Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (305)

Search Parameters:
Keywords = dissimilar material weld

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 7193 KiB  
Article
Effects of Defocus Distance and Weld Spacing on Microstructure and Properties of Femtosecond Laser Welded Quartz Glass-TC4 Alloy Joints with Residual Stress Analysis
by Gang Wang, Runbo Zhang, Xiangyu Xu, Ren Yuan, Xuteng Lv and Chenglei Fan
Materials 2025, 18(14), 3390; https://doi.org/10.3390/ma18143390 - 19 Jul 2025
Viewed by 251
Abstract
This study develops an optimized femtosecond laser welding process for joining quartz glass and TC4 titanium alloy (Ti-6Al-4V) under non-optical contact conditions, specifically addressing the manufacturing needs of specialized photoelectric effect research containers. The joint primarily consists of parallel laser-welded zones (WZ) interspersed [...] Read more.
This study develops an optimized femtosecond laser welding process for joining quartz glass and TC4 titanium alloy (Ti-6Al-4V) under non-optical contact conditions, specifically addressing the manufacturing needs of specialized photoelectric effect research containers. The joint primarily consists of parallel laser-welded zones (WZ) interspersed with base material. The defocus distance of the femtosecond laser predominantly influences the depth and phase composition of the WZ, while the weld spacing influences the crack distribution in the joint region. The maximum shear strength of 14.4 MPa was achieved at a defocusing distance of +0.1 mm (below the interface) and a weld spacing of 40 μm. The XRD stress measurements indicate that the defocusing distance mainly affects the stress along the direction of laser impact (DLI), whereas the weld spacing primarily influences the stress along the direction of spacing (DS). GPA results demonstrate that when the spacing is less than 30 μm, the non-uniform shrinkage inside the WZ induces tensile stress in the joint, leading to significant fluctuations in DS residual stress and consequently affecting the joint’s shear strength. This study investigates the effects of process parameters on the mechanical properties of dissimilar joints and, for the first time, analyzes the relationship between joint residual strain and femtosecond laser weld spacing, providing valuable insights for optimizing femtosecond laser welding processes. Full article
(This article belongs to the Section Manufacturing Processes and Systems)
Show Figures

Figure 1

29 pages, 8611 KiB  
Article
Study of Corrosion Resistance of Hybrid Structure of DP980 Two-Phase Steel and Laser-Welded 6013-T4 Aluminum Alloy
by Antonio Faria Neto, Erica Ximenes Dias, Francisco Henrique Cappi Freitas, Cristina Sayuri Fukugauchi, Erick Siqueira Guidi, Marcelo Sampaio Martins, Antonio Jorge Abdalla and Marcelo dos Santos Pereira
J. Manuf. Mater. Process. 2025, 9(7), 237; https://doi.org/10.3390/jmmp9070237 - 9 Jul 2025
Viewed by 468
Abstract
The future of the automotive industry appears to hinge on the integration of dissimilar materials, such as aluminum alloys and carbon steel. However, this combination can lead to galvanic corrosion, compromising the structural integrity. In this study, laser-welded joints of 6013-T4 aluminum alloy [...] Read more.
The future of the automotive industry appears to hinge on the integration of dissimilar materials, such as aluminum alloys and carbon steel. However, this combination can lead to galvanic corrosion, compromising the structural integrity. In this study, laser-welded joints of 6013-T4 aluminum alloy and DP980 steel were evaluated for their morphology, microhardness, and corrosion resistance. Corrosion resistance was assessed using the electrochemical noise technique over time in 0.1 M Na2SO4 and 3.5% NaCl solutions. The wavelet function was applied to remove the DC trend, and energy diagrams were generated to identify the type of corrosive process occurring on the electrodes. Corrosion on the electrodes was also monitored using photomicrographic images. Analysis revealed an aluminum–steel mixture in the melting zone, along with the presence of AlFe, AlFe3, and AlI3Fe4 intermetallic compounds. The highest Vickers microhardness was observed in the heat-affected zone, adjacent to the melt zone, where a martensitic microstructure was identified. The 6013-T4 aluminum alloy demonstrated the highest corrosion resistance in both media. Conversely, the electrochemical noise resistance was similar for the DP980 steel and the weld bead, indicating that the laser welding process does not significantly impact this property. The energy diagrams showed that localized pitting corrosion was the predominant form of corrosion. However, generalized and mixed corrosion were also observed, which corroborated the macroscopic analysis of the electrodes. Full article
Show Figures

