The Resistance of X-Shaped Re-Entrant Auxetic Sandwich Beams to Localized Impulsive Loading
Abstract
1. Introduction
2. Structural Design
3. Numerical Simulation
3.1. Establishment of Numerical Model
3.2. Validation of Numerical Model
4. Dynamic Response Results
4.1. Deformation Mode
4.2. Force–Displacement Curve
5. Discussion
5.1. The Effect of Cell Direction
5.2. The Effect of Geometric Parameter
5.3. The Effect of Gradient Distribution
5.4. The Effect of Cell Construction
6. Conclusions
- (1)
- The dynamic response of XAH sandwich beams under foam projectile impact can be divided into three stages: localized compression in the central region, global deflection of the beam, and free vibration during the rebound phase. The predominant failure modes are compression and shear deformation during the compression and deflection stages.
- (2)
- Sandwich beams with X-direction cores exhibit superior impact resistance, absorbing more energy through cell compression and reducing back-panel deflection compared to beams with Y-direction cores, which demonstrate weaker performance in both impact resistance and energy absorption.
- (3)
- Increasing the cell angle α from 40° to 55° can enhance the beam’s impact resistance and reduce back-panel deflection, albeit with a trade-off in reduced energy absorption capacity.
- (4)
- The inclined gradient design significantly influences mechanical performance. Positive gradient designs enhance energy absorption and reduce residual deflection, while negative gradient designs alter deformation modes to emphasize bending and reduce maximum central deflection at the cost of higher residual deflection.
- (5)
- Compared to traditional re-entrant auxetic structures (RAH), the XAH structure improves deformation resistance but reduces energy absorption, highlighting a design trade-off: XAH cores are preferable when minimal residual deflection is desired, whereas RAH cores are better for maximizing energy absorption.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wang, H.; Shao, J.; Zhang, W.; Yan, Z.; Huang, Z.; Liang, X. Three-point bending response and energy absorption of novel sandwich beams with combined re-entrant double-arrow auxetic honeycomb cores. Compos. Struct. 2023, 326, 117606. [Google Scholar] [CrossRef]
- Zhang, W.; Qin, Q.; Li, K.; Li, J.; Wang, Q. Effect of stepwise gradient on dynamic failure of composite sandwich beams with metal foam core subject to low-velocity impact. Int. J. Solids Struct. 2021, 228, 111125. [Google Scholar] [CrossRef]
- Zhang, W.; Qin, Q.; Li, J.; Li, K.; Poh, L.; Li, Y.; Zhang, J.; Xie, S.; Chen, H.; Zhao, J. Deformation and failure of hybrid composite sandwich beams with a metal foam core under quasi-static load and low-velocity impact. Compos. Struct. 2020, 242, 112175. [Google Scholar] [CrossRef]
- Birman, V.; Kardomateas, G.A. Review of current trends in research and applications of sandwich structures. Compos. Part B Eng. 2018, 142, 221–240. [Google Scholar] [CrossRef]
- Metschkow, B. Sandwich panels in shipbuilding. Pol. Martime Res. 2006, 13, 5–8. [Google Scholar]
- Gibson, L.J.; Ashby, M.F.; Schajer, G.S.; Robertson, C.I. The mechanics of two-dimensional cellular materials. Proc. R. Soc. Lond. A Math. Phys. Sci. 1982, 382, 25–42. [Google Scholar]
- Zhang, W.; Wang, H.; Lou, X.; Yan, Z.; Shao, J.; Wu, T.; Qin, Q. On in-plane crushing behavior of a combined re-entrant double-arrow honeycomb. Thin-Walled Struct. 2024, 194, 111303. [Google Scholar] [CrossRef]
- Xu, C.; Li, Q.; Zhang, L.; Liu, Q.; Ren, L. Glass Sponge-inspired Auxetic Mechanical Metamaterials for Energy Absorption. J. Bionic Eng. 2024, 21, 2349–2365. [Google Scholar] [CrossRef]
- Lakes, R.; Wojciechowski, K.W. Negative compressibility, negative Poisson’s ratio, and stability. Phys. Status Solidi (B) 2008, 245, 545–551. [Google Scholar] [CrossRef]
- Photiou, D.; Prastiti, N.; Sarris, E.; Constantinides, G. On the conical indentation response of elastic auxetic materials: Effects of Poisson’s ratio, contact friction and cone angle. Int. J. Solids Struct. 2016, 81, 33–42. [Google Scholar] [CrossRef]
