Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,345)

Search Parameters:
Keywords = dissipation behavior

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 6165 KB  
Article
The Resistance of X-Shaped Re-Entrant Auxetic Sandwich Beams to Localized Impulsive Loading
by Wei Zhang, Tongtong Qi, Huiling Wang, Xiang Chen, Xiang Li and Junhua Shao
Crystals 2025, 15(9), 776; https://doi.org/10.3390/cryst15090776 (registering DOI) - 30 Aug 2025
Abstract
This study introduces an improved X-shaped re-entrant auxetic structure designed to enhance mechanical performance by incorporating diamond-shaped elements into the re-entrant hexagonal configuration. Using a validated numerical model, the resistance of sandwich beams with the proposed core under localized impulsive loading is explored. [...] Read more.
This study introduces an improved X-shaped re-entrant auxetic structure designed to enhance mechanical performance by incorporating diamond-shaped elements into the re-entrant hexagonal configuration. Using a validated numerical model, the resistance of sandwich beams with the proposed core under localized impulsive loading is explored. The results reveal that local compression and global shear deformation dominate the response. The study further examines the effects of cell arrangement, geometric parameter, inclined gradient distribution, and cell construction on structural behavior. The X-direction arrangement of cells significantly enhances deformation control, improving deflection by dissipating impact energy. Increasing the angle α enhances mechanical properties and reduces residual deflection. Various inclined gradient distribution designs notably affect performance: positive gradients improve energy absorption, while negative gradients alter deformation mode. Under the same conditions, the proposed sandwich beam outperforms the conventional re-entrant hexagonal sandwich beam in terms of impact resistance. This research offers valuable insights for the design of explosion-resistant metamaterial sandwich structures. Full article
(This article belongs to the Special Issue Mechanical Properties and Structure of Metal Materials)
Show Figures

Figure 1

24 pages, 6119 KB  
Article
Dynamic Response of Methane Explosion and Roadway Surrounding Rock in Restricted Space: A Simulation Analysis of Fluid-Solid Coupling
by Qiangyu Zheng, Peijiang Ding, Zhenguo Yan, Yaping Zhu and Jinlong Zhang
Appl. Sci. 2025, 15(17), 9454; https://doi.org/10.3390/app15179454 - 28 Aug 2025
Abstract
A methane-air premixed gas explosion is one of the most destructive disasters in the process of coal mining, and the dynamic coupling between the shock wave triggered by the explosion and the surrounding rock of the roadway can lead to the destabilization of [...] Read more.
A methane-air premixed gas explosion is one of the most destructive disasters in the process of coal mining, and the dynamic coupling between the shock wave triggered by the explosion and the surrounding rock of the roadway can lead to the destabilization of the surrounding rock structure, the destruction of equipment, and casualties. The aim of this study is to systematically reveal the propagation characteristics of the blast wave, the spatial and temporal evolution of the wall load, and the damage mechanism of the surrounding rock by establishing a two-way fluid-solid coupling numerical model. Based on the Ansys Fluent fluid solver and Transient Structure module, a framework for the co-simulation of the fluid and solid domains has been constructed by adopting the standard kε turbulence model, finite-rate/eddy-dissipation (FR/ED) reaction model, and nonlinear finite-element theory, and by introducing a dynamic damage threshold criterion based on the Drucker–Prager and Mohr–Coulomb criteria. It is shown that methane concentration significantly affects the kinetic behavior of explosive shock wave propagation. Under chemical equivalence ratio conditions (9.5% methane), an ideal Chapman–Jouguet blast wave structure was formed, exhibiting the highest energy release efficiency. In contrast, lean ignition (7%) and rich ignition (12%) conditions resulted in lower efficiencies due to incomplete combustion or complex combustion patterns. In addition, the pressure time-history evolution of the tunnel enclosure wall after ignition triggering exhibits significant nonlinear dynamics, which can be divided into three phases: the initiation and turbulence development phase, the quasi-steady propagation phase, and the expansion and dissipation phase. Further analysis reveals that the closed end produces significant stress aggregation due to the interference of multiple reflected waves, while the open end increases the stress fluctuation due to turbulence effects. The spatial and temporal evolution of the strain field also follows a three-stage dynamic pattern: an initial strain-induced stage, a strain accumulation propagation stage, and a residual strain stabilization stage and the displacement is characterized by an initial phase of concentration followed by gradual expansion. This study not only deepens the understanding of methane-air premixed gas explosion and its interaction with the roadway’s surrounding rock, but also provides an important scientific basis and technical support for coal mine safety production. Full article
(This article belongs to the Special Issue Advanced Blasting Technology for Mining)
Show Figures