Figure 1

8 pages, 2125 KiB  
Proceeding Paper
Experimental Analysis of Tensile and Metallurgical Properties in Similar and Dissimilar Metal Joints
by T. Sathish, M. Selvam, K. A. Harish, D. Vijay, G. Harish and D. Yashwant
Eng. Proc. 2025, 93(1), 3; https://doi.org/10.3390/engproc2025093003 - 30 Jun 2025
Viewed by 223
Abstract
This paper delves incto the tungsten inert gas (TIG) welding process, renowned for its efficacy in creating robust metal joints and widely employed in diverse industries for fusing similar or dissimilar materials. The focus of this study is the welding of mild steel [...] Read more.
This paper delves incto the tungsten inert gas (TIG) welding process, renowned for its efficacy in creating robust metal joints and widely employed in diverse industries for fusing similar or dissimilar materials. The focus of this study is the welding of mild steel with stainless steel, showcasing the method’s ability to amalgamate exceptionally sturdy metals and alloys. The resultant welded joints exhibit a meticulously refined microstructure and an impressive strength-to-weight ratio. The primary aim is to scrutinize TIG-welded joints, specifically those connecting mild steel with stainless steel, to elucidate their metallurgical and mechanical attributes. Notably, joints formed between distinct materials, such as mild steel and stainless steel, manifest commendable mechanical and metallurgical properties. This paper extensively investigates the metallurgical microstructures and tensile characteristics of both comparable and dissimilar metal junctions, contributing valuable insights to the field. Full article
Show Figures

Figure 1

17 pages, 3213 KiB  
Article
Influence of Surface Damage on Weld Quality and Joint Strength of Collision-Welded Aluminium Joints
by Stefan Oliver Kraus, Johannes Bruder, Florian Schuller and Peter Groche
Materials 2025, 18(13), 2944; https://doi.org/10.3390/ma18132944 - 21 Jun 2025
Viewed by 606
Abstract
Collision welding represents a promising solid-state joining technique for combining both similar and dissimilar metals without the thermal degradation of mechanical properties typically associated with fusion-based methods. This makes it particularly attractive for lightweight structural applications. In the context of collision welding, it [...] Read more.
Collision welding represents a promising solid-state joining technique for combining both similar and dissimilar metals without the thermal degradation of mechanical properties typically associated with fusion-based methods. This makes it particularly attractive for lightweight structural applications. In the context of collision welding, it is typically assumed that ideally smooth and defect-free surface conditions exist prior to welding. However, this does not consistently reflect industrial realities, where surface imperfections such as scratches are often unavoidable. Despite this, the influence of such surface irregularities on weld integrity and quality has not been comprehensively investigated to date. In this study, collision welding is applied to the material combination of AA6110A-T6 and AA6060-T6. Initially, the process window for this material combination is determined by systematically varying the collision velocity and collision angle—the two primary process parameters—using a special model test rig. Subsequently, the effect of surface imperfections in the form of defined scratch geometries on the resulting weld quality is investigated. In addition to evaluating the welding ratio and tensile shear strength, weld quality is assessed through scanning electron microscopy (SEM) of the bonding interface and high-speed imaging of jet formation during the collision process. Full article
Show Figures

Figure 1

55 pages, 20925 KiB  
Review
Current Trends and Emerging Strategies in Friction Stir Spot Welding for Lightweight Structures: Innovations in Tool Design, Robotics, and Composite Reinforcement—A Review
by Suresh Subramanian, Elango Natarajan, Ali Khalfallah, Gopal Pudhupalayam Muthukutti, Reza Beygi, Borhen Louhichi, Ramesh Sengottuvel and Chun Kit Ang
Crystals 2025, 15(6), 556; https://doi.org/10.3390/cryst15060556 - 11 Jun 2025
Cited by 1 | Viewed by 1945
Abstract
Friction stir spot welding (FSSW) is a solid-state joining technique increasingly favored in industries requiring high-quality, defect-free welds in lightweight and durable structures, such as the automotive, aerospace, and marine industries. This review examines the current advancements in FSSW, focusing on the relationships [...] Read more.
Friction stir spot welding (FSSW) is a solid-state joining technique increasingly favored in industries requiring high-quality, defect-free welds in lightweight and durable structures, such as the automotive, aerospace, and marine industries. This review examines the current advancements in FSSW, focusing on the relationships between microstructure, properties, and performance under load. FSSW offers numerous benefits over traditional welding, particularly for joining both similar and dissimilar materials. Key process parameters, including tool design, rotational speed, axial force, and dwell time, are discussed for their impact on weld quality. Innovations in robotics are enhancing FSSW’s accuracy and efficiency, while numerical simulations aid in optimizing process parameters and predicting material behavior. The addition of nano/microparticles, such as carbon nanotubes and graphene, has further improved weld strength and thermal stability. This review identifies areas for future research, including refining robotic programming, using artificial intelligence for autonomous welding, and exploring nano/microparticle reinforcement in FSSW composites. FSSW continues to advance solid-state joining technologies, providing critical insights for optimizing weld quality in sheet material applications. Full article
Show Figures

