Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (2,972)

Search Parameters:
Keywords = displacement control

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 2902 KiB  
Article
Analysis of Sand Production Mechanisms in Tight Gas Reservoirs: A Case Study from the Wenxing Gas Area, Northwestern Sichuan Basin
by Qilin Liu, Xinyao Zhang, Cheng Du, Kaixiang Di, Shiyi Xie, Huiying Tang, Jing Luo and Run Shu
Processes 2025, 13(7), 2278; https://doi.org/10.3390/pr13072278 - 17 Jul 2025
Abstract
In tight sandstone gas reservoirs, proppant flowback severely limits stable gas production. This study uses laboratory flowback experiments and field analyses of the ShaXimiao tight sandstone in the Wenxing gas area to investigate the mechanisms controlling sand production. The experiments show that displacing [...] Read more.
In tight sandstone gas reservoirs, proppant flowback severely limits stable gas production. This study uses laboratory flowback experiments and field analyses of the ShaXimiao tight sandstone in the Wenxing gas area to investigate the mechanisms controlling sand production. The experiments show that displacing fluid viscosity significantly affects the critical sand-flow velocity: with high-viscous slickwater (5 mPa·s), the critical velocity is 66% lower than with low-viscous formation water (1.15 mPa·s). The critical velocity for coated proppant is three times that of the mixed quartz sand and coated proppant. If the confining pressure is maintained, but the flow rate is further increased after the proppant flowback, a second instance of sand production can be observed. X-ray diffraction (XRD) tests were conducted for sand produced from practical wells to help find the sand production reasons. Based on experimental and field data analysis, sand production in Well X-1 primarily results from proppant detachment during rapid shut-in/open cycling operations, while in Well X-2, it originates from proppant crushing. The risk of formation sand production is low for both wells (the volumetric fraction of calcite tested from the produced sands is smaller than 0.5%). These findings highlight the importance of fluid viscosity, proppant consolidation, and pressure management in controlling sand production. Full article
(This article belongs to the Special Issue Advances in Enhancing Unconventional Oil/Gas Recovery, 2nd Edition)
Show Figures

Figure 1

33 pages, 617 KiB  
Article
Discourse of Military-Assisted Urban Regeneration in Colombo: Political and Elite Influences on Displacing Underserved Communities in Postwar Sri Lanka
by Janak Ranaweera, Sandeep Agrawal and Rob Shields
Real Estate 2025, 2(3), 11; https://doi.org/10.3390/realestate2030011 - 17 Jul 2025
Abstract
This study examines the political and elite motives behind Colombo’s ‘world-class city’ initiative and its impact on public housing in underserved communities. Informed by interviews with high-ranking government officials, including urban planning experts and military officers, this study examines how President Rajapaksa’s elite-driven [...] Read more.
This study examines the political and elite motives behind Colombo’s ‘world-class city’ initiative and its impact on public housing in underserved communities. Informed by interviews with high-ranking government officials, including urban planning experts and military officers, this study examines how President Rajapaksa’s elite-driven postwar Sri Lankan government leveraged military capacities within the neoliberal developmental framework to transform Colombo’s urban space for political and economic goals, often at the expense of marginalized communities. Applying a contextual discourse analysis model, which views discourse as a constellation of arguments within a specific context, we critically analyzed interview discussions to clarify the rationale behind the militarized approach to public housing while highlighting its contradictions, including the displacement of underserved communities and the ethical concerns associated with compulsory relocation. The findings suggest that Colombo’s postwar public housing program was utilized to consolidate authoritarian control and promote speculative urban transformation, treating public housing as a secondary aspect of broader political and economic agendas. Anchored in militarized urban governance, these elite-driven strategies failed to achieve their anticipated economic objectives and deepened socio-spatial inequalities, raising serious concerns about exclusionary and undemocratic planning practices. The paper recommends that future urban planning strike a balance between economic objectives and principles of spatial justice, inclusion, and participatory governance, promoting democratic and socially equitable urban development. Full article
Show Figures