Figure 1

23 pages, 10237 KB  
Article
Mechanical Properties and Energy Absorption Characteristics of the Fractal Structure of the Royal Water Lily Leaf Under Quasi-Static Axial Loading
by Zhanhong Guo, Zhaoyang Wang, Weiguang Fan, Hailong Yu and Meng Zou
Fractal Fract. 2025, 9(9), 566; https://doi.org/10.3390/fractalfract9090566 - 28 Aug 2025
Abstract
Inspired by the self-organizing optimization mechanisms in nature, the leaf venation of the royal water lily exhibits a hierarchically branched fractal network that combines excellent mechanical performance with lightweight characteristics. In this study, a structural bionic approach was adopted to systematically investigate the [...] Read more.
Inspired by the self-organizing optimization mechanisms in nature, the leaf venation of the royal water lily exhibits a hierarchically branched fractal network that combines excellent mechanical performance with lightweight characteristics. In this study, a structural bionic approach was adopted to systematically investigate the venation architecture through macroscopic morphological observation, experimental testing, 3D scanning-based reverse reconstruction, and finite element simulation. The influence of key fractal geometric parameters under vertical loading on the mechanical behavior and energy absorption capacity was analyzed. The results demonstrate that the leaf venation of the royal water lily exhibits a core-to-margin gradient fractal pattern, with vein thickness linearly decreasing along the radial direction. At each hierarchical bifurcation, the vein width is reduced to 65–75% of the preceding level, while the bifurcation angle progressively increases with branching order. During leaf development, the fractal dimension initially decreases and then increases, indicating a coordinated functional adaptation between the stiff central trunk and the compliant peripheral branches. The veins primarily follow curved trajectories and form a multidirectional interwoven network, effectively extending the energy dissipation path. Finite element simulations reveal that the fractal venation structure of the royal water lily exhibits pronounced nonlinear stiffness behavior. A smaller bifurcation angle and higher fractal branching level contribute to enhanced specific energy absorption and average load-bearing capacity. Moreover, a moderate branching length ratio enables a favorable balance between yield stiffness, ultimate strength, and energy dissipation. These findings highlight the synergistic optimization between energy absorption characteristics and fractal geometry, offering both theoretical insights and bioinspired strategies for the design of impact-resistant structures. Full article
(This article belongs to the Special Issue Fractal Mechanics of Engineering Materials, 2nd Edition)
Show Figures

Figure 1

24 pages, 12849 KB  
Article
Experimental and Design Research on Seismic Performance of Connectors in Timber–Concrete Composite Structures
by Zuen Zheng, Shuai Yuan and Guojing He
Buildings 2025, 15(17), 3084; https://doi.org/10.3390/buildings15173084 - 28 Aug 2025
Abstract
To evaluate the mechanical properties of connectors in timber–concrete composite (TCC) structures under low-cycle reversed loading, eighteen push-out specimens were designed and fabricated following the standard push-out test method. This study presents the first comparative analysis of the seismic performance between notch-bolted and [...] Read more.
To evaluate the mechanical properties of connectors in timber–concrete composite (TCC) structures under low-cycle reversed loading, eighteen push-out specimens were designed and fabricated following the standard push-out test method. This study presents the first comparative analysis of the seismic performance between notch-bolted and ordinary bolted connections across three bolt diameters (12 mm, 16 mm, and 20 mm), addressing a gap in systematic experimental data for different connection types. Key performance indices under cyclic loading—including stiffness degradation, strength degradation, energy dissipation capacity, and ductility—were investigated. Furthermore, cumulative damage analysis elucidated the damage accumulation process, establishing a damage index (Dw) based on an energy method and proposing Dw = 0.6 as a critical early-warning threshold for failure. Practical recommendations for seismic design and engineering applications are provided. The results demonstrate that compared to ordinary bolted connections, notch-bolted connections achieve a 15–30% increase in ultimate bearing capacity and exhibit superior stiffness. Specimens with 16 mm bolts exhibited optimal ductility (ductility coefficient ξ = 3.6), while notch-bolted connections maintained stable ductility within the range of ξ = 2–3. Finally, a numerical model was developed using ANSYS finite element software. Validation against experimental results confirmed the model’s accuracy in simulating structural behavior. This research elucidates the cumulative damage mechanisms in TCC structures under cyclic loading, providing a theoretical basis for design optimization and valuable insights for promoting the seismic application of these composite systems. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