Figure 1

26 pages, 85427 KiB  
Article
Analysis of the Effects of Tandem Welding (Fronius TPS/i - TWIN) of S1100QL and S1300QL Steels
by Mateusz Karczewski, Krzysztof Mroczka, Sławomir Parzych, Piotr Bała, Grzegorz Cios, Janusz Mikuła and Grzegorz Jeż
Materials 2025, 18(11), 2577; https://doi.org/10.3390/ma18112577 - 31 May 2025
Viewed by 555
Abstract
S1100QL and S1300QL steels are classified as fine-grained steels with a low-carbon martensitic structure. Tandem welding is a method of creating a joint by melting two electrode wires in a one-behind-the-other configuration. This article presents the effects of creating dissimilar joints, elements of [...] Read more.
S1100QL and S1300QL steels are classified as fine-grained steels with a low-carbon martensitic structure. Tandem welding is a method of creating a joint by melting two electrode wires in a one-behind-the-other configuration. This article presents the effects of creating dissimilar joints, elements of varying thicknesses made from S1100QL and S1300QL steels. The analysis focused on temperature changes in the heat-affected zone (HAZ) during welding, as well as the macro and microstructure, and the properties of the joints created at welding speeds of 80, 90, and 100 cm/min. The shortest cooling time (t8/5) in the HAZ for S1300QL steel was 9.4 s, while the longest was 12.4 s. Thermal cycle simulations were performed for the analyzed materials, with a cooling time of 5 s. The test results demonstrated that TWIN welding was stable, and an optimum welding speed is 80 cm/min. The HAZ microstructure for the highest cooling speed (t8/5 = 5 s) of S1100QL steel contains, in addition to martensite, lower bainite, while S1300QL steel consists of martensite. Tempered martensite was also detected at slower cooling rates. For all speed variants, the impact energy is above 27 J at a test temperature of −40 °C. In turn, hardness tests showed that the base material for both steels has the highest hardness. However, the lowest hardness was found for the weld. Full article
(This article belongs to the Section Manufacturing Processes and Systems)
Show Figures