Figure 1

22 pages, 5031 KiB  
Article
Numerical Simulation and Analysis of Micropile-Raft Joint Jacking Technology for Rectifying Inclined Buildings Due to Uneven Settlement
by Ming Xie, Li’e Yin, Zhangdong Wang, Fangbo Xu, Xiangdong Wu and Mengqi Xu
Buildings 2025, 15(14), 2485; https://doi.org/10.3390/buildings15142485 - 15 Jul 2025
Viewed by 67
Abstract
To address the issue of structural tilting caused by uneven foundation settlement in soft soil areas, this study combined a specific engineering case to conduct numerical simulations of the rectification process for an inclined reinforced concrete building using ABAQUS finite element software. Micropile-raft [...] Read more.
To address the issue of structural tilting caused by uneven foundation settlement in soft soil areas, this study combined a specific engineering case to conduct numerical simulations of the rectification process for an inclined reinforced concrete building using ABAQUS finite element software. Micropile-raft combined jacking technology was employed, applying staged jacking forces (2400 kN for Axis A, 2200 kN for Axis B, and 1700 kN for Axis C) with precise control through 20 incremental steps. The results demonstrate that this technology effectively halted structural tilting, reducing the maximum inclination rate from 0.51% to 0.05%, significantly below the standard limit. Post-rectification, the peak structural stress decreased by 42%, and displacements were markedly reduced. However, the jacking process led to a notable increase in the column axial forces and directional changes in beam bending moments, reflecting the dynamic redistribution of internal forces. The study confirms that micropile-raft combined jacking technology offers both controllability and safety, while optimized counterforce pile layouts enhance the long-term stability of the rectification system. Based on stress and displacement cloud analysis, a monitoring scheme is proposed, forming an integrated “rectification-monitoring-reinforcement” solution, which provides a technical framework for building rectification in soft soil regions. Full article
Show Figures