12 pages, 2020 KB  
Article
Numerical Simulations of 3C-SiC High-Sensitivity Strain Meters
by Annamaria Muoio, Angela Garofalo, Sergio Sapienza and Francesco La Via
Micromachines 2025, 16(9), 989; https://doi.org/10.3390/mi16090989 - 28 Aug 2025
Abstract
In the simulation of 3C-SiC strain gauges in dynamic environment—particularly those involving vibrations and wave propagation—the accurate representation of energy dissipation is essential for reliable predictive modeling. This paper discusses the implementation of both isotropic and anisotropic damping models within COMSOL Multiphysics. In [...] Read more.
In the simulation of 3C-SiC strain gauges in dynamic environment—particularly those involving vibrations and wave propagation—the accurate representation of energy dissipation is essential for reliable predictive modeling. This paper discusses the implementation of both isotropic and anisotropic damping models within COMSOL Multiphysics. In particular, it focuses on the use of an anisotropic loss factor, represented either as a scalar (ηS) for isotropic cases or as a symmetric 6 × 6 loss factor matrix (ηD) for anisotropic dissipation. This formulation enables the directional dependence of damping behavior to be captured, which is particularly important in composite materials, layered media, and metamaterials where energy dissipation mechanisms vary with orientation. The paper also explores the numerical implications of using anisotropic damping, such as its influence on eigenfrequency solutions, frequency response functions, and transient dynamic simulations. Furthermore, it highlights how the inclusion of directional damping can improve the correlation between simulated and experimental results in scenarios where standard isotropic models fail to capture key physical behaviors. Full article
(This article belongs to the Special Issue SiC Based Miniaturized Devices, 3rd Edition)
Show Figures

Figure 1

17 pages, 604 KB  
Article
Dissipation Behavior and Risk Assessment of Three Pesticide Residues Under Combined Application in Greenhouse-Grown Cabbage
by Caixia Sun, Liping Chen, Yuhong Liu, Weiran Zheng, Yumei Hua and Qiaoyan Zhang
Foods 2025, 14(17), 3006; https://doi.org/10.3390/foods14173006 - 28 Aug 2025
Viewed by 217
Abstract
Field residue trials were conducted in greenhouse-grown cabbage at both recommended and double dosages to evaluate the degradation dynamics and dietary risks of three pesticides (azoxystrobin, thiamethoxam, and carbendazim). In this study, a quick, easy, cheap, effective, rugged, and safe (QuEChERS) method combined [...] Read more.
Field residue trials were conducted in greenhouse-grown cabbage at both recommended and double dosages to evaluate the degradation dynamics and dietary risks of three pesticides (azoxystrobin, thiamethoxam, and carbendazim). In this study, a quick, easy, cheap, effective, rugged, and safe (QuEChERS) method combined with liquid chromatography tandem mass spectrometry was developed to measure the residues of three pesticides in cabbage. The mean recoveries of three pesticides in cabbage were 82.5–104.2%, with relative standard deviations of 2.1–5.2%, meeting the requirements of residual analysis. Based on first-order kinetics, the half-lives of the three pesticides in cabbage were 11.55–33.00 d under field conditions. The health risks associated with three pesticides in cabbage were evaluated using the risk quotient (RQ) method and the EFSA PRIMo 3.1 model. In the final residue experiment, the dietary exposure risks of azoxystrobin and thiamethoxam were all acceptable for children and adults regardless of the dosage or pre-harvest intervals, with the risk quotient (RQ) ranging from 0.040 to 0.363 and 0.022 to 0.417, respectively. However, carbendazim intake posed unacceptable health risks for consumers, with RQ significantly exceeding 1. The EFSA PRIMo 3.1 model also indicated high %ADI values for carbendazim, consistent with the RQ results. Given the significant residual risk associated with carbendazim in cabbage, limiting its use on this crop is recommended. Full article
Show Figures