Figure 1

31 pages, 7884 KiB  
Article
Magnetic Pulse Welding of Dissimilar Materials: Weldability Window for AA6082-T6/HC420LA Stacks
by Mario A. Renderos Cartagena, Edurne Iriondo Plaza, Amaia Torregaray Larruscain, Marie B. Touzet-Cortina and Franck A. Girot Mata
Metals 2025, 15(6), 619; https://doi.org/10.3390/met15060619 - 30 May 2025
Viewed by 675
Abstract
Magnetic pulse welding (MPW) is a promising solid-state joining process that utilizes electromagnetic forces to create high-speed, impact-like collisions between two metal components. This welding technique is widely known for its ability to join dissimilar metals, including aluminum, steel, and copper, without the [...] Read more.
Magnetic pulse welding (MPW) is a promising solid-state joining process that utilizes electromagnetic forces to create high-speed, impact-like collisions between two metal components. This welding technique is widely known for its ability to join dissimilar metals, including aluminum, steel, and copper, without the need for additional filler materials or fluxes. MPW offers several advantages, such as minimal heat input, no distortion or warping, and excellent joint strength and integrity. The process is highly efficient, with welding times typically ranging from microseconds to milliseconds, making it suitable for high-volume production applications in sectors including automotive, aerospace, electronics, and various other industries where strong and reliable joints are required. It provides a cost-effective solution for joining lightweight materials, reducing weight and improving fuel efficiency in transportation systems. This contribution concerns an application for the automotive sector (body-in-white) and specifically examines the welding of AA6082-T6 aluminum alloy with HC420LA cold-rolled micro-alloyed steel. One of the main aspects for MPW optimization is the determination of the process window that does not depend on the equipment used but rather on the parameters associated with the physical mechanisms of the process. It was demonstrated that process windows based on contact angle versus output voltage diagrams can be of interest for production use for a given component (shock absorbers, suspension struts, chassis components, instrument panel beams, next-generation crash boxes, etc.). The process window based on impact pressures versus impact velocity for different impact angles, in addition to not depending on the equipment, allows highlighting other factors such as the pressure welding threshold for different temperatures in the impact zone, critical transition speeds for straight or wavy interface formation, and the jetting/no jetting effect transition. Experimental results demonstrated that optimal welding conditions are achieved with impact velocities between 900 and 1200 m/s, impact pressures of 3000–4000 MPa, and impact angles ranging from 18–35°. These conditions correspond to optimal technological parameters including gaps of 1.5–2 mm and output voltages between 7.5 and 8.5 kV. Successful welds require mean energy values above 20 kJ and weld specific energy values exceeding 150 kJ/m2. The study establishes critical failure thresholds: welds consistently failed when gap distances exceeded 3 mm, output voltage dropped below 5.5 kV, or impact pressures fell below 2000 MPa. To determine these impact parameters, relationships based on Buckingham’s π theorem provide a viable solution closely aligned with experimental reality. Additionally, shear tests were conducted to determine weld cohesion, enabling the integration of mechanical resistance isovalues into the process window. The findings reveal an inverse relationship between impact angle and weld specific energy, with higher impact velocities producing thicker intermetallic compounds (IMCs), emphasizing the need for careful parameter optimization to balance weld strength and IMC formation. Full article
(This article belongs to the Topic Welding Experiment and Simulation)
Show Figures

Figure 1

16 pages, 8610 KiB  
Article
Effect of Elastic Strain Energy on Dynamic Recrystallization During Friction Stir Welding of Dissimilar Al/Mg Alloys
by Faliang He, Lei Shi and Chuansong Wu
Metals 2025, 15(6), 577; https://doi.org/10.3390/met15060577 - 23 May 2025
Viewed by 417
Abstract
Dynamic recrystallization (DRX) is a critical microstructural evolution mechanism in friction stir welding (FSW) of metallic materials, directly determining the mechanical properties and corrosion resistance of weld joints. In the field of DRX simulation, conventional models primarily consider intragranular dislocation strain energy as [...] Read more.
Dynamic recrystallization (DRX) is a critical microstructural evolution mechanism in friction stir welding (FSW) of metallic materials, directly determining the mechanical properties and corrosion resistance of weld joints. In the field of DRX simulation, conventional models primarily consider intragranular dislocation strain energy as the driving force for recrystallization, while neglecting the elastic strain energy generated by coordinated deformation in polycrystalline materials. This study presents an improved DRX modeling framework that incorporates the multiphase-field method to systematically investigate the role of elastic strain energy in microstructural evolution during FSW of Al/Mg dissimilar materials. The results demonstrate that elastic strain energy can modulate nucleation and the growth of recrystallized grains during microstructural evolution, resulting in post-weld average grain size increases of 0.8% on the Al side and 2.1% on the Mg side in the FSW nugget zone. This research provides new insights into multi-energy coupling mechanisms in DRX simulation and offers theoretical guidance for process optimization in dissimilar material welding. Full article
(This article belongs to the Special Issue Friction Stir Welding and Processing of Dissimilar Materials)
Show Figures

Graphical abstract

37 pages, 6043 KiB  
Review
Analysis of Friction Stir Welding of Aluminum Alloys
by Ikram Feddal, Mohamed Chairi and Guido Di Bella
Metals 2025, 15(5), 532; https://doi.org/10.3390/met15050532 - 9 May 2025
Cited by 1 | Viewed by 2126
Abstract
Friction Stir Welding (FSW) is a solid-state joining technique that has gained widespread adoption, particularly for aluminum alloys, due to its ability to produce high-quality welds without melting base materials. This comprehensive review focuses on the influence of process parameters on weld characteristics [...] Read more.
Friction Stir Welding (FSW) is a solid-state joining technique that has gained widespread adoption, particularly for aluminum alloys, due to its ability to produce high-quality welds without melting base materials. This comprehensive review focuses on the influence of process parameters on weld characteristics and performance. Compared to conventional fusion welding methods, FSW offers notable advantages, including superior mechanical properties, fewer defects, enhanced corrosion resistance, and lower environmental impact. The review also addresses key challenges such as tool wear, precise process control, and complications arising from welding dissimilar alloys. By synthesizing recent developments and case studies, this work outlines current limitations and proposes future directions for optimizing the FSW process to expand its applicability in critical engineering sectors. Full article
(This article belongs to the Section Welding and Joining)
Show Figures