Figure 1

34 pages, 1456 KiB  
Project Report
On Control Synthesis of Hydraulic Servomechanisms in Flight Controls Applications
by Ioan Ursu, Daniela Enciu and Adrian Toader
Actuators 2025, 14(7), 346; https://doi.org/10.3390/act14070346 - 14 Jul 2025
Viewed by 53
Abstract
This paper presents some of the most significant findings in the design of a hydraulic servomechanism for flight controls, which were primarily achieved by the first author during his activity in an aviation institute. These results are grouped into four main topics. The [...] Read more.
This paper presents some of the most significant findings in the design of a hydraulic servomechanism for flight controls, which were primarily achieved by the first author during his activity in an aviation institute. These results are grouped into four main topics. The first one outlines a classical theory, from the 1950s–1970s, of the analysis of nonlinear automatic systems and namely the issue of absolute stability. The uninformed public may be misled by the adjective “absolute”. This is not a “maximalist” solution of stability but rather highlights in the system of equations a nonlinear function that describes, for the case of hydraulic servomechanisms, the flow-control dependence in the distributor spool. This function is odd, and it is therefore located in quadrants 1 and 3. The decision regarding stability is made within the so-called Lurie problem and is materialized by a matrix inequality, called the Lefschetz condition, which must be satisfied by the parameters of the electrohydraulic servomechanism and also by the components of the control feedback vector. Another approach starts from a classical theorem of V. M. Popov, extended in a stochastic framework by T. Morozan and I. Ursu, which ends with the description of the local and global spool valve flow-control characteristics that ensure stability in the large with respect to bounded perturbations for the mechano-hydraulic servomechanism. We add that a conjecture regarding the more pronounced flexibility of mathematical models in relation to mathematical instruments (theories) was used. Furthermore, the second topic concerns, the importance of the impedance characteristic of the mechano-hydraulic servomechanism in preventing flutter of the flight controls is emphasized. Impedance, also called dynamic stiffness, is defined as the ratio, in a dynamic regime, between the output exerted force (at the actuator rod of the servomechanism) and the displacement induced by this force under the assumption of a blocked input. It is demonstrated in the paper that there are two forms of the impedance function: one that favors the appearance of flutter and another that allows for flutter damping. It is interesting to note that these theoretical considerations were established in the institute’s reports some time before their introduction in the Aviation Regulation AvP.970. However, it was precisely the absence of the impedance criterion in the regulation at the appropriate time that ultimately led, by chance or not, to a disaster: the crash of a prototype due to tailplane flutter. A third topic shows how an important problem in the theory of automatic systems of the 1970s–1980s, namely the robust synthesis of the servomechanism, is formulated, applied and solved in the case of an electrohydraulic servomechanism. In general, the solution of a robust servomechanism problem consists of two distinct components: a servo-compensator, in fact an internal model of the exogenous dynamics, and a stabilizing compensator. These components are adapted in the case of an electrohydraulic servomechanism. In addition to the classical case mentioned above, a synthesis problem of an anti-windup (anti-saturation) compensator is formulated and solved. The fourth topic, and the last one presented in detail, is the synthesis of a fuzzy supervised neurocontrol (FSNC) for the position tracking of an electrohydraulic servomechanism, with experimental validation, in the laboratory, of this control law. The neurocontrol module is designed using a single-layered perceptron architecture. Neurocontrol is in principle optimal, but it is not free from saturation. To this end, in order to counteract saturation, a Mamdani-type fuzzy logic was developed, which takes control when neurocontrol has saturated. It returns to neurocontrol when it returns to normal, respectively, when saturation is eliminated. What distinguishes this FSNC law is its simplicity and efficiency and especially the fact that against quite a few opponents in the field, it still works very well on quite complicated physical systems. Finally, a brief section reviews some recent works by the authors, in which current approaches to hydraulic servomechanisms are presented: the backstepping control synthesis technique, input delay treated with Lyapunov–Krasovskii functionals, and critical stability treated with Lyapunov–Malkin theory. Full article
(This article belongs to the Special Issue Advanced Technologies in Actuators for Control Systems)
23 pages, 3056 KiB  
Article
Methodology for Evaluating Collision Avoidance Maneuvers Using Aerodynamic Control
by Desiree González Rodríguez, Pedro Orgeira-Crespo, Jose M. Nuñez-Ortuño and Fernando Aguado-Agelet
Remote Sens. 2025, 17(14), 2437; https://doi.org/10.3390/rs17142437 - 14 Jul 2025
Viewed by 86
Abstract
The increasing congestion of low Earth orbit (LEO) has raised the need for efficient collision avoidance strategies, especially for CubeSats without propulsion systems. This study proposes a methodology for evaluating passive collision avoidance maneuvers using aerodynamic control via a satellite’s Attitude Determination and [...] Read more.
The increasing congestion of low Earth orbit (LEO) has raised the need for efficient collision avoidance strategies, especially for CubeSats without propulsion systems. This study proposes a methodology for evaluating passive collision avoidance maneuvers using aerodynamic control via a satellite’s Attitude Determination and Control System (ADCS). By adjusting orientation, the satellite modifies its exposed surface area, altering atmospheric drag and lift forces to shift its orbit. This new approach integrates atmospheric modeling (NRLMSISE-00), aerodynamic coefficient estimation using the ADBSat panel method, and orbital simulations in Systems Tool Kit (STK). The LUME-1 CubeSat mission is used as a reference case, with simulations at three altitudes (500, 460, and 420 km). Results show that attitude-induced drag modulation can generate significant orbital displacements—measured by Horizontal and Vertical Distance Differences (HDD and VDD)—sufficient to reduce collision risk. Compared to constant-drag models, the panel method offers more accurate, orientation-dependent predictions. While lift forces are minor, their inclusion enhances modeling fidelity. This methodology supports the development of low-resource, autonomous collision avoidance systems for future CubeSat missions, particularly in remote sensing applications where orbital precision is essential. Full article
(This article belongs to the Special Issue Advances in CubeSat Missions and Applications in Remote Sensing)
Show Figures