Graphical abstract

15 pages, 2279 KB  
Article
Foliar Traits Drive Chlorophyll Fluorescence Variability in Chilean Sclerophyllous Species Under Early Outplanting Stress
by Sergio Espinoza, Carlos Magni, Marco Yáñez, Nicole Toro and Eduardo Martínez-Herrera
Plants 2025, 14(17), 2682; https://doi.org/10.3390/plants14172682 - 27 Aug 2025
Viewed by 188
Abstract
The photochemical efficiency of photosystem II (PSII) was monitored in two-year-old seedlings from six Chilean woody sclerophyllous species differing in foliage habits (evergreen, deciduous, semi-deciduous) and leaf orientation. A common garden experiment was established in July 2020 in a Mediterranean-type climate site under [...] Read more.
The photochemical efficiency of photosystem II (PSII) was monitored in two-year-old seedlings from six Chilean woody sclerophyllous species differing in foliage habits (evergreen, deciduous, semi-deciduous) and leaf orientation. A common garden experiment was established in July 2020 in a Mediterranean-type climate site under two watering regimes (2 L−1 seedling−1 week−1 for 5 months versus no irrigation). Chlorophyll a fluorescence rise kinetics (OJIP) and JIP test analysis were monitored from December 2021 to January 2022. The semi-deciduous Colliguaja odorifera (leaf angle of 65°) exhibited the highest performance in processes such as absorption and trapping photons, heat dissipation, electron transport, and level of photosynthetic performance (i.e., parameters PIABS FV/FM, FV/F0, and ΔVIP). In contrast, the evergreen Peumus boldus (leaf rolling) exhibited the opposite behavior for the same parameters. On the other hand, the deciduous Vachelia caven (small compound leaves and leaf angle of 15°) showed the lowest values for minimal and maximal fluorescence (F0 and FM) and the highest area above the OJIP transient (Sm) during the study period. Irrigation decreased Sm and the relative contribution of electron transport (parameter ΔVIP) by 22% and 17%, respectively, but no clear effects of the irrigation treatments were observed among species and dates of measurement. Overall, V. caven and C. odorifera exhibited the highest photosynthetic performance, whereas P. boldus seemed to be more prone to photoinhibition. We conclude that different foliar adaptations among species influence light protection mechanisms more than irrigation treatments. Full article
(This article belongs to the Section Plant Development and Morphogenesis)
Show Figures