Figure 1

26 pages, 5352 KiB  
Article
Optimization of Rotary Friction Welding Parameters Through AI-Augmented Digital Twin Systems
by Piotr Lacki, Janina Adamus, Kuba Lachs and Wiktor Lacki
Materials 2025, 18(9), 1923; https://doi.org/10.3390/ma18091923 - 24 Apr 2025
Viewed by 670
Abstract
In this study, Artificial Neural Networks (ANN) were employed to develop a Digital Twin (DT) of the Rotary Friction Welding (RFW) process. The neural network models were trained to predict the peak temperature generated during the welding process of dissimilar Ti Grade 2/AA [...] Read more.
In this study, Artificial Neural Networks (ANN) were employed to develop a Digital Twin (DT) of the Rotary Friction Welding (RFW) process. The neural network models were trained to predict the peak temperature generated during the welding process of dissimilar Ti Grade 2/AA 5005 joints over a temperature range of 20–640 °C. This prediction was based on a parametric numerical model of the RFW process constructed using the Finite Element Method (FEM) within the ADINA System software. Numerical simulations enabled a detailed analysis of the temperature distribution within the weldment. Accurate temperature predictions are essential for assessing the mechanical properties and microstructural integrity of the welded materials. Artificial Intelligence (AI) models, trained on historical data and real-time inputs, dynamically adjust critical process parameters—such as rotational speed, axial force, and friction time—to maintain optimal weld quality. A key advantage of employing AI-augmented DT systems in the RFW process is the ability to conduct real-time (less than 0.1 s) optimization and adaptive control. By integrating a Genetic Algorithm (GA) with the DT algorithm of the RFW process, the authors developed an effective tool for analyzing parameters such as axial force and rotational speed, in order to determine the optimal welding conditions, which translates into improved joint quality, minimized defects, and maximized process efficiency. Full article
(This article belongs to the Special Issue Artificial Intelligence in Materials Science and Engineering)
Show Figures

Figure 1

23 pages, 4255 KiB  
Review
Trends and Future Projections in Ultrasonic Welding Research for Hybrid Materials
by Jedaías J. Silva, Rafael G. C. da Silva, Carolina L. Morelli, Edwar A. T. López and Tiago F. A. Santos
Polymers 2025, 17(8), 1124; https://doi.org/10.3390/polym17081124 - 21 Apr 2025
Viewed by 885
Abstract
Ultrasonic welding has gained interest from various researchers and industries worldwide, particularly for joining dissimilar materials in sectors such as aerospace, aeronautics, and electronics. This paper presents a comprehensive bibliometric review aimed at mapping the evolving landscape of ultrasonic welding research. Through the [...] Read more.
Ultrasonic welding has gained interest from various researchers and industries worldwide, particularly for joining dissimilar materials in sectors such as aerospace, aeronautics, and electronics. This paper presents a comprehensive bibliometric review aimed at mapping the evolving landscape of ultrasonic welding research. Through the systematic analysis of 1913 scientific documents, it identifies key advances, challenges, and future directions in the field. Furthermore, the bibliometric analysis sheds light on annual scientific production, prolific authors and institutions, scientific contribution per country, and methodological approaches. The global collaboration network comprises countries from all continents, with a prominent presence in Europe, Asia, and the Americas and less representation from African and Oceanian countries. China and the United States dominate the field in terms of scientific document production, international collaborations, and citations, with Germany also standing out for leading the number of citations in research related to hybrid metal/polymer joining. This review aims to serve as a valuable resource for researchers, practitioners, and policymakers interested in the advancements and future directions of ultrasonic welding for hybrid materials. Full article
(This article belongs to the Special Issue Polymer Joining Techniques: Innovations, Challenges, and Applications)
Show Figures