Figure 1

16 pages, 57657 KiB  
Article
InSAR Inversion of the Source Mechanism of the 23 January 2024 Xinjiang Wushi Mw7.0 Earthquake
by Mingyang Jin, Yongsheng Li and Yujiang Li
Remote Sens. 2025, 17(14), 2435; https://doi.org/10.3390/rs17142435 - 14 Jul 2025
Viewed by 126
Abstract
The Mw7.0 earthquake that occurred on 23 January 2024, in Wushi County, Xinjiang, China, was centered on the Maidan fault, located at the rear edge of the Kalpin reverse-thrust system in the southwestern Tianshan Mountains, at a depth of 13 km. [...] Read more.
The Mw7.0 earthquake that occurred on 23 January 2024, in Wushi County, Xinjiang, China, was centered on the Maidan fault, located at the rear edge of the Kalpin reverse-thrust system in the southwestern Tianshan Mountains, at a depth of 13 km. This event caused significant surface deformation and triggered a series of secondary geologic hazards. In this study, data from two satellites, Sentinel-1A and LuTan-1, were combined to obtain the coseismic deformation field of the earthquake. The two-step inversion method was applied to determine the geometrical parameters and slip characteristics of the mainshock fault. The results indicate that the seismicity is primarily driven by reverse faulting, with a contribution from sinistral strike–slip faulting, and the maximum dip–slip displacement is 4.2 m. Additionally, an aftershock of magnitude 5.7 occurring on January 30 was identified in the LT-1 data. This aftershock was controlled by a reverse fault dipping opposite to the mainshock fault, and its maximum slip is 0.65 m. Analysis of the Coulomb stress triggering effect suggests that the Wushi earthquake may have induced the aftershock. Full article
Show Figures

Figure 1

21 pages, 48276 KiB  
Article
Research on the Energy Transfer Law of Polymer Gel Profile Control Flooding in Low-Permeability Oil Reservoirs
by Chen Wang, Yongquan Deng, Yunlong Liu, Gaocheng Li, Ping Yi, Bo Ma and Hui Gao
Gels 2025, 11(7), 541; https://doi.org/10.3390/gels11070541 - 11 Jul 2025
Viewed by 139
Abstract
To investigate the energy conduction behavior of polymer gel profile control and flooding in low-permeability reservoirs, a parallel dual-tube displacement experiment was conducted to simulate reservoirs with different permeability ratios. Injection schemes included constant rates from 0.40 to 1.20 mL/min and dynamic injection [...] Read more.
To investigate the energy conduction behavior of polymer gel profile control and flooding in low-permeability reservoirs, a parallel dual-tube displacement experiment was conducted to simulate reservoirs with different permeability ratios. Injection schemes included constant rates from 0.40 to 1.20 mL/min and dynamic injection from 1.20 to 0.40 mL/min. Pressure monitoring and shunt analysis were used to evaluate profile control and recovery performance. The results show that polymer gel preferentially enters high-permeability layers, transmitting pressure more rapidly than in low-permeability zones. At 1.20 mL/min, pressure onset at 90 cm in the high-permeability layer occurs earlier than in the low-permeability layer. Higher injection rates accelerate pressure buildup. At 0.80 mL/min, permeability contrast is minimized, achieving a 22.96% recovery rate in low-permeability layers. The combination effect of 1.2–0.4 mL/min is the best in dynamic injection, with the difference in shunt ratio of 9.6% and the recovery rate of low permeability layer increased to 31.23%. Polymer gel improves oil recovery by blocking high-permeability channels, expanding the swept volume, and utilizing viscoelastic properties. Full article
(This article belongs to the Special Issue Applications of Gels for Enhanced Oil Recovery)
Show Figures