Figure 1

22 pages, 8482 KB  
Article
Effect of C-FRP (Carbon Fiber Reinforced Polymer) Rope and Sheet Strengthening on the Shear Behavior of RC Beam-Column Joints
by Emmanouil Golias and Chris Karayannis
Fibers 2025, 13(9), 113; https://doi.org/10.3390/fib13090113 - 22 Aug 2025
Viewed by 261
Abstract
This study presents a high-performance external strengthening strategy for reinforced concrete (RC) beam–column joints, integrating near-surface mounted (NSM) Carbon Fiber Reinforced Polymer (C-FRP) ropes with externally bonded C-FRP sheets. The X-shaped ropes, anchored diagonally on both principal joint faces and complemented by vertical [...] Read more.
This study presents a high-performance external strengthening strategy for reinforced concrete (RC) beam–column joints, integrating near-surface mounted (NSM) Carbon Fiber Reinforced Polymer (C-FRP) ropes with externally bonded C-FRP sheets. The X-shaped ropes, anchored diagonally on both principal joint faces and complemented by vertical ropes at column corners, provide enhanced core confinement and shear reinforcement. C-FRP sheets applied to the beam’s plastic hinge region further increase flexural strength and delay localized failure. Three full-scale, shear-deficient RC joints were subjected to cyclic lateral loading. The unstrengthened specimen (JB0V) exhibited rapid stiffness deterioration, premature joint shear cracking, and unstable hysteretic behavior. In contrast, the specimen strengthened solely with X-shaped C-FRP ropes (JB0VF2X2c) displayed a markedly slower rate of stiffness degradation, delayed crack development, and improved energy dissipation stability. The fully retrofitted specimen (JB0VF2X2c + C-FRP) demonstrated the most pronounced gains, with peak load capacity increased by 65%, equivalent viscous damping enhanced by 55%, and joint shear deformations reduced by more than 40%. Even at 4% drift, it retained over 90% of its peak strength, while localizing damage away from the joint core—a performance unattainable by the unstrengthened configuration. These results clearly establish that the combined C-FRP rope–sheet system transforms the seismic response of deficient RC joints, offering a lightweight, non-invasive, and rapidly deployable retrofit solution. By simultaneously boosting shear resistance, ductility, and energy dissipation while controlling damage localization, the technique provides a robust pathway to extend service life and significantly enhance post-earthquake functionality in critical structural connections. Full article
Show Figures

Figure 1

20 pages, 4092 KB  
Article
Origin of Bilinear Low Cycle Fatigue in Ti-6Al-4V Alloy: A Crystal Plasticity Study
by Haifeng Xu, Dianxi Yang, Wei Li, Zhengxiao Guo and Yinghonglin Liu
Materials 2025, 18(17), 3931; https://doi.org/10.3390/ma18173931 - 22 Aug 2025
Viewed by 420
Abstract
This study resolves the long-standing question of the origin of bilinear Low Cycle Fatigue (LCF) behavior in Ti-6Al-4V using a high-fidelity CPFEM-XFEM framework. We identify that the fundamental origin lies in a fundamental shift in the efficiency of converting macroscopic energy dissipation into [...] Read more.
This study resolves the long-standing question of the origin of bilinear Low Cycle Fatigue (LCF) behavior in Ti-6Al-4V using a high-fidelity CPFEM-XFEM framework. We identify that the fundamental origin lies in a fundamental shift in the efficiency of converting macroscopic energy dissipation into microscopic damage. This energetic efficiency is directly governed by the evolution of plastic strain heterogeneity (quantified by the Coefficient of Variation, CV). At low strain amplitudes, high strain localization (high CV) creates a highly efficient “energy funnel,” concentrating dissipated energy into a few critical grains. This manifests physically as a single-crack failure mode, where the crack initiation phase is prolonged, consuming ~80% of the total fatigue life. Conversely, at high strain amplitudes, deformation homogenization (low CV) leads to inefficient, diffuse energy dissipation across many grains. The material must therefore activate a more drastic failure mechanism—multi-site crack initiation and coalescence—to accumulate sufficient damage, reducing the initiation phase to just ~45% of the total life. Therefore, the bilinear C-M curve is the macroscopic signature of this transition from an energetically efficient, localized damage mode to an inefficient, distributed one. This work provides a quantitative, mechanism-based framework for understanding and predicting the complex fatigue behavior of advanced metallic materials. Full article
(This article belongs to the Section Mechanics of Materials)
Show Figures