Figure 1

24 pages, 20493 KiB  
Article
Enhancing High-Temperature Durability of Aluminum/Steel Joints: The Role of Ni and Cr in Substitutional Diffusion Within Intermetallic Compounds
by Masih Bolhasani Hesari, Reza Beygi, Tiago O. G. Teixeira, Eduardo A. S. Marques, Ricardo J. C. Carbas and Lucas F. M. da Silva
Metals 2025, 15(4), 465; https://doi.org/10.3390/met15040465 - 20 Apr 2025
Viewed by 415
Abstract
The automotive and aerospace industries increasingly rely on lightweight, high-strength materials to improve fuel efficiency, making the joining of dissimilar metals such as aluminum and steel both beneficial and essential. However, a major challenge in these joints is the formation of brittle intermetallic [...] Read more.
The automotive and aerospace industries increasingly rely on lightweight, high-strength materials to improve fuel efficiency, making the joining of dissimilar metals such as aluminum and steel both beneficial and essential. However, a major challenge in these joints is the formation of brittle intermetallic compounds (IMCs) at the interface, even when using low heat-input solid-state welding methods like friction stir welding (FSW). Furthermore, IMC growth at elevated temperatures significantly limits the service life of these joints. In this study, an intermediate layer of stainless steel was deposited on the steel surface prior to FSW with aluminum. The resulting Al–Steel joints were subjected to heat treatment at 400 °C and 550 °C to investigate IMC growth and its impact on mechanical strength, with results compared to conventional joints without the intermediate layer. The intermediate layer significantly suppressed IMC formation, leading to a smaller reduction in mechanical strength after heat treatment. Joints with the intermediate layer achieved their highest strength (350 MPa) after heat treatment at 400 °C, while conventional joints exhibited their highest strength (225 MPa) in the as-welded condition. At 550 °C, both joint types experienced a decline in strength; however, the joint with the intermediate layer retained a strength of 100 MPa, whereas the conventional joint lost its strength entirely. This study provides an in-depth analysis of the role of IMC growth in joint strength and demonstrates how the intermediate layer enhances the thermal durability and mechanical performance of Al–Steel joints, offering valuable insights for their application in high-temperature environments. Full article
(This article belongs to the Special Issue Welding and Joining Technology of Dissimilar Metal Materials)
Show Figures

Figure 1

18 pages, 8096 KiB  
Article
Improved Microstructure Evolution and Corrosion Resistance in Friction-Welded Dissimilar AISI 1010/D3 Steel Joints Through Post-Weld Heat Treatment
by Rajesh Jesudoss Hynes Navasingh, T. Packiaraj Rajendran, Maria P. Nikolova, C P Goldin Priscilla, Piotr Niesłony and Krzysztof Żak
J. Manuf. Mater. Process. 2025, 9(4), 124; https://doi.org/10.3390/jmmp9040124 - 8 Apr 2025
Viewed by 568
Abstract
To achieve the desired material properties of automotive components made by friction welding, post-weld heat treatment is critical. The high temperatures encountered during the friction welding of steels can lead to changes in the microstructure, especially in the heat-affected zones. In the present [...] Read more.
To achieve the desired material properties of automotive components made by friction welding, post-weld heat treatment is critical. The high temperatures encountered during the friction welding of steels can lead to changes in the microstructure, especially in the heat-affected zones. In the present work, a D3 tool steel and an AISI1010 structural steel are friction welded by varying the rotational speed, and this is followed by post-weld heat treatment. Microstructural evaluation was performed on the friction-welded joints and those produced after heat treatment. Micrographs taken by scanning electron microscope show the formation of distinct zones with ultrafine grains at the interface. Zone measurements at the interfaces of the joints provide information on the proportions of the various zones formed during friction welding. Depending on the rotation speed, the width of the heat-affected zone (HAZ) can range from 10.8 to 19.5 mm, and the width of the total deformed zone varies from 700 to 1070 µm. The width of the fully plasticized zone is between 48 and 380 microns. The region of the friction-welded joint at 1600 rpm shows fine ferrite grains with a width of 48 µm FPDZ, which increase the strength of the joint according to the Hall–Petch equation. Primary carbides are dissolved in the ferrite matrix, and secondary carbides are formed due to the effects of alloying elements such as chromium in particular. Although the formation of secondary carbides cannot be prevented, at higher speeds the primary carbides are dissolved and the tendency to form secondary carbides is reduced. Post-weld heat treatment helps to redistribute these phases and leads to a more homogeneous material structure. The results show that post-weld heat treatment greatly improved the corrosion resistance of dissimilar AISI 1010/D3 steel joints produced by means of friction welding. Coarse grains have been eliminated, and thus the galvanic corrosion at the weld interface is alleviated and reduced. Post-weld heat treatment reduces the corrosion rate and weight loss significantly, by 54.8% and 60%. Full article
(This article belongs to the Special Issue Advances in Dissimilar Metal Joining and Welding)
Show Figures