Figure 1

13 pages, 5309 KiB  
Article
Fungi Associated with Dying Buckthorn in North America
by Ryan D. M. Franke, Nickolas N. Rajtar and Robert A. Blanchette
Forests 2025, 16(7), 1148; https://doi.org/10.3390/f16071148 - 11 Jul 2025
Viewed by 213
Abstract
Common buckthorn (Rhamnus cathartica L.) is a small tree that forms dense stands, displacing native plant species and threatening natural forest habitats in its introduced range in North America. Removal via cutting is labor intensive and often ineffective due to vigorous resprouting. [...] Read more.
Common buckthorn (Rhamnus cathartica L.) is a small tree that forms dense stands, displacing native plant species and threatening natural forest habitats in its introduced range in North America. Removal via cutting is labor intensive and often ineffective due to vigorous resprouting. Although chemical control methods are effective, they can negatively affect sensitive ecosystems. A mycoherbicide that selectively kills buckthorn would provide an additional method for control. In the present study, fungi were collected from dying buckthorn species (Frangula alnus Mill., Rhamnus cathartica, Ventia alnifolia L’Hér) located at 19 sites across Minnesota and Wisconsin for their potential use as mycoherbicides for common buckthorn. A total of 412 fungi were isolated from samples of diseased tissue and identified via DNA extraction and sequencing. These fungi were identified as 120 unique taxa belonging to 81 genera. Of these fungi, 46 species belonging to 26 genera were considered to be canker or root-rot pathogens of woody plants, including species in Cytospora, Diaporthe, Diplodia, Dothiorella, Eutypella, Fusarium, Hymenochaete, Irpex, Phaeoacemonium, and others. A future study testing the pathogenicity of these putative pathogens of buckthorn is now needed to assess their utility as potential mycoherbicide agents for control of common buckthorn. Full article
(This article belongs to the Special Issue Pathogenic Fungi in Forest)
Show Figures

Figure 1

22 pages, 7152 KiB  
Article
Comprehensive Substantiation of the Impact of Pre-Support Technology on a 50-Year-Old Subway Station During the Construction of Undercrossing Tunnel Lines
by Bin Zhang, Shaohui He, Jianfei Ma, Jiaxin He, Yiming Li and Jinlei Zheng
Infrastructures 2025, 10(7), 183; https://doi.org/10.3390/infrastructures10070183 - 11 Jul 2025
Viewed by 106
Abstract
Due to the long operation period of Beijing Metro Line 2 and the complex surrounding building environment, this paper comprehensively studied the mechanical properties of new tunnels using close-fitting undercrossing based on pre-support technology. To control structural deformation caused by the expansion project, [...] Read more.
Due to the long operation period of Beijing Metro Line 2 and the complex surrounding building environment, this paper comprehensively studied the mechanical properties of new tunnels using close-fitting undercrossing based on pre-support technology. To control structural deformation caused by the expansion project, methods such as laboratory tests, numerical simulation, and field tests were adopted to systematically analyze the tunnel mechanics during the undercrossing of existing metro lines. First, field tests were carried out on the existing Line 2 and Line 3 tunnels during the construction period. It was found that the close-fitting construction based on pre-support technology caused small deformation displacement in the subway tunnels, with little impact on the smoothness of the existing subway rail surface. The fluctuation range was −1 to 1 mm, ensuring the safety of existing subway operations. Then, a refined finite difference model for the close-fitting undercrossing construction process based on pre-support technology was established, and a series of field and laboratory tests were conducted to obtain calculation parameters. The reliability of the numerical model was verified by comparing the monitored deformation of existing structures with the simulated structural forces and deformations. The influence of construction methods on the settlement changes of existing line tracks, structures, and deformation joints was discussed. The research results show that this construction method effectively controls the settlement deformation of existing lines. The settlement deformation of existing lines is controlled within 1~3 cm. The deformation stress of the existing lines is within the concrete strength range of the existing structure, and the tensile stress is less than 3 MPa. The maximum settlement and maximum tensile stress of the station in the pre-support jacking scheme are −5.27 mm and 2.29 MPa. The construction scheme with pre-support can more significantly control structural deformation, reduce stress variations in existing line structures, and minimize damage to concrete structures. Based on the monitoring data and simulation results, some optimization measures were proposed. Full article
(This article belongs to the Special Issue Recent Advances in Railway Engineering)
Show Figures