Figure 1

25 pages, 7140 KB  
Article
Study on the Performance of Elliptical Negative Poisson’s Ratio Structural Isolation Bearing
by Ming Xie and Xiangdong Wu
Buildings 2025, 15(17), 2985; https://doi.org/10.3390/buildings15172985 - 22 Aug 2025
Viewed by 433
Abstract
The negative Poisson’s ratio structure has special deformation behavior and energy absorption characteristics and is a new structure with broad application prospects. However, most of the current research is still at the theoretical level, while research on its practical performance is sparse. Therefore, [...] Read more.
The negative Poisson’s ratio structure has special deformation behavior and energy absorption characteristics and is a new structure with broad application prospects. However, most of the current research is still at the theoretical level, while research on its practical performance is sparse. Therefore, this paper proposes an elliptical negative Poisson’s ratio structural isolation bearing (NRB) for application in the field of seismic isolation engineering. The finite element simulation method is used to conduct a mechanical comparison with the traditional high damping isolation bearing (HDR), highlighting the advantages of the NRB in isolation and energy absorption. At the same time, parameter analysis is used to study the influence of the number and angle of structural holes on the stress of the NRB structure, which is 80% higher than that of the traditional isolation bearing, and incremental dynamic analysis (IDA) is also used. The overall average damage rate decreased by 70.3%, showing significant advantages in seismic energy dissipation, control of component damage, and other aspects, providing a strong data basis for the application of seismic isolation technology in practical engineering. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

16 pages, 3343 KB  
Article
Mechanical Behavior and Stress Mechanism of Roof Cutting Gob-Side Entry Retaining in Medium-Thick Coal Seams
by Dongping Zhang, Dongming Song, Longping Zhang and Bin Luo
Processes 2025, 13(8), 2649; https://doi.org/10.3390/pr13082649 - 21 Aug 2025
Viewed by 291
Abstract
In response to the complex challenges posed by gob-side entry retaining in medium-thick coal seams—specifically, severe stress concentrations and unstable surrounding rock under composite roof structures—this study presents a comprehensive field–numerical investigation centered on the 5-200 working face of the Dianping Coal Mine, [...] Read more.
In response to the complex challenges posed by gob-side entry retaining in medium-thick coal seams—specifically, severe stress concentrations and unstable surrounding rock under composite roof structures—this study presents a comprehensive field–numerical investigation centered on the 5-200 working face of the Dianping Coal Mine, China. A three-dimensional coupled stress–displacement model was developed using FLAC3D to systematically evaluate the mechanical behavior of surrounding rock under varying roof cutting configurations. The parametric study considered roof cutting heights of 6 m, 8 m, and 10 m and cutting angles of 0°, 15°, and 25°, respectively. The results indicate that a roof cutting height of 8 m combined with a 15° inclination provides optimal stress redistribution: the high-stress zone within the coal rib is displaced 2–3 m deeper into the coal body, and roof subsidence is reduced from 2500 mm (no cutting) to approximately 200–300 mm. Field measurements corroborate these findings, showing that on the return airway side with roof cutting, initial and periodic weighting intervals increased by 4.0 m and 5.5 m, respectively, while support resistance was reduced by over 12%. These changes suggest a delayed main roof collapse and decreased dynamic loading on supports, facilitating safer roadway retention. Furthermore, surface monitoring reveals that roof cutting significantly suppresses mining-induced ground deformation. Compared to conventional longwall mining at the adjacent 5-210 face, the roof cutting approach at 5-200 resulted in notably narrower (0.05–0.2 m) and shallower (0.1–0.4 m) surface cracks, reflecting effective attenuation of stress transmission through the overburden. Taken together, the proposed roof cutting and pressure relief strategy enables both stress decoupling and energy dissipation in the overlying strata, while enhancing roadway stability, reducing support demand, and mitigating surface environmental impact. This work provides quantitative validation and engineering guidance for intelligent and low-impact coal mining practices in high-stress, geologically complex settings. Full article
(This article belongs to the Section Process Control and Monitoring)
Show Figures