Figure 1

21 pages, 78310 KiB  
Article
Effect of Laser Power on Formation and Joining Strength of DP980-CFRP Joint Fabricated by Laser Circle Welding
by Sendong Ren, Yihao Shen, Taowei Wang, Hao Chen, Ninshu Ma and Jianguo Yang
Polymers 2025, 17(7), 997; https://doi.org/10.3390/polym17070997 - 7 Apr 2025
Viewed by 493
Abstract
In the present research, laser circle welding (LCW) was proposed to join dual-phase steel (DP980) and carbon fiber-reinforced plastic (CFRP). The welding appearance, cross-section of the welded joint and fracture surfaces were subjected to multi-scale characterizations. Joining strength was evaluated by the single-lap [...] Read more.
In the present research, laser circle welding (LCW) was proposed to join dual-phase steel (DP980) and carbon fiber-reinforced plastic (CFRP). The welding appearance, cross-section of the welded joint and fracture surfaces were subjected to multi-scale characterizations. Joining strength was evaluated by the single-lap shear test. Moreover, a numerical model was established based on the in-house finite element (FE) code JWRIAN-Hybrid to reproduce the thermal process of LCW. The results showed that successful bonding was achieved with a laser power higher than 300 W. The largest joining strength increased to about 1353.2 N (12.2 MPa) with 450 W laser power and then decreased under higher heat input. While the welded joint always presented brittle fracture, the joining zone could be divided into a squeezed zone (SZ), molten zone (MZ) and decomposition zone (DZ). The morphology of CFRP and chemical bonding information were distinct in each subregion. The chemical reaction between the O-C=O bond on the CFRP surface and the -OH bond on the DP980 sheet provided the joining force between dissimilar materials. Additionally, the developed FE model was effective in predicting the interfacial maximum temperature distribution of LCW. The influence of laser power on the joining strength of LCW joints was dualistic in character. The joining strength variation reflected the competitive result between joining zone expansion and local bonding quality change. Full article
(This article belongs to the Special Issue Advanced Joining Technologies for Polymers and Polymer Composites)
Show Figures

Figure 1

11 pages, 7459 KiB  
Article
Experimental Study on Laser Lap Welding of Aluminum–Steel with Pre-Fabricated Copper–Nickel Binary Coating
by Hua Zhang, Huiyan Gu and Dong Ma
Crystals 2025, 15(4), 300; https://doi.org/10.3390/cryst15040300 - 25 Mar 2025
Cited by 1 | Viewed by 481
Abstract
In order to solve the problem of poor weld quality caused by brittle metal compounds in the welding of dissimilar metals between aluminum and steel, a pre-welding treatment method of prefabricated copper–nickel binary coating between aluminum and steel has been proposed. Laser lap [...] Read more.
In order to solve the problem of poor weld quality caused by brittle metal compounds in the welding of dissimilar metals between aluminum and steel, a pre-welding treatment method of prefabricated copper–nickel binary coating between aluminum and steel has been proposed. Laser lap welding tests and weld performance tests were conducted using 6061 aluminum alloy and DP590 duplex steel with a thickness of 0.5 mm as base materials, with steel on top and aluminum on bottom. The research results indicate that the prefabricated copper–nickel binary coating can effectively suppress the formation of brittle phase compounds of Fe and Al; the increase of copper and nickel elements is beneficial for the formation of tough compounds such as (Fe, Cu, Ni)3Al, (Fe, Cu, Ni)Al3, and CuAl5 in the weld zone; when the thickness of the copper coating is 155 μm and the thickness of the nickel coating is 110 μm, the mechanical properties of the aluminum steel lap welding seam are the best, and the maximum shear force that can be withstood is 208.09 N, which is 56% higher than uncoated sample. Full article
Show Figures

Figure 1

Back to TopTop