Figure 1

21 pages, 5918 KiB  
Article
Development of a Real-Time Online Automatic Measurement System for Propeller Manufacturing Quality Control
by Yuan-Ming Cheng and Kuan-Yu Hsu
Appl. Sci. 2025, 15(14), 7750; https://doi.org/10.3390/app15147750 - 10 Jul 2025
Viewed by 143
Abstract
The quality of machined marine propellers plays a critical role in underwater propulsion performance. Precision casting is the predominant manufacturing technique; however, deformation of wax models and rough blanks during manufacturing frequently cause deviations in the dimensions of final products and, thus, affect [...] Read more.
The quality of machined marine propellers plays a critical role in underwater propulsion performance. Precision casting is the predominant manufacturing technique; however, deformation of wax models and rough blanks during manufacturing frequently cause deviations in the dimensions of final products and, thus, affect propellers’ performance and service life. Current inspection methods primarily involve using coordinate measuring machines and sampling. This approach is time-consuming, has high labor costs, and cannot monitor manufacturing quality in real-time. This study developed a real-time online automated measurement system containing a high-resolution CITIZEN displacement sensor, a four-degree-of-freedom measurement platform, and programmable logic controller-based motion control technology to enable rapid, automated measurement of blade deformation across the wax model, rough blank, and final product processing stages. The measurement data are transmitted in real time to a cloud database. Tests conducted on a standardized platform and real propeller blades confirmed that the system consistently achieved measurement accuracy to the second decimal place under the continual measurement mode. The system also demonstrated excellent repeatability and stability. Furthermore, the continuous measurement mode outperformed the single-point measurement mode. Overall, the developed system effectively reduces labor requirements, shortens measurement times, and enables real-time monitoring of process variation. These capabilities underscore its strong potential for application in the smart manufacturing and quality control of marine propellers. Full article
Show Figures

Figure 1

24 pages, 5988 KiB  
Article
Research on Construction Sequencing and Deformation Control for Foundation Pit Groups
by Ziwei Yin, Ruizhe Jin, Shouye Guan, Zhiwei Chen, Guoliang Dai and Wenbo Zhu
Appl. Sci. 2025, 15(14), 7719; https://doi.org/10.3390/app15147719 - 9 Jul 2025
Viewed by 254
Abstract
With the rapid urbanization and increasing development of underground spaces, foundation pit groups in complex geological environments encounter considerable challenges in deformation control. These challenges are especially prominent in cases of adjacent constructions, complex geology, and environmentally sensitive areas. Nevertheless, existing research is [...] Read more.
With the rapid urbanization and increasing development of underground spaces, foundation pit groups in complex geological environments encounter considerable challenges in deformation control. These challenges are especially prominent in cases of adjacent constructions, complex geology, and environmentally sensitive areas. Nevertheless, existing research is lacking in systematic analysis of construction sequencing and the interaction mechanisms between foundation pit groups. This results in gaps in comprehending stress redistribution and optimal excavation strategies for such configurations. To address these gaps, this study integrates physical model tests and PLAXIS 3D numerical simulations to explore the Nanjing Jiangbei New District Phase II pit groups. It concentrates on deformations in segmented and adjacent configurations under varying excavation sequences and spacing conditions. Key findings reveal that simultaneous excavation in segmented pit groups optimizes deformation control through symmetrical stress relief via bilateral unloading, reducing shared diaphragm wall displacement by 18–25% compared to sequential methods. Sequential excavations induce complex soil stress redistribution from asymmetric unloading, with deep-to-shallow sequencing minimizing exterior wall deformation (≤0.12%He). For adjacent foundation pit groups, simultaneous excavation achieves minimum displacement interference, while phased construction requires prioritizing large-section excavation first to mitigate cumulative deformations through optimized stress transfer. When the spacing-to-depth ratio (B/He) is below 1, horizontal displacements of retaining structures increase by 43% due to spacing effects. This study quantifies the effects of excavation sequences and spacing configurations on pit group deformation, establishing a theoretical framework for optimizing construction strategies and enhancing retaining structure stability. The findings are highly significant for underground engineering design and construction in complex urban geological settings, especially in high-density areas with spatial and geotechnical constraints. Full article
Show Figures