Figure 1

17 pages, 8493 KB  
Article
Effect of Surface-Modified Mica in Hybrid Filler Systems on the Curing and Mechanical Behavior of Ethylene–Propylene–Diene Monomer (EPDM)/Butadiene Rubber (BR) Blend
by Won-Young Jung, Seong-Woo Cho and Keon-Soo Jang
Polymers 2025, 17(16), 2250; https://doi.org/10.3390/polym17162250 - 20 Aug 2025
Viewed by 375
Abstract
This study investigates the influence of hybrid filler systems comprising carbon black (CB), mica, and surface-modified mica (SM) on the properties of ethylene–propylene–diene monomer (EPDM)/butadiene rubber (PB) composites. To reduce the environmental issues associated with CB, mica was incorporated as a partial substitute, [...] Read more.
This study investigates the influence of hybrid filler systems comprising carbon black (CB), mica, and surface-modified mica (SM) on the properties of ethylene–propylene–diene monomer (EPDM)/butadiene rubber (PB) composites. To reduce the environmental issues associated with CB, mica was incorporated as a partial substitute, and its compatibility with the rubber matrix was enhanced through surface modification using ureidopropyltrimethoxysilane (URE). The composites with hybrid filler systems and surface modification were evaluated in terms of curing behavior, crosslink density, mechanical and elastic properties, and dynamic viscoelasticity. Rheological analysis revealed that high mica loadings delayed vulcanization due to reduced thermal conductivity and accelerator adsorption, whereas SM composites maintained comparable curing performance. Swelling tests showed a reduction in crosslink density with increased unmodified mica content, while SM-filled samples improved the network density, confirming enhanced interfacial interaction. Mechanical testing demonstrated that the rubber compounds containing SM exhibited average improvements of 17% in tensile strength and 20% in toughness. In particular, the CB20/SM10 formulation achieved a well-balanced enhancement in tensile strength, elongation at break, and toughness, surpassing the performance of the CB-only system. Furthermore, rebound resilience and Tan δ analyses showed that low SM content reduced energy dissipation and improved elasticity, whereas excessive filler loadings led to increased hysteresis. The compression set results supported the thermal stability and recovery capacity of the SM-containing systems. Overall, the results demonstrated that the hybrid filler system incorporating URE-modified mica significantly enhanced filler dispersion and rubber–filler interaction, offering a sustainable and high-performance solution for elastomer composite applications. Full article
Show Figures

Figure 1

14 pages, 1476 KB  
Article
Magnetic Field-Driven Transport Properties of an Oxygen-Deficient Rectangular YBa2Cu3O7-δ Superconducting Structure
by Artūras Jukna
Materials 2025, 18(16), 3890; https://doi.org/10.3390/ma18163890 - 20 Aug 2025
Viewed by 406
Abstract
The transport properties of biased type II superconductors are strongly influenced by external magnetic fields, which play a crucial role in optimizing the stability and performance of low-noise superconducting electronic devices. A major challenge is the stochastic behavior of Abrikosov vortices, which emerge [...] Read more.
The transport properties of biased type II superconductors are strongly influenced by external magnetic fields, which play a crucial role in optimizing the stability and performance of low-noise superconducting electronic devices. A major challenge is the stochastic behavior of Abrikosov vortices, which emerge in the mixed state and lead to energy dissipation through their nucleation, motion, and annihilation. Uncontrolled vortex dynamics can introduce electronic noise in low-power systems and trigger thermal breakdown in high-power applications. This study examines the effect of a perpendicular external magnetic field on vortex pinning in biased YBa2Cu3O7-δ devices containing laser-written, rectangular-shaped, partially deoxygenated regions (δ ≈ 0.2). The results show that increasing the magnetic field amplitude induces an asymmetry in the concentration of vortices and antivortices, shifting the annihilation line toward a region of lower flux density and altering the flux pinning characteristics. Oxygen-deficient segments aligned parallel to the current flow act as barriers to vortex motion, enhancing the net pinning force by preventing vortex–antivortex pairs from reaching their annihilation zone. The current–voltage characteristics reveal periodic voltage steps corresponding to the onset and suppression of thermally activated flux flow and flux creep. These features indicate magnetic field–tunable transport behavior within a narrow range of temperatures from 0.94·Tc to 0.98·Tc, where Tc is the critical temperature of the superconductor. These findings offer new insights into the design of vortex-motion-controlled superconducting electronics that utilize engineered pinning structures. Full article
(This article belongs to the Section Materials Physics)
Show Figures