- Qi, C.; Remennikov, A.; Pei, L.-Z.; Yang, S.; Yu, Z.-H.; Ngo, T.D. Impact and close-in blast response of auxetic honeycomb-cored sandwich panels: Experimental tests and numerical simulations. Compos. Struct. 2017, 180, 161–178. [Google Scholar] [CrossRef]
- Jin, X.; Wang, Z.; Ning, J.; Xiao, G.; Liu, E.; Shu, X. Dynamic response of sandwich structures with graded auxetic honeycomb cores under blast loading. Compos. Part B Eng. 2016, 106, 206–217. [Google Scholar] [CrossRef]
- Wojciechowski, K.W. Two-dimensional isotropic system with a negative Poisson ratio. Phys. Lett. A 1989, 137, 60–64. [Google Scholar] [CrossRef]
- Grima, J.N.; Evans, K.E. Auxetic behavior from rotating squares. J. Mater. Sci. Lett. 2000, 19, 1563–1565. [Google Scholar] [CrossRef]
- Lim, T.C. Auxetic Metamaterial Model Made from Rotating Rectangles, Hexagons, and Triangles. Phys. Status Solidi (B) 2024, 2400343. [Google Scholar] [CrossRef]
- Lakes, R. Foam structures with a negative Poisson’s ratio. Science 1987, 235, 1038–1040. [Google Scholar] [CrossRef]
- Evans, K.E.; Nkansah, M.A.; Hutchinson, I.J.; Rogers, S.C. Molecular network design. Nature 1991, 353, 124. [Google Scholar] [CrossRef]
- Ren, X.; Das, R.; Tran, P.; Ngo, T.D.; Xie, Y.M. Auxetic metamaterials and structures: A review. Smart Mater. Struct. 2018, 27, 023001. [Google Scholar] [CrossRef]
- Zhang, J.; Lu, G.; You, Z. Large deformation and energy absorption of additively manufactured auxetic materials and structures: A review. Compos. Part B Eng. 2020, 201, 108340. [Google Scholar] [CrossRef]
- Yang, S.; Qi, C.; Wang, D.; Gao, R.; Hu, H.; Shu, J. A comparative study of ballistic resistance of sandwich panels with aluminum foam and auxetic honeycomb cores. Adv. Mech. Eng. 2013, 5, 589216. [Google Scholar] [CrossRef]
- Qi, C.; Yang, S.; Wang, D.; Yang, L.-J.; Lee, U.; Zhang, S. Ballistic resistance of honeycomb sandwich panels under in-plane high-velocity impact. Sci. World J. 2013, 2013, 892781. [Google Scholar] [CrossRef]
- Grujicic, M.; Galgalikar, R.; Snipes, J.; Yavari, R.; Ramaswami, S. Multi-physics modeling of the fabrication and dynamic performance of all-metal auxetic-hexagonal sandwich-structures. Mater. Des. 2013, 51, 113–130. [Google Scholar] [CrossRef]
- Imbalzano, G.; Tran, P.; Ngo, T.D.; Lee, P.V. A numerical study of auxetic composite panels under blast loadings. Compos. Struct. 2016, 135, 339–352. [Google Scholar] [CrossRef]
- Smardzewski, J.; Wojciechowski, K.W. Auxetic effect of irregularly corrugated cores of wood-based cosinecomb panels. Thin-Walled Struct. 2025, 210, 112989. [Google Scholar] [CrossRef]
- Xiao, D.; Chen, X.; Li, Y.; Wu, W.; Fang, D. The structure response of sandwich beams with metallic auxetic honeycomb cores under localized impulsive loading-experiments and finite element analysis. Mater. Des. 2019, 176, 107840. [Google Scholar] [CrossRef]
- Li, Y.; Chen, Z.; Xiao, D.; Wu, W.; Fang, D. The Dynamic response of shallow sandwich arch with auxetic metallic honeycomb core under localized impulsive loading. Int. J. Impact Eng. 2020, 137, 103442. [Google Scholar] [CrossRef]
- Liu, H.; Liu, J.; Wu, W. Energy absorption characteristics and multi-objective optimization of 3D bionic negative Poisson’s ratio honeycomb. Mater. Today Commun. 2024, 39, 109044. [Google Scholar] [CrossRef]
- Lan, X.; Feng, S.; Huang, Q.; Zhou, T. A comparative study of blast resistance of cylindrical sandwich panels with aluminum foam and auxetic honeycomb cores. Aerosp. Sci. Technol. 2019, 87, 37–47. [Google Scholar] [CrossRef]
- Lin, H.; Han, C.; Yang, L.; Zhang, L.; Luan, H.; Han, P.; Xu, H.; Zhang, S. Numerical investigation on performance optimization of offshore sandwich blast walls with different honeycomb cores subjected to blast loading. J. Mar. Sci. Eng. 2022, 10, 1743. [Google Scholar] [CrossRef]
- Pang, L.; Ma, Y.; Song, X.; Wang, H.; Wang, L.; Peng, W.; Wan, Y.; Feng, R. Experimental and simulation study on effects of material and loading direction on the quasi-static compression behavior of re-entrant honeycomb structure. Mater. Today Commun. 2024, 39, 109005. [Google Scholar] [CrossRef]