Figure 1

21 pages, 7691 KiB  
Article
Compound Instability Effect and Countermeasures of Pit-in-Pit in Collapsible Loess Strata
by Jiawei Xu, Peilong Yuan, Jinxing Lai, Peiyao Che, Xiangcheng Su and Xulin Su
Appl. Sci. 2025, 15(14), 7710; https://doi.org/10.3390/app15147710 - 9 Jul 2025
Viewed by 194
Abstract
The construction of pit-in-pit has become increasingly challenging due to the bad geological conditions, particularly in collapsible loess strata. To understand its supporting characteristics and failure mode, it is necessary to study the composite instability mechanism in the loess strata. This research systematically [...] Read more.
The construction of pit-in-pit has become increasingly challenging due to the bad geological conditions, particularly in collapsible loess strata. To understand its supporting characteristics and failure mode, it is necessary to study the composite instability mechanism in the loess strata. This research systematically investigates the interacting instability modes of pit-in-pit under a collapsible loess stratum, studies the effects of different reinforcement parameters through physical model tests, analyzes the significance level of each reinforcement factor, and monitors the displacement of the foundation pit during construction in a pit project in Zhengzhou. The result shows that the soil pressure distribution law of the pit in a collapsible loess formation is a complex function of soil parameters, the relative positional relationship between the inner and outer foundation pits, and the time of immersion. The model test shows that the width and depth of reinforced soil have the most significant influence. The reinforcement measures proposed in this paper can effectively control the displacement of each measuring point during the foundation pit excavation, which can provide a reference for similar projects. Full article
Show Figures

Figure 1

13 pages, 4900 KiB  
Article
Comparative Noise Analysis of Readout Circuit in Hemispherical Resonator Gyroscope
by Zhihao Yu, Libin Zeng, Changda Xing, Lituo Shang, Xiuyue Yan and Jingyu Li
Micromachines 2025, 16(7), 802; https://doi.org/10.3390/mi16070802 - 9 Jul 2025
Viewed by 204
Abstract
In high-precision Hemispherical Resonator Gyroscope (HRG) control systems, readout circuit noise critically determines resonator displacement detection precision. Addressing noise issues, this paper compares the noise characteristics and contribution mechanisms of the Transimpedance Amplifier (TIA) and Charge-Sensitive Amplifier (CSA). By establishing a noise model [...] Read more.
In high-precision Hemispherical Resonator Gyroscope (HRG) control systems, readout circuit noise critically determines resonator displacement detection precision. Addressing noise issues, this paper compares the noise characteristics and contribution mechanisms of the Transimpedance Amplifier (TIA) and Charge-Sensitive Amplifier (CSA). By establishing a noise model and analyzing circuit bandwidth, the dominant role of feedback resistor thermal noise in the TIA is revealed. These analyses further demonstrate the significant suppression of high-frequency noise by the CSA capacitive feedback network. Simulation and experimental results demonstrate that the measured noise of the TIA and CSA is consistent with the theoretical model. The TIA output noise is 25.8 μVrms, with feedback resistor thermal noise accounting for 99.8%, while CSA output noise is reduced to 13.2 μVrms, a reduction of 48.8%. Near resonant frequency, the equivalent displacement noise of the CSA is 1.69×1014m/Hz, a reduction of 86.7% compared to the TIA’s 1.27×1013m/Hz, indicating the CSA is more suitable for high-precision applications. This research provides theoretical guidance and technical references for the topological selection and parameter design of HRG readout circuits. Full article
Show Figures