Figure 1

15 pages, 4040 KB  
Article
The Mechanism of Microcrack Initiation in Fe-C Alloy Under Tensile Deformation in Molecular Dynamics Simulation
by Yanan Zeng, Xiangkan Miao, Yajun Wang, Yukang Yuan, Bingbing Ge, Lanjie Li, Kanghua Wu, Junguo Li and Yitong Wang
Materials 2025, 18(16), 3865; https://doi.org/10.3390/ma18163865 - 18 Aug 2025
Viewed by 336
Abstract
The microcrack initiation and evolution behavior of Fe-C alloy under uniaxial tensile loading are investigated using molecular dynamics (MD) simulations. The model is stretched along the z-axis at a strain rate of 2 × 109 s−1 and temperatures ranging from [...] Read more.
The microcrack initiation and evolution behavior of Fe-C alloy under uniaxial tensile loading are investigated using molecular dynamics (MD) simulations. The model is stretched along the z-axis at a strain rate of 2 × 109 s−1 and temperatures ranging from 300 to 1100 K, aiming to elucidate the microscopic deformation mechanisms during crack evolution under varying thermal conditions. The results indicate that the yield strength of Fe-C alloy decreases with a rising temperature, accompanied by a 25.2% reduction in peak stress. Within the temperature range of 300–700 K, stress–strain curves exhibit a dual-peak trend: the first peak arises from stress-induced transformations in the internal crystal structure, while the second peak corresponds to void nucleation and growth. At 900–1100 K, stress curves display a single-peak pattern, followed by rapid stress decline due to accelerated void coalescence. Structural evolution analysis reveals sequential phase transitions: initial BCC-to-FCC and -HCP transformations occur during deformation, followed by reversion to BCC and unidentified structures post-crack formation. Elevated temperatures enhance atomic mobility, increasing the proportion of disordered/unknown structures and accelerating material failure. Higher temperatures promote faster potential energy equilibration, primarily through accelerated void growth, which drives rapid energy dissipation. Full article
(This article belongs to the Section Metals and Alloys)
Show Figures

Figure 1

14 pages, 3153 KB  
Article
The Analysis of Axial Compression Performance of Reinforced Concrete Columns Strengthened with Prestressed Carbon Fiber Sheets
by Yiquan Lv, Yang Teng, Xing Li, Junli Liu, Chunling Lu and Cheng Zhang
Infrastructures 2025, 10(8), 210; https://doi.org/10.3390/infrastructures10080210 - 13 Aug 2025
Viewed by 253
Abstract
Current research primarily focuses on using CFRP materials to strengthen small or medium-sized test specimens. To address this, our study employed ABAQUS software to analyze the axial compression behavior of large-scale reinforced concrete (RC) columns strengthened with prestressed carbon fiber reinforced polymer (CFRP) [...] Read more.
Current research primarily focuses on using CFRP materials to strengthen small or medium-sized test specimens. To address this, our study employed ABAQUS software to analyze the axial compression behavior of large-scale reinforced concrete (RC) columns strengthened with prestressed carbon fiber reinforced polymer (CFRP) sheets. We conducted comparative analyses on key parameters: the prestress level applied to the CFRP, the width of CFRP strips, the spacing between strips, the confinement ratio, and the overall load–displacement curves of the columns. The results demonstrate that applying prestress significantly improves the efficiency of stress transfer in the CFRP sheet, effectively mitigating the stress lag phenomenon common in traditional CFRP strengthening, leading to a substantially enhanced strengthening effect. The CFRP wrapping method critically impacts performance: increasing the confinement ratio enhanced ultimate load capacity by 21.8–59.9%; reducing the strip spacing increased capacity by 21.8–50.4%; and widening the strips boosted capacity by 38.7–58%. Although full wrapping achieved the highest capacity increase (up to 73.2%), it also incurred significantly higher costs. To ensure the required strengthening effect while optimizing economic efficiency and CFRP material utilization, the strip wrapping technique is recommended. For designing optimal reinforcement, priority should be given to optimizing the confinement ratio first, followed by adjusting strip width and spacing. Proper optimization of these parameters significantly enhances the strengthened member’s ultimate load capacity, ductility, and energy dissipation capacity. This study enriches the theoretical foundation for prestressed CFRP strengthening and provides an essential basis for rationally selecting prestress levels and layout parameters in engineering practice, thereby aiding the efficient design of strengthening projects for structures like bridges, with significant engineering and scientific value. Full article
Show Figures

Figure 1

Back to TopTop