing p-nitrophenol (PNP) as a representative contaminant. The findings suggest that these parameters exert a factorial effect on PNP removal, which is statistically endorsed via the analysis of variance. The −20 + 40 mesh GAC exhibited superior electrocatalytic performance due to its optimal balance of porosity and active surface area. Additionally, the reactor configuration was also studied. Employing two reactors in series configuration resulted in a 23% increase in H2O2 generation and a 32% enhancement in overall PNP removal compared with the single reactor configuration. This enhancement is attributed to (i) the enhanced electroactive area, (ii) the greater retention time of PNP over the electrocatalyst surface, and (iii) the increased dissolved oxygen and H2O2 content in the second reactor, promoting the overall H2O2 generation. Numerical simulations were conducted to compute H2O2 concentration profiles, providing a detailed representation of the physical, chemical, and electrochemical processes. The model exhibited a high degree of accuracy compared with the experimental measurements, with R2 values ranging from ~0.76 to 0.99 and MAE values between ~0.04 and 0.23 mg/L. The simulation results highlight a strong interplay between H2O2 generation, its reaction kinetics during PNP removal, and electrode utilization efficiency. These findings emphasize the importance of optimizing the applied current magnitude and reactor operation duration to maximize electrode efficiency and H2O2 generation and utilization, while minimizing electrochemical bubble blockage. Overall, this study provides fundamental insights to optimize the electroactive area for enhanced ROS generation toward efficient contaminant removal, supporting sustainable groundwater remediation technologies in the face of emerging pollutants. Full article
Show Figures

Graphical abstract

Back to TopTop