Figure 1

24 pages, 16393 KiB  
Article
Near-Surface-Mounted CFRP Ropes as External Shear Reinforcement for the Rehabilitation of Substandard RC Joints
by George Kalogeropoulos, Georgia Nikolopoulou, Evangelia-Tsampika Gianniki, Avraam Konstantinidis and Chris Karayannis
Buildings 2025, 15(14), 2409; https://doi.org/10.3390/buildings15142409 - 9 Jul 2025
Viewed by 225
Abstract
The effectiveness of an innovative retrofit scheme using near-surface-mounted (NSM) X-shaped CFRP ropes for the strengthening of substandard RC beam–column joints was investigated experimentally. Three large-scale beam–column joint subassemblages were constructed with poor reinforcement details. One specimen was subjected to cyclic lateral loading, [...] Read more.
The effectiveness of an innovative retrofit scheme using near-surface-mounted (NSM) X-shaped CFRP ropes for the strengthening of substandard RC beam–column joints was investigated experimentally. Three large-scale beam–column joint subassemblages were constructed with poor reinforcement details. One specimen was subjected to cyclic lateral loading, exhibited shear failure of the joint region and was used as the control specimen. The other specimens were retrofitted and subsequently subjected to the same history of incremental lateral displacement amplitudes with the control subassemblage. The retrofitting was characterized by low labor demands and included wrapping of NSM CFPR-ropes in the two diagonal directions on both lateral sides of the joint as shear reinforcement. Single or double wrapping of the joint was performed, while weights were suspended to prevent the loose placement of the ropes in the grooves. A significant improvement in the seismic performance of the retrofitted specimens was observed with respect to the control specimen, regarding strength and ductility. The proposed innovative scheme effectively prevented shear failure of the joint by shifting the damage in the beam, and the retrofitted specimens showed a more dissipating hysteresis behavior without significant loss of lateral strength and axial load-bearing capacity. The cumulative energy dissipation capacity of the strengthened specimens increased by 105.38% and 122.23% with respect to the control specimen. Full article
Show Figures

Figure 1

21 pages, 4791 KiB  
Article
Research on the Active Suspension Control Strategy of Multi-Axle Emergency Rescue Vehicles Based on the Inverse Position Solution of a Parallel Mechanism
by Qinghe Guo, Dingxuan Zhao, Yurong Chen, Shenghuai Wang, Hongxia Wang, Chen Wang and Renjun Liu
Vehicles 2025, 7(3), 69; https://doi.org/10.3390/vehicles7030069 - 9 Jul 2025
Viewed by 171
Abstract
Aiming at the problems of complex control processes, strong model dependence, and difficult engineering application when the existing active suspension control strategy is applied to multi-axle vehicles, an active suspension control strategy based on the inverse position solution of a parallel mechanism is [...] Read more.
Aiming at the problems of complex control processes, strong model dependence, and difficult engineering application when the existing active suspension control strategy is applied to multi-axle vehicles, an active suspension control strategy based on the inverse position solution of a parallel mechanism is proposed. First, the active suspension of the three-axle emergency rescue vehicle is grouped and interconnected within the group, and it is equivalently constructed into a 3-DOF parallel mechanism. Then, the displacement of each equivalent suspension actuating hydraulic cylinder is calculated by using the method of the inverse position solution of a parallel mechanism, and then the equivalent actuating hydraulic cylinder is reversely driven according to the displacement, thereby realizing the effective control of the attitude of the vehicle body. To verify the effectiveness of the proposed control strategy, a three-axis vehicle experimental platform integrating active suspension and hydro-pneumatic suspension was built, and a pulse road experiment and gravel pavement experiment were carried out and compared with hydro-pneumatic suspension. Both types of road experimental results show that compared to hydro-pneumatic suspension, the active suspension control strategy based on the inverse position solution of a parallel mechanism proposed in this paper exhibits different degrees of advantages in reducing the peak values of the vehicle vertical displacement, pitch angle, and roll angle changes, as well as suppressing various vibration accelerations, significantly improving the vehicle’s driving smoothness and handling stability. Full article
Show Figures

Figure 1

Back to TopTop