- Li, L.; He, Q.; Jing, X.; Jiang, Y.; Yan, D. Study on three-point bending behavior of sandwich beams with novel auxetic honeycomb core. Mater. Today Commun. 2023, 35, 106259. [Google Scholar] [CrossRef]
- Shao, Y.; Meng, J.; Ma, G.; Ren, S.; Fang, L.; Cao, X.; Liu, L.; Li, H.; Wu, W.; Xiao, D. Insight into the negative Poisson’s ratio effect of the gradient auxetic reentrant honeycombs. Compos. Struct. 2021, 274, 114366. [Google Scholar] [CrossRef]
- Li, Z.; Sun, H.; Wang, T.; Wang, L.; Su, X. Modularizing honeycombs for enhancement of strength and energy absorption. Compos. Struct. 2022, 279, 114744. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, L.; Daynes, S.; Zhang, H.; Feih, S.; Wang, M.Y. Design of graded lattice structure with optimized mesostructures for additive manufacturing. Mater. Des. 2018, 142, 114–123. [Google Scholar] [CrossRef]
- Wu, H.; Zhang, X.; Liu, Y. In-plane crushing behavior of density graded cross-circular honeycombs with zero Poisson’s ratio. Thin-Walled Struct. 2020, 151, 106767. [Google Scholar] [CrossRef]
- Novak, N.; Krstulović-Opara, L.; Ren, Z.; Vesenjak, M. Compression and shear behaviour of graded chiral auxetic structures. Mech. Mater. 2020, 148, 103524. [Google Scholar] [CrossRef]
- Zhang, J.; Song, B.; Yang, L.; Liu, R.; Zhang, L.; Shi, Y. Microstructure evolution and mechanical properties of TiB/Ti6Al4V gradient-material lattice structure fabricated by laser powder bed fusion. Compos. Part B Eng. 2020, 202, 108417. [Google Scholar] [CrossRef]
- Wu, X.; Su, Y.; Shi, J. In-plane impact resistance enhancement with a graded cell-wall angle design for auxetic metamaterials. Compos. Struct. 2020, 247, 112451. [Google Scholar] [CrossRef]
- Shen, C.J.; Lu, G.; Yu, T.X. Dynamic behavior of graded honeycombs–a finite element study. Compos. Struct. 2013, 98, 282–293. [Google Scholar] [CrossRef]
- Xiao, D.; Dong, Z.; Li, Y.; Wu, W.; Fang, D. Compression behavior of the graded metallic auxetic reentrant honeycomb: Experiment and finite element analysis. Mater. Sci. Eng. A 2019, 758, 163–171. [Google Scholar] [CrossRef]
- Zhang, E.T.; Liu, H.; Ng, B.F. Mechanics of re-entrant anti-trichiral honeycombs with nature-inspired gradient distributions. Int. J. Mech. Sci. 2023, 259, 108597. [Google Scholar] [CrossRef]
- Zhang, W.; Wang, H.; Li, X.; Shao, J. In-plane crushing behavior and energy absorption of novel X-shaped auxetic metamaterial: Experimental and numerical investigations. J. Mater. Sci. 2025, 60, 11048–11074. [Google Scholar] [CrossRef]
- Brańka, A.C.; Heyes, D.M.; Wojciechowski, K.W. Auxeticity of cubic materials under pressure. Phys. Status Solidi (B) 2011, 248, 96–104. [Google Scholar] [CrossRef]
Group | Number | Simulated Residual Deflection (mm) | Experimental Residual Deflection (mm) | Relative Error |
---|---|---|---|---|
Group-1 | 1-1 | 6.15 | 6.53 | 5.82% |
1-2 | 6.21 | 6.48 | 4.17% | |
Group-2 | 2-1 | 25.2 | 29.10 | 13.4% |
2-2 | 26.77 | 31.90 | 16.1% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, W.; Qi, T.; Wang, H.; Chen, X.; Li, X.; Shao, J. The Resistance of X-Shaped Re-Entrant Auxetic Sandwich Beams to Localized Impulsive Loading. Crystals 2025, 15, 776. https://doi.org/10.3390/cryst15090776
Zhang W, Qi T, Wang H, Chen X, Li X, Shao J. The Resistance of X-Shaped Re-Entrant Auxetic Sandwich Beams to Localized Impulsive Loading. Crystals. 2025; 15(9):776. https://doi.org/10.3390/cryst15090776
Chicago/Turabian StyleZhang, Wei, Tongtong Qi, Huiling Wang, Xiang Chen, Xiang Li, and Junhua Shao. 2025. "The Resistance of X-Shaped Re-Entrant Auxetic Sandwich Beams to Localized Impulsive Loading" Crystals 15, no. 9: 776. https://doi.org/10.3390/cryst15090776
APA StyleZhang, W., Qi, T., Wang, H., Chen, X., Li, X., & Shao, J. (2025). The Resistance of X-Shaped Re-Entrant Auxetic Sandwich Beams to Localized Impulsive Loading. Crystals, 15(9), 776. https://doi.org/10.3390/cryst